Journal Home > Volume 16 , Issue 5

Hydrated vanadium oxide (VOH) is a promising cathode candidate for the aqueous zinc-ion batteries (AZIBs), due to the large interlayer spacing and high capacity. However, severe pulverization and structure collapse upon cycling limit its practical application. Herein, preintercalation strategy with higher positive charge of Cr3+ is proposed to regulate the structure and oxygen defect of the VOH-Od. The VOH-Od with moderated amount of Cr3+ incorporation (M-CrVOH-Od), showing a flower-like hierarchical structure assembled with thin nanosheets, can expand the interlayer spacing and increase the oxygen defect, inducing an enhanced high-rate cycling capability. As a result, M-CrVOH-Od delivers a high capacity of 405 mAh·g−1 at 0.5 A·g−1, high capacity retention of 120% over 3,500 cycles, as well as an extraordinary energy output (297.3 Wh·kg−1 at 355.9 W·kg−1). The density functional theory (DFT) calculations can prove the enhanced reaction kinetics with narrower bandgap and lower Zn2+ adsorption energy after the Cr-preintercalation. Meanwhile, based on the ex-situ X-ray diffraction (XRD) analysis, synergistic intercalation of the Zn2+/H+ into the interlayers of M-CrVOH-Od can bring the high specific capacity. This work could help us understand the enhanced performance of VOH from the point of the chemical reactions.


menu
Abstract
Full text
Outline
Electronic supplementary material
About this article

Structure and oxygen-defect regulation of hydrated vanadium oxide for enhanced zinc ion storage via interlayer doping strategy

Show Author's information Bingchen ZhangXihao HanWenpei Kang( )Daofeng Sun( )
School of Materials Science and Engineering, China University of Petroleum (East China), Qingdao 266580, China

Abstract

Hydrated vanadium oxide (VOH) is a promising cathode candidate for the aqueous zinc-ion batteries (AZIBs), due to the large interlayer spacing and high capacity. However, severe pulverization and structure collapse upon cycling limit its practical application. Herein, preintercalation strategy with higher positive charge of Cr3+ is proposed to regulate the structure and oxygen defect of the VOH-Od. The VOH-Od with moderated amount of Cr3+ incorporation (M-CrVOH-Od), showing a flower-like hierarchical structure assembled with thin nanosheets, can expand the interlayer spacing and increase the oxygen defect, inducing an enhanced high-rate cycling capability. As a result, M-CrVOH-Od delivers a high capacity of 405 mAh·g−1 at 0.5 A·g−1, high capacity retention of 120% over 3,500 cycles, as well as an extraordinary energy output (297.3 Wh·kg−1 at 355.9 W·kg−1). The density functional theory (DFT) calculations can prove the enhanced reaction kinetics with narrower bandgap and lower Zn2+ adsorption energy after the Cr-preintercalation. Meanwhile, based on the ex-situ X-ray diffraction (XRD) analysis, synergistic intercalation of the Zn2+/H+ into the interlayers of M-CrVOH-Od can bring the high specific capacity. This work could help us understand the enhanced performance of VOH from the point of the chemical reactions.

Keywords: cathode, hydrated vanadium oxide, preintercalation, aqueous zinc-ion batteries

References(54)

[1]

Jia, X. X.; Liu, C. F.; Neale, Z. G.; Yang, J. H.; Cao, G. Z. Active materials for aqueous zinc ion batteries: Synthesis, crystal structure, morphology, and electrochemistry. Chem. Rev. 2020, 120, 7795–7866.

[2]

Song, J. H.; Xu, K.; Liu, N.; Reed, D.; Li, X. L. Crossroads in the renaissance of rechargeable aqueous zinc batteries. Mater. Today 2021, 45, 191–212.

[3]

Wang, X.; Zhang, Z. C. Y.; Xi, B. J.; Chen, W. H.; Jia, Y. X.; Feng, J. K.; Xiong, S. L. Advances and perspectives of cathode storage chemistry in aqueous zinc-ion batteries. ACS Nano 2021, 15, 9244–9272.

[4]

Yu, D. X.; Wei, Z. X.; Zhang, X. Y.; Zeng, Y.; Wang, C. Z.; Chen, G.; Shen, Z. X.; Du, F. Boosting Zn2+ and NH4+ storage in aqueous media via in-situ electrochemical induced VS2/VOx heterostructures. Adv. Funct. Mater. 2021, 31, 2008743.

[5]

Jiang, L. W.; Lu, Y. X.; Zhao, C. L.; Liu, L. L.; Zhang, J. N.; Zhang, Q. Q.; Shen, X.; Zhao, J. M.; Yu, X. Q.; Li, H. et al. Building aqueous K-ion batteries for energy storage. Nat. Energy 2019, 4, 495–503.

[6]

Chen, Q.; Jin, J. L.; Song, M. D.; Zhang, X. Y.; Li, H.; Zhang, J. L.; Hou, G. Y.; Tang, Y. P.; Mai, L. Q.; Zhou, L. High-energy aqueous ammonium-ion hybrid supercapacitors. Adv. Mater. 2022, 34, 2107992.

[7]

Chae, M. S.; Chakraborty, A.; Kunnikuruvan, S.; Attias, R.; Maddukuri, S.; Gofer, Y.; Major, D. T.; Aurbach, D. Vacancy-driven high rate capabilities in calcium-doped Na0.4MnO2 cathodes for aqueous sodium-ion batteries. Adv. Energy Mater. 2020, 10, 2002077.

[8]

Eftekhari, A. High-energy aqueous lithium batteries. Adv. Energy Mater. 2018, 8, 1801156.

[9]

Deng, M.; Wang, L. Q.; Vaghefinazari, B.; Xu, W.; Feiler, C.; Lamaka, S. V.; Höche, D.; Zheludkevich, M. L.; Snihirova, D. High-energy and durable aqueous magnesium batteries: Recent advances and perspectives. Energy Storage Mater. 2021, 43, 238–247.

[10]

Wu, B. K.; Luo, W.; Li, M.; Zeng, L.; Mai, L. Q. Achieving better aqueous rechargeable zinc ion batteries with heterostructure electrodes. Nano Res. 2021, 14, 3174–3187.

[11]

Zhang, Y. R.; Chen, A. B.; Sun, J. Promise and challenge of vanadium-based cathodes for aqueous zinc-ion batteries. J. Energy Chem. 2021, 54, 655–667.

[12]

Li, M.; Li, Z. L.; Wang, X. P.; Meng, J. S.; Liu, X.; Wu, B. K.; Han, C. H.; Mai, L. Q. Comprehensive understanding of the roles of water molecules in aqueous Zn-ion batteries: From electrolytes to electrode materials. Energy Environ. Sci. 2021, 14, 3796–3839.

[13]

Zhao, Q. H.; Song, A. Y.; Ding, S. X.; Qin, R. Z.; Cui, Y. H.; Li, S. N.; Pan, F. Preintercalation strategy in manganese oxides for electrochemical energy storage: Review and prospects. Adv. Mater. 2020, 32, 2002450.

[14]

Jia, D. D.; Zheng, K.; Song, M.; Tan, H.; Zhang, A. T.; Wang, L. H.; Yue, L. J.; Li, D.; Li, C. W.; Liu, J. Q. VO2·0.2H2O nanocuboids anchored onto graphene sheets as the cathode material for ultrahigh capacity aqueous zinc ion batteries. Nano Res. 2020, 13, 215–224.

[15]

Yong, B.; Ma, D. T.; Wang, Y. Y.; Mi, H. W.; He, C. X.; Zhang, P. X. Understanding the design principles of advanced aqueous zinc-ion battery cathodes: From transport kinetics to structural engineering, and future perspectives. Adv. Energy Mater. 2020, 10, 2002354.

[16]

Yi, Z. H.; Chen, G. Y.; Hou, F.; Wang, L. Q.; Liang, J. Strategies for the stabilization of Zn metal anodes for Zn-ion batteries. Adv. Energy Mater. 2021, 11, 2003065.

[17]

Tang, B. Y.; Shan, L. T.; Liang, S. Q.; Zhou, J. Issues and opportunities facing aqueous zinc-ion batteries. Energy Environ. Sci. 2019, 12, 3288–3304.

[18]

Kundu, D.; Adams, B. D.; Duffort, V.; Vajargah, S. H.; Nazar, L. F. A high-capacity and long-life aqueous rechargeable zinc battery using a metal oxide intercalation cathode. Nat. Energy 2016, 1, 16119.

[19]

Yang, Y. Q.; Tang, Y.; Fang, G. Z.; Shan, L. T.; Guo, J. S.; Zhang, W. Y.; Wang, C.; Wang, L. B.; Zhou, J.; Liang, S. Q. Li+ intercalated V2O5·nH2O with enlarged layer spacing and fast ion diffusion as an aqueous zinc-ion battery cathode. Energy Environ. Sci. 2018, 11, 3157–3162.

[20]

He, P.; Zhang, G. B.; Liao, X. B.; Yan, M. Y.; Xu, X.; An, Q. Y.; Liu, J.; Mai, L. Q. Sodium ion stabilized vanadium oxide nanowire cathode for high-performance zinc-ion batteries. Adv. Energy Mater. 2018, 8, 1702463.

[21]

Qiu, N.; Yang, Z. M.; Xue, R.; Wang, Y.; Zhu, Y. M.; Liu, W. Toward a high-performance aqueous zinc ion battery: Potassium vanadate nanobelts and carbon enhanced zinc foil. Nano Lett. 2021, 21, 2738–2744.

[22]

Sun, Q. C.; Cheng, H. W.; Sun, C. L.; Liu, Y. B.; Nie, W.; Zhao, K. N.; Lu, X. G.; Zhou, J. Architecting a hydrated Ca0.24V2O5 cathode with a facile desolvation interface for superior-performance aqueous zinc ion batteries. ACS Appl. Mater. Interfaces 2021, 13, 60035–60045.

[23]

Ming, F. W.; Liang, H. F.; Lei, Y. J.; Kandambeth, S.; Eddaoudi, M.; Alshareef, H. N. Layered MgxV2O5·nH2O as cathode material for high-performance aqueous zinc ion batteries. ACS Energy Lett. 2018, 3, 2602–2609.

[24]

Wang, X.; Xi, B. J.; Ma, X. J.; Feng, Z. Y.; Jia, Y. X.; Feng, J. K.; Qian, Y. T.; Xiong, S. L. Boosting zinc-ion storage capability by effectively suppressing vanadium dissolution based on robust layered barium vanadate. Nano Lett. 2020, 20, 2899–2906.

[25]

Feng, J. J.; Wang, Y.; Liu, S. H.; Chen, S. Y.; Wen, N.; Zeng, X. X.; Dong, Y. Z.; Huang, C. M.; Kuang, Q.; Zhao, Y. M. Electrochemically induced structural and morphological evolutions in nickel vanadium oxide hydrate nanobelts enabling fast transport kinetics for high-performance zinc storage. ACS Appl. Mater. Interfaces 2020, 12, 24726–24736.

[26]

Geng, H. B.; Cheng, M.; Wang, B.; Yang, Y.; Zhang, Y. F.; Li, C. C. Electronic structure regulation of layered vanadium oxide via interlayer doping strategy toward superior high-rate and low-temperature zinc-ion batteries. Adv. Funct. Mater. 2020, 30, 1907684.

[27]

Zhang, J.; Wang, M. S.; Zeng, M.; Li, X. P.; Chen, L.; Yang, Z. L.; Chen, J. C.; Guo, B. S.; Ma, Z. Y.; Li, X. Sulfite modified and ammonium ion intercalated vanadium hydrate with enhanced redox kinetics for aqueous zinc ion batteries. J. Power Sources 2021, 496, 229832.

[28]

Zheng, J. Q.; Liu, C. F.; Tian, M.; Jia, X. X.; Jahrman, E. P.; Seidler, G. T.; Zhang, S. Q.; Liu, Y. Y.; Zhang, Y. F.; Meng, C. G. et al. Fast and reversible zinc ion intercalation in Al-ion modified hydrated vanadate. Nano Energy 2020, 70, 104519.

[29]

Zhang, Y. R.; Zhao, L. N.; Chen, A. B.; Sun, J. Cr3+ pre-intercalated hydrated vanadium oxide as an excellent performance cathode for aqueous zinc-ion batteries. Fundam. Res. 2021, 1, 418–424.

[30]

Zhang, X.; Tang, Y. C.; He, P. G.; Zhang, Z.; Chen, T. F. Edge-rich vertical graphene nanosheets templating V2O5 for highly durable zinc ion battery. Carbon 2021, 172, 207–213.

[31]

Feng, Z. Y.; Zhang, Y. F.; Sun, J. J.; Liu, Y. Y.; Jiang, H. M.; Cui, M.; Hu, T.; Meng, C. G. Dual ions enable vanadium oxide hydration with superior Zn2+ storage for aqueous zinc-ion batteries. Chem. Eng. J. 2022, 433, 133795.

[32]

Li, Q.; Wei, T. Y.; Ma, K. X.; Yang, G. Z.; Wang, C. X. Boosting the cyclic stability of aqueous zinc-ion battery based on Al-doped V10O24·12H2O cathode materials. ACS Appl. Mater. Interfaces 2019, 11, 20888–20894.

[33]

Wang, X.; Zhang, Z. C. Y.; Xiong, S. L.; Tian, F.; Feng, Z. Y.; Jia, Y. X.; Feng, J. K.; Xi, B. J. A high-rate and ultrastable aqueous zinc-ion battery with a novel MgV2O6·1.7H2O nanobelt cathode. Small 2021, 17, 2100318.

[34]

Chen, H. D.; Huang, J. J.; Tian, S. H.; Liu, L.; Qin, T. F.; Song, L.; Liu, Y. P.; Zhang, Y. N.; Wu, X. G.; Lei, S. L. et al. Interlayer modification of pseudocapacitive vanadium oxide and Zn(H2O)n2+ migration regulation for ultrahigh rate and durable aqueous zinc-ion batteries. Adv. Sci. 2021, 8, 2004924.

[35]

Liu, C. F.; Neale, Z.; Zheng, J. Q.; Jia, X. X.; Huang, J. J.; Yan, M. Y.; Tian, M.; Wang, M. S.; Yang, J. H.; Cao, G. Z. Expanded hydrated vanadate for high-performance aqueous zinc-ion batteries. Energy Environ. Sci. 2019, 12, 2273–2285.

[36]

Chen, W.; Mai, L. Q.; Peng, J. F.; Xu, Q.; Zhu, Q. Y. FTIR study of vanadium oxide nanotubes from lamellar structure. J. Mater. Sci. 2004, 39, 2625–2627.

[37]

Ren, Z. F.; Xu, X.; Wang, X.; Gao, B. Y.; Yue, Q. Y.; Song, W.; Zhang, L.; Wang, H. T. FTIR, Raman, and XPS analysis during phosphate, nitrate and Cr(VI) removal by amine cross-linking biosorbent. J. Colloid Interface Sci. 2016, 468, 313–323.

[38]

Gao, J.; Zheng, Y. T.; Tang, Y. D.; Jehng, J. M.; Grybos, R.; Handzlik, J.; Wachs, I. E.; Podkolzin, S. G. Spectroscopic and computational study of Cr oxide structures and their anchoring sites on ZSM-5 zeolites. ACS Catal. 2015, 5, 3078–3092.

[39]

Zhang, Z. C. Y.; Xi, B. J.; Wang, X.; Ma, X. J.; Chen, W. H.; Feng, J. K.; Xiong, S. L. Oxygen defects engineering of VO2·xH2O nanosheets via in situ polypyrrole polymerization for efficient aqueous zinc ion storage. Adv. Funct. Mater. 2021, 31, 2103070.

[40]

Cao, J.; Zhang, D. D.; Yue, Y. L.; Pakornchote, T.; Bovornratanaraks, T.; Sawangphruk, M.; Zhang, X. Y.; Qin, J. Q. Revealing the impacts of oxygen defects on Zn2+ storage performance in V2O5. Mater. Today Energy 2021, 21, 100824.

[41]

Cao, J.; Zhang, D. D.; Yue, Y. L.; Wang, X.; Pakornchote, T.; Bovornratanaraks, T.; Zhang, X. Y.; Wu, Z. S.; Qin, J. Q. Oxygen defect enriched (NH4)2V10O25·8H2O nanosheets for superior aqueous zinc-ion batteries. Nano Energy 2021, 84, 105876.

[42]

Du, Y. H.; Wang, X. Y.; Sun, J. C. Tunable oxygen vacancy concentration in vanadium oxide as mass-produced cathode for aqueous zinc-ion batteries. Nano Res. 2021, 14, 754–761.

[43]

Bai, Y. C.; Zhang, H.; Xiang, B.; Zhou, Y.; Dou, L.; Dong, G. Y. Chemically assembling chromium vanadate into an urchin-like porous rich matrix with ultrathin nanosheets for rapid Zn2+ storage. J. Colloid Interface Sci. 2021, 597, 422–428.

[44]

Tan, Y.; Li, S. W.; Zhao, X. D.; Wang, Y.; Shen, Q. Y.; Qu, X. H.; Liu, Y. C.; Jiao, L. F. Unexpected role of the interlayer “dead Zn2+” in strengthening the nanostructures of VS2 cathodes for high-performance aqueous Zn-ion storage. Adv. Energy Mater. 2022, 12, 2104001.

[45]

Hu, K.; Jin, D. Q.; Zhang, Y.; Ke, L. W.; Shang, H.; Yan, Y.; Lin, H. J.; Rui, K.; Zhu, J. X. Metallic vanadium trioxide intercalated with phase transformation for advanced aqueous zinc-ion batteries. J. Energy Chem. 2021, 61, 594–601.

[46]

Bai, Y. C.; Zhang, H.; Hu, Q.; Zhou, Y.; Xiang, B. Tuning the kinetics of binder-free ammonium vanadate cathode via defect modulation for ultrastable rechargeable zinc ion batteries. Nano Energy 2021, 90, 106596.

[47]

Xia, C.; Guo, J.; Li, P.; Zhang, X. X.; Alshareef, H. N. Highly stable aqueous zinc-ion storage using a layered calcium vanadium oxide bronze cathode. Angew. Chem., Int. Ed. 2018, 57, 3943–3948.

[48]

Wu, F. F.; Wang, Y. W.; Ruan, P. C.; Niu, X. X.; Zheng, D.; Xu, X. L.; Gao, X. B.; Cai, Y. H.; Liu, W. X.; Shi, W. H. et al. Fe-doping enabled a stable vanadium oxide cathode with rapid Zn diffusion channel for aqueous zinc-ion batteries. Mater. Today Energy 2021, 21, 100842.

[49]

Liu, S. C.; Zhu, H.; Zhang, B. H.; Li, G.; Zhu, H. K.; Ren, Y.; Geng, H. B.; Yang, Y.; Liu, Q.; Li, C. C. Tuning the kinetics of zinc-ion insertion/extraction in V2O5 by in situ polyaniline intercalation enables improved aqueous zinc-ion storage performance. Adv. Mater. 2020, 32, 2001113.

[50]

Wan, F.; Hao, Z. M.; Wang, S.; Ni, Y. X.; Zhu, J. C.; Tie, Z. W.; Bi, S. S.; Niu, Z. Q.; Chen, J. A universal compensation strategy to anchor polar organic molecules in bilayered hydrated vanadates for promoting aqueous zinc-ion storage. Adv. Mater. 2021, 33, 2102701.

[51]

Kim, J.; Lee, S. H.; Park, C.; Kim, H. S.; Park, J. H.; Chung, K. Y.; Ahn, H. Controlling vanadate nanofiber interlayer via intercalation with conducting polymers: Cathode material design for rechargeable aqueous zinc ion batteries. Adv. Funct. Mater. 2021, 31, 2100005.

[52]

Zhu, K. Y.; Wu, T.; Sun, S. C.; van den Bergh, W.; Stefik, M.; Huang, K. Synergistic H+/Zn2+ dual ion insertion mechanism in high-capacity and ultra-stable hydrated VO2 cathode for aqueous Zn-ion batteries. Energy Storage Mater. 2020, 29, 60–70.

[53]

Li, R.; Xing, F.; Li, T. Y.; Zhang, H. M.; Yan, J. W.; Zheng, Q.; Li, X. F. Intercalated polyaniline in V2O5 as a unique vanadium oxide bronze cathode for highly stable aqueous zinc ion battery. Energy Storage Mater. 2021, 38, 590–598.

[54]

Luo, H.; Wang, B.; Wang, C. L.; Wu, F. D.; Jin, F.; Cong, B. W.; Ning, Y.; Zhou, Y.; Wang, D. L.; Liu, H. K. et al. Synergistic deficiency and heterojunction engineering boosted VO2 redox kinetics for aqueous zinc-ion batteries with superior comprehensive performance. Energy Storage Mater. 2020, 33, 390–398.

File
12274_2022_4834_MOESM1_ESM.pdf (1.6 MB)
Publication history
Copyright
Acknowledgements

Publication history

Received: 11 May 2022
Revised: 15 July 2022
Accepted: 31 July 2022
Published: 02 September 2022
Issue date: May 2023

Copyright

© Tsinghua University Press 2022

Acknowledgements

Acknowledgements

This work was financially supported by the National Natural Science Foundation of China (No. 51702366) and the Key Research and Development Projects of Shandong Province (No. 2019JZZY010331).

Return