Journal Home > Volume 15 , Issue 12

As energy demands increase and environmental issues loom, fuel cells (FCs) have attracted significant attention as an alternative to conventional energy sources. Their use encompasses portable applications, transportation, and a stationary grid-power mainly due to their low-temperature operation and quick start-up. However, the primary challenge is improving fuel cell durability to meet 2025 U.S. Department of Energy targets (e.g., 8,000+ h for automotive drive cycle). Proton exchange membrane fuel cell (PEMFC) catalysts currently suffer from low durability, undermining their wide-scale deployment into the consumer and industrial markets. Platinum group metals (PGMs) are still the most common catalysts used in PEMFCs as they provide among the highest activity for electrode reactions and lifetime stability. An effective way to decrease Pt loading is the adoption of supports to enhance both Pt dispersion and its durability. Corrosion of the carbon-based support was identified to be the major contributor to performance degradation as they suffer from parasitic oxidation to CO2 (at the cathode). Therefore, there is a significant interest in exploring stable alternatives to replace carbon supports in PEMFCs. Transition metal carbides (TMCs) have attracted significant attention over the last several years as a possible candidate to replace carbon-based catalyst supports in fuel cells. Despite these advantages over carbon supports, the large-scale deployment of TMC-based supports in fuel cells is still hindered by concerns of durability at the high potential on the cathode during start-up and shutdown operation. Here, we address the most relevant studies concerning TMCs as supports for acidic oxygen reduction reaction (ORR) catalysis, including viewpoints about the surface and bulk design of the support, as well as the design of the catalyst itself to enhance the interaction and dispersion with the support.


menu
Abstract
Full text
Outline
About this article

Transition metal carbides as cathode supports for PEM fuel cells

Show Author's information Eliran R. HamoBrian A. Rosen( )
Department of Materials Science and Engineering, Tel Aviv University, Ramat Aviv 69987001, Israel

Abstract

As energy demands increase and environmental issues loom, fuel cells (FCs) have attracted significant attention as an alternative to conventional energy sources. Their use encompasses portable applications, transportation, and a stationary grid-power mainly due to their low-temperature operation and quick start-up. However, the primary challenge is improving fuel cell durability to meet 2025 U.S. Department of Energy targets (e.g., 8,000+ h for automotive drive cycle). Proton exchange membrane fuel cell (PEMFC) catalysts currently suffer from low durability, undermining their wide-scale deployment into the consumer and industrial markets. Platinum group metals (PGMs) are still the most common catalysts used in PEMFCs as they provide among the highest activity for electrode reactions and lifetime stability. An effective way to decrease Pt loading is the adoption of supports to enhance both Pt dispersion and its durability. Corrosion of the carbon-based support was identified to be the major contributor to performance degradation as they suffer from parasitic oxidation to CO2 (at the cathode). Therefore, there is a significant interest in exploring stable alternatives to replace carbon supports in PEMFCs. Transition metal carbides (TMCs) have attracted significant attention over the last several years as a possible candidate to replace carbon-based catalyst supports in fuel cells. Despite these advantages over carbon supports, the large-scale deployment of TMC-based supports in fuel cells is still hindered by concerns of durability at the high potential on the cathode during start-up and shutdown operation. Here, we address the most relevant studies concerning TMCs as supports for acidic oxygen reduction reaction (ORR) catalysis, including viewpoints about the surface and bulk design of the support, as well as the design of the catalyst itself to enhance the interaction and dispersion with the support.

Keywords: fuel cells, catalysis, durability, carbides, corrosion

References(134)

[1]

Wang, Y.; Ruiz Diaz, D. F.; Chen, K. S.; Wang, Z.; Adroher, X. C. Materials, technological status, and fundamentals of PEM fuel cells–A review. Mater. today 2020, 32, 178–203.

[2]

Singla, M. K.; Nijhawan, P.; Oberoi, A. S. Hydrogen fuel and fuel cell technology for cleaner future: A review. Environ. Sci. Pollut. Res. 2021, 28, 15607–15626.

[3]
Cleveland, C. J.; Morris, C. Handbook of Energy. Volume II, Chronologies, Top Ten Lists, and Word Clouds; Elsevier: Waltham, 2014; pp 323–332.
[4]

Litster, S.; McLean, G. PEM fuel cell electrodes. J. Power Sources 2004, 130, 61–76.

[5]

Martínez-Huerta, M. V.; Lázaro, M. J. Electrocatalysts for low temperature fuel cells. Catal. Today 2017, 285, 3–12.

[6]
Gasteiger, H. A.; Baker, D. R.; Carter, R. N.; Gu, W.; Liu, Y.; Wagner, F. T.; Yu, P. T. Electrocatalysis and catalyst degradation challenges in proton exchange membrane fuel cells. In Proceedings of the 18th World Hydrogen Energy Conference 2010, Verlag, 2010, pp 3–16.
[7]

Sharaf, O. Z.; Orhan, M. F. An overview of fuel cell technology: Fundamentals and applications. Renew. Sustain. Energy Rev. 2014, 32, 810–853.

[8]
U.S. DRIVE Partnership. Fuel Cell Technical Team Roadmap. https://www.energy.gov/sites/default/files/2017/11/f46/FCTT_Roadmap_Nov_2017_FINAL.pdf (accessed May 15, 2022).
[9]

Mølmen, L.; Eiler, K.; Fast, L.; Leisner, P.; Pellicer, E. Recent advances in catalyst materials for proton exchange membrane fuel cells. APL Mater. 2021, 9, 040702.

[10]

Wang, Y.; Diaz, D. F. R.; Chen, K. S.; Wang, Z.; Adroher, X. C. Materials, technological status, and fundamentals of PEM fuel cells—A review. Mater. Today 2020, 32, 178–203.

[11]

Karanfil, G. Importance and applications of DOE/optimization methods in PEM fuel cells: A review. Int. J. Energy Res. 2020, 44, 4–25.

[12]
Padgett, E.; Kleen, G. Automotive Fuel Cell Targets and Status; DOE Hydrogen and Fuel Cells Program Record; U.S. Department of Energy, 2020. https://www.hydrogen.energy.gov/pdfs/20005-automotive-fuel-cell-targets-status.pdf (accessed May 15, 2022).
[13]

Wang, Y.; Chen, K. S.; Mishler, J.; Cho, S. C.; Adroher, X. C. A review of polymer electrolyte membrane fuel cells: Technology, applications, and needs on fundamental research. Appl. Energy 2011, 88, 981–1007.

[14]

Houchins, C.; Kleen, G. J.; Spendelow, J. S.; Kopasz, J.; Peterson, D.; Garland, N. L.; Ho, D. L.; Marcinkoski, J.; Martin, K. E.; Tyler, R.; Papageorgopoulos, D. C. U. S. DOE progress towards developing low-cost, high performance, durable polymer electrolyte membranes for fuel cell applications. Membranes (Basel) 2012, 2, 855–878.

[15]

Thompson, S. T.; Wilson, A. R.; Zelenay, P.; Myers, D. J.; More, K. L.; Neyerlin, K. C.; Papageorgopoulos, D. ElectroCat: DOE’s approach to PGM-free catalyst and electrode R&D. Solid State Ionics 2018, 319, 68–76.

[16]

Pullamsetty, A.; Sundara, R. Investigation of catalytic activity towards oxygen reduction reaction of Pt dispersed on boron doped graphene in acid medium. J. Colloid Interface Sci. 2016, 479, 260–270.

[17]

Meier, J. C.; Galeano, C.; Katsounaros, I.; Witte, J.; Bongard, H. J.; Topalov, A. A.; Baldizzone, C.; Mezzavilla, S.; Schüth, F.; Mayrhofer, K. J. J. Design criteria for stable Pt/C fuel cell catalysts. Beilstein J. Nanotechnol. 2014, 5, 44–67.

[18]

Celorrio, V.; Flórez-Montaño, J.; Moliner, R.; Pastor, E.; Lázaro, M. J. Fuel cell performance of Pt electrocatalysts supported on carbon nanocoils. Int. J. Hydrogen Energy 2014, 39, 5371–5377.

[19]

Wang, X. X.; Swihart, M. T.; Wu, G. Achievements, challenges and perspectives on cathode catalysts in proton exchange membrane fuel cells for transportation. Nat. Catal. 2019, 2, 578–589.

[20]

Cheon, J. Y.; Kim, J. H.; Kim, J. H.; Goddeti, K. C.; Park, J. Y.; Joo, S. H. Intrinsic relationship between enhanced oxygen reduction reaction activity and nanoscale work function of doped carbons. J. Am. Chem. Soc. 2014, 136, 8875–8878.

[21]

Tackett, B. M.; Sheng, W. C.; Chen, J. G. Opportunities and challenges in utilizing metal-modified transition metal carbides as low-cost electrocatalysts. Joule 2017, 1, 253–263.

[22]

Binninger, T.; Fabbri, E.; Kötz, R.; Schmidt, T. J. Determination of the electrochemically active surface area of metal–oxide supported platinum catalyst. J. Electrochem. Soc. 2014, 161, H121–H128.

[23]
Ortiz-Herrera, J. C.; Cruz-Martínez, H.; Solorza-Feria, O.; Medina, D. I. Recent progress in carbon nanotubes support materials for Pt-based cathode catalysts in PEM fuel cells. Int. J. Hydrogen Energy, in press, DOI: 10.1016/j.ijhydene.2022.03.218.
[24]

Shen, W. J.; Okumura, M.; Matsumura, Y.; Haruta, M. The influence of the support on the activity and selectivity of Pd in CO hydrogenation. Appl. Catal. A:Gen. 2001, 213, 225–232.

[25]

Yu, X. W.; Ye, S. Y. Recent advances in activity and durability enhancement of Pt/C catalytic cathode in PEMFC: Part II: Degradation mechanism and durability enhancement of carbon supported platinum catalyst. J. Power Sources 2007, 172, 145–154.

[26]

Jung, N.; Chung, D. Y.; Ryu, J.; Yoo, S. J.; Sung, Y. E. Pt-based nanoarchitecture and catalyst design for fuel cell applications. Nano Today 2014, 9, 433–456.

[27]

Lou, Y.; Xu, J.; Zhang, Y.; Pan, C.; Dong, Y.; Zhu, Y. Metal–support interaction for heterogeneous catalysis: From nanoparticles to single atoms. Mater. Today Nano 2020, 12, 100093.

[28]

Vannice, M. A. The influence of MSI (metal–support interactions) on activity and selectivity in the hydrogenation of aldehydes and ketones. Top. Catal. 1997, 4, 241–248.

[29]

Liu, Y. X.; Zhang, W. Y.; Han, G. K.; Zhou, Y. W.; Li, L. F.; Kong, F. P.; Gao, Y. Z.; Du, C. Y.; Wang, J. J.; Du, L. et al. Deactivated Pt electrocatalysts for the oxygen reduction reaction: The regeneration mechanism and a regenerative protocol. ACS Catal. 2021, 11, 9293–9299.

[30]

Valdés-López, V. F.; Mason, T.; Shearing, P. R.; Brett, D. J. L. Carbon monoxide poisoning and mitigation strategies for polymer electrolyte membrane fuel cells—A review. Prog. Energy Combust. Sci. 2020, 79, 100842.

[31]

Lee, K.; Ishihara, A.; Mitsushima, S.; Kamiya, N.; Ota, K. I. Stability and electrocatalytic activity for oxygen reduction in WC + Ta catalyst. Electrochim. Acta 2004, 49, 3479–3485.

[32]

Wang, Y.; Jin, J.; Yang, S. L.; Li, G.; Qiao, J. L. Highly active and stable platinum catalyst supported on porous carbon nanofibers for improved performance of PEMFC. Electrochim. Acta 2015, 177, 181–189.

[33]

Shinozaki, K.; Zack, J. W.; Richards, R. M.; Pivovar, B. S.; Kocha, S. S. Oxygen reduction reaction measurements on platinum electrocatalysts utilizing rotating disk electrode technique: I. Impact of impurities, measurement protocols and applied corrections. J. Electrochem. Soc. 2015, 162, F1144–F1158.

[34]

Morozan, A.; Jousselme, B.; Palacin, S. Low-platinum and platinum-free catalysts for the oxygenreduction reaction at fuelcell cathodes. Energy Environ. Sci. 2011, 4, 1238–1254.

[35]

Liu, Y.; Kelly, T. G.; Chen, J. G.; Mustain, W. E. Metal carbides as alternative electrocatalyst supports. ACS Catal. 2013, 3, 1184–1194.

[36]

Xu, F.; Wang, M. X.; Liu, Q.; Sun, H. F.; Simonson, S.; Ogbeifun, N.; Stach, E.; Xie, J. Investigation of the carbon corrosion process for polymer electrolyte fuel cells using a rotating disk electrode technique. ECS Trans. 2010, 33, 1281–1294.

[37]

Wang, Y. N.; Wan, X.; Liu, J. Y.; Li, W. W.; Li, Y. C.; Guo, X.; Liu, X. F.; Shang, J. X.; Shui, J. L. Catalysis stability enhancement of Fe/Co dual-atom site via phosphorus coordination for proton exchange membrane fuel cell. Nano Res. 2022, 15, 3082–3089.

[38]

Liu, J.; Jiao, M. G.; Lu, L. L.; Barkholtz, H. M.; Li, Y. P.; Wang, Y.; Jiang, L. H.; Wu, Z. J.; Liu, D. J.; Zhuang, L. et al. High performance platinum single atom electrocatalyst for oxygen reduction reaction. Nat. Commun. 2017, 8, 15938.

[39]

Ying, Y. R.; Fan, K.; Luo, X.; Qiao, J. L.; Huang, H. T. Unravelling the origin of bifunctional OER/ORR activity for single-atom catalysts supported on C2N by DFT and machine learning. J. Mater. Chem. A 2021, 9, 16860–16867.

[40]

Garlyyev, B.; Kratzl, K.; Rück, M.; Michalička, J.; Fichtner, J.; Macak, J. M.; Kratky, T.; Günther, S.; Cokoja, M.; Bandarenka, A. S. et al. Optimizing the size of platinum nanoparticles for enhanced mass activity in the electrochemical oxygen reduction reaction. Angew. Chem., Int. Ed. 2019, 58, 9596–9600.

[41]

Niu, H. T.; Xia, C. F.; Huang, L.; Zaman, S.; Maiyalagan, T.; Guo, W.; You, B.; Xia, B. Y. Rational design and synthesis of one-dimensional platinum-based nanostructures for oxygen-reduction electrocatalysis. Chin. J. Catal. 2022, 43, 1459–1472.

[42]

Liu, C. Y.; Sung, C. C. A review of the performance and analysis of proton exchange membrane fuel cell membrane electrode assemblies. J. Power Sources 2012, 220, 348–353.

[43]

Hou, J. B.; Yang, M.; Ke, C. C.; Wei, G. H.; Priest, C.; Qiao, Z.; Wu, G.; Zhang, J. L. Platinum-group-metal catalysts for proton exchange membrane fuel cells: From catalyst design to electrode structure optimization. EnergyChem 2020, 2, 100023.

[44]

Kang, Y. Q.; Wang, J. Q.; Wei, Y. P.; Wu, Y. L.; Xia, D. S.; Gan, L. Engineering nanoporous and solid core–shell architectures of low-platinum alloy catalysts for high power density PEM fuel cells. Nano Res. 2022, 15, 6148–6155.

[45]

Corona, B.; Howard, M.; Zhang, L.; Henkelman, G. Computational screening of core@shell nanoparticles for the hydrogen evolution and oxygen reduction reactions. J. Chem. Phys. 2016, 145, 244708.

[46]

Oyama, S. T. Preparation and catalytic properties of transition metal carbides and nitrides. Catal. Today 1992, 15, 179–200.

[47]

Abdelkareem, M. A.; Wilberforce, T.; Elsaid, K.; Sayed, E. T.; Abdelghani, E. A. M.; Olabi, A. G. Transition metal carbides and nitrides as oxygen reduction reaction catalyst or catalyst support in proton exchange membrane fuel cells (PEMFCs). Int. J. Hydrogen Energy 2021, 46, 23529–23547.

[48]

Joo, S. H.; Lee, J. S. Metal carbides as alternative electrocatalysts for energy conversion reactions. J. Catal. 2021, 404, 911–924.

[49]

Kimmel, Y. C.; Xu, X. G.; Yu, W. T.; Yang, X. D.; Chen, J. G. Trends in electrochemical stability of transition metal carbides and their potential use as supports for low-cost electrocatalysts. ACS Catal. 2014, 4, 1558–1562.

[50]

dos Santos Politi, J. R.; Viñes, F.; Rodriguez, J. A.; Illas, F. Atomic and electronic structure of molybdenum carbide phases: Bulk and low Miller-index surfaces. Phys. Chem. Chem. Phys. 2013, 15, 12617–12625.

[51]

Kitchin, J. R.; Nørskov, J. K.; Barteau, M. A.; Chen, J. G. Trends in the chemical properties of early transition metal carbide surfaces: A density functional study. Catal. Today 2005, 105, 66–73.

[52]

Zhong, Y.; Xia, X. H.; Shi, F.; Zhan, J. Y.; Tu, J. P.; Fan, H. J. Transition metal carbides and nitrides in energy storage and conversion. Adv. Sci. 2016, 3, 1500286.

[53]

Levy, R. B.; Boudart, M. Platinum-like behavior of tungsten carbide in surface catalysis. Science 1973, 181, 547–549.

[54]

Wang, Y. F.; Wu, Q. M.; Zhang, B. C.; Tian, L.; Li, K. X.; Zhang, X. L. Recent advances in transition metal carbide electrocatalysts for oxygen evolution reaction. Catalysts 2020, 10, 1164.

[55]

Lima, F. H. B.; Zhang, J.; Shao, M. H.; Sasaki, K.; Vukmirovic, M. B.; Ticianelli, E. A.; Adzic, R. R. Catalytic activity-d-band center correlation for the O2 reduction reaction on platinum in alkaline solutions. J. Phys. Chem. C 2007, 111, 404–410.

[56]

Kitchin, J. R.; Nørskov, J. K.; Barteau, M. A.; Chen, J. G. Modification of the surface electronic and chemical properties of Pt(111) by subsurface 3d transition metals. J. Chem. Phys. 2004, 120, 10240.

[57]

Hwu, H. H.; Zellner, M. B.; Chen, J. G. The chemical and electronic properties of oxygen-modified C/Mo(110): A model system for molybdenum oxycarbides. J. Catal. 2005, 229, 30–44.

[58]

Hamo, E. R.; Singh, R. K.; Douglin, J. C.; Chen, S.; Ben Hassine, M.; Carbo-Argibay, E.; Lu, S. F.; Wang, H. N.; Ferreira, P. J.; Rosen, B. A. et al. Carbide-supported PtRu catalysts for hydrogen oxidation reaction in alkaline electrolyte. ACS Catal. 2021, 11, 932–947.

[59]

Hammer, B.; Nørskov, J. K. Theoretical surface science and catalysis—Calculations and concepts. Adv. Catal. 2000, 45, 71–129.

[60]

Stamenkovic, V.; Mun, B. S.; Mayrhofer, K. J. J.; Ross, P. N.; Markovic, N. M.; Rossmeisl, J.; Greeley, J.; Nørskov, J. K. Changing the activity of electrocatalysts for oxygen reduction by tuning the surface electronic structure. Angew. Chem. 2006, 118, 2963–2967.

[61]

Kulkarni, A.; Siahrostami, S.; Patel, A.; Nørskov, J. K. Understanding catalytic activity trends in the oxygen reduction reaction. Chem. Rev. 2018, 118, 2302–2312.

[62]

Esposito, D. V.; Hunt, S. T.; Kimmel, Y. C.; Chen, J. G. A new class of electrocatalysts for hydrogen production from water electrolysis: Metal monolayers supported on low-cost transition metal carbides. J. Am. Chem. Soc. 2012, 134, 3025–3033.

[63]

Wan, C.; Regmi, Y. N.; Leonard, B. M. Multiple phases of molybdenum carbide as electrocatalysts for the hydrogen evolution reaction. Angew. Chem., Int. Ed. 2014, 53, 6407–6410.

[64]

Weidman, M. C.; Esposito, D. V.; Hsu, Y. C.; Chen, J. G. Comparison of electrochemical stability of transition metal carbides (WC, W2C, Mo2C) over a wide pH range. J. Power Sources 2012, 202, 11–17.

[65]

Li, Z.; Yu, L.; Milligan, C.; Ma, T.; Zhou, L.; Cui, Y. R.; Qi, Z. Y.; Libretto, N.; Xu, B.; Luo, J. W. et al. Two-dimensional transition metal carbides as supports for tuning the chemistry of catalytic nanoparticles. Nat. Commun. 2018, 9, 5258.

[66]

Regmi, Y. N.; Waetzig, G. R.; Duffee, K. D.; Schmuecker, S. M.; Thode, J. M.; Leonard, B. M. Carbides of group IVA, VA and VIA transition metals as alternative HER and ORR catalysts and support materials. J. Mater. Chem. A 2015, 3, 10085–10091.

[67]

Gómez-Marín, A. M.; Bott-Neto, J. L.; Souza, J. B. Jr.; Silva, T. L.; Beck, W. Jr.; Varanda, L. C.; Ticianelli, E. A. Electrocatalytic activity of different phases of molybdenum carbide/carbon and platinum-molybdenum carbide/carbon composites toward the oxygen reduction reaction. ChemElectroChem 2016, 3, 1570–1579.

[68]

Yan, Z. X.; He, G. Q.; Cai, M.; Meng, H.; Shen, P. K. Formation of tungsten carbide nanoparticles on graphitized carbon to facilitate the oxygen reduction reaction. J. Power Sources 2013, 242, 817–823.

[69]

Kimmel, Y. C.; Esposito, D. V.; Birkmire, R. W.; Chen, J. G. Effect of surface carbon on the hydrogen evolution reactivity of tungsten carbide (WC) and Pt-modified WC electrocatalysts. Int. J. Hydrogen Energy 2012, 37, 3019–3024.

[70]

He, C. Y.; Meng, H.; Yao, X. Y.; Shen, P. K. Rapid formation of nanoscale tungsten carbide on graphitized carbon for electrocatalysis. Int. J. Hydrogen Energy 2012, 37, 8154–8160.

[71]

Bott-Neto, J. L.; Beck, W. Jr; Varanda, L. C. ; Ticianelli, E. A. Electrocatalytic activity of platinum nanoparticles supported on different phases of tungsten carbides for the oxygen reduction reaction. Int. J. Hydrogen Energy 2017, 42, 20677–20688.

[72]

Jackson, C.; Smith, G. T.; Markiewicz, M.; Inwood, D. W.; Leach, A. S.; Whalley, P. S.; Kucernak, A. R.; Russell, A. E.; Kramer, D.; Levecque, P. B. J. Support induced charge transfer effects on electrochemical characteristics of Pt nanoparticle electrocatalysts. J. Electroanal. Chem. 2018, 819, 163–170.

[73]

Sinniah, J. D.; Wong, W. Y.; Loh, K. S.; Yunus, R. M.; Timmiati, S. N. Perspectives on carbon-alternative materials as Pt catalyst supports for a durable oxygen reduction reaction in proton exchange membrane fuel cells. J. Power Sources 2022, 534, 231422.

[74]

Zhang, S. M.; Chen, M. H.; Zhao, X.; Cai, J. L.; Yan, W.; Yen, J. C.; Chen, S. L.; Yu, Y.; Zhang, J. J. Advanced noncarbon materials as catalyst supports and non-noble electrocatalysts for fuel cells and metal–air batteries. Electrochem. Energy Rev. 2021, 4, 336–381.

[75]

Yang, L.; Kimmel, Y. C.; Lu, Q.; Chen, J. G. Effect of pretreatment atmosphere on the particle size and oxygen reduction activity of low-loading platinum impregnated titanium carbide powder electrocatalysts. J. Power Sources 2015, 287, 196–202.

[76]

Yates, J. L. R.; Spikes, G. H.; Jones, G. Platinum-carbide interactions: Core–shells for catalytic use. Phys. Chem. Chem. Phys. 2015, 17, 4250–4258.

[77]

Xin, L.; Yang, F.; Rasouli, S.; Qiu, Y.; Li, Z. F.; Uzunoglu, A.; Sun, C. J.; Liu, Y. Z.; Ferreira, P.; Li, W. Z. et al. Understanding Pt nanoparticle anchoring on graphene supports through surface functionalization. ACS Catal. 2016, 6, 2642–2653.

[78]

Lori, O.; Gonen, S.; Elbaz, L. Highly active, corrosion-resistant cathode for fuel cells, based on platinum and molybdenum carbide. J. Electrochem. Soc. 2017, 164, F825–F830.

[79]

Elbaz, L.; Phillips, J.; Artyushkova, K.; More, K.; Brosha, E. L. Evidence of high electrocatalytic activity of molybdenum carbide supported platinum nanorafts. J. Electrochem. Soc. 2015, 162, H681–H685.

[80]

Krishnamurthy, C. B.; Lori, O.; Elbaz, L.; Grinberg, I. First-principles investigation of the formation of Pt nanorafts on a Mo2C support and their catalytic activity for oxygen reduction reaction. J. Phys. Chem. Lett. 2018, 9, 2229–2234.

[81]

Lori, O.; Gonen, S.; Kapon, O.; Elbaz, L. Durable tungsten carbide support for Pt-based fuel cells cathodes. ACS Appl. Mater. Interfaces 2021, 13, 8315–8323.

[82]
ElbazL.KrellerC. R.HensonN. J.BroshaE. L. Electrocatalysis of oxygen reduction with platinum supported on molybdenum carbide-carbon compositeJ. Electroanal. Chem.2014720344010.1016/j.jelechem.2014.02.023

Elbaz, L.; Kreller, C. R.; Henson, N. J.; Brosha, E. L. Electrocatalysis of oxygen reduction with platinum supported on molybdenum carbide-carbon composite. J. Electroanal. Chem. 2014, 720, 34–40.

[83]

Hu, J. W.; Liu, W.; Xin, C. C.; Guo, J. Y.; Cheng, X. S.; Wei, J. Z.; Hao, C.; Zhang, G. F.; Shi, Y. T. Carbon-based single atom catalysts for tailoring the ORR pathway: A concise review. J. Mater. Chem. A 2021, 9, 24803–24829.

[84]

Zhang, Q. Q.; Guan, J. Q. Single-atom catalysts for electrocatalytic applications. Adv. Funct. Mater. 2020, 30, 2000768.

[85]

Kamai, R.; Kamiya, K.; Hashimoto, K.; Nakanishi, S. Oxygen-tolerant electrodes with platinum-loaded covalent triazine frameworks for the hydrogen oxidation reaction. Angew. Chem., Int. Ed. 2016, 55, 13184–13188.

[86]

Yang, S.; Verdaguer-casadevall, A.; Arnarson, L.; Silvioli, L.; Čolić, V.; Frydendal, R.; Rossmeisl, J.; Chorkendorff, I.; Stephens, I. E. L. Toward the decentralized electrochemical production of H2O2: A focus on the catalysis. ACS Catal. 2018, 8, 4064–4081.

[87]

Wan, C. Z.; Duan, X. F.; Huang, Y. Molecular design of single-atom catalysts for oxygen reduction reaction. Adv. Energy Mater. 2020, 10, 1903815.

[88]

Xu, H.; Zhao, Y. T.; Wang, Q.; He, G. Y.; Chen, H. Q. Supports promote single-atom catalysts toward advanced electrocatalysis. Coord. Chem. Rev. 2022, 451, 214261.

[89]

Qi, K.; Chhowalla, M.; Voiry, D. Single atom is not alone: Metal–support interactions in single-atom catalysis. Mater. Today 2020, 40, 173–192.

[90]

Holade, Y.; Sahin, N. E.; Servat, K.; Napporn, T. W.; Kokoh, K. B. Recent advances in carbon supported metal nanoparticles preparation for oxygen reduction reaction in low temperature fuel. Catalysts 2015, 5, 310–348.

[91]

de Bruijn, F. A.; Dam, V. A. T.; Janssen, G. J. M. Review: Durability and degradation issues of PEM fuel cell components. Fuel Cells 2008, 8, 3–22.

[92]

Lee, S. J.; Huang, C. H.; Lai, J. J.; Chen, Y. P. Corrosion-resistant component for PEM fuel cells. J. Power Sources 2004, 131, 162–168.

[93]

Shin, S.; Kim, H. E.; Kim, B. S.; Jeon, S. S.; Jeong, H.; Lee, H. Seemingly negligible amounts of platinum nanoparticles mislead electrochemical oxygen reduction reaction pathway on platinum single-atom catalysts. ChemElectroChem 2020, 7, 3716–3719.

[94]

Sahoo, S. K.; Ye, Y.; Lee, S.; Park, J.; Lee, H.; Lee, J.; Han, J. W. Rational design of TiC-supported single-atom electrocatalysts for hydrogen evolution and selective oxygen reduction reactions. ACS Energy Lett. 2019, 4, 126–132.

[95]

Liu, J.; Jiao, M. G.; Mei, B. B.; Tong, Y. X.; Li, Y. P.; Ruan, M. B.; Song, P.; Sun, G. Q.; Jiang, L. H.; Wang, Y. et al. Carbon-supported divacancy-anchored platinum single-atom electrocatalysts with superhigh Pt utilization for the oxygen reduction reaction. Angew. Chem., Int. Ed. 2019, 58, 1163–1167.

[96]

Zeng, X. J.; Shui, J. L.; Liu, X. F.; Liu, Q. T.; Li, Y. C.; Shang, J. X.; Zheng, L. R.; Yu, R. H. Single-atom to single-atom grafting of Pt1 onto Fe-N4 center: Pt1@Fe-N-C multifunctional electrocatalyst with significantly enhanced properties. Adv. Energy Mater. 2018, 8, 1701345.

[97]

Liu, Y. H.; Gokcen, D.; Bertocci, U.; Moffat, T. P. Self-terminating growth of platinum films by electrochemical deposition. Science 2012, 338, 1327–1330.

[98]

Ma, Y. F.; Guan, G. Q.; Hao, X. G.; Cao, J.; Abudula, A. Molybdenum carbide as alternative catalyst for hydrogen production—A review. Renew. Sustain. Energy Rev. 2017, 75, 1101–1129.

[99]

Hamo, E. R.; Saporta, R.; Rosen, B. A. Active and stable oxygen reduction catalysts prepared by electrodeposition of platinum on Mo2C at low overpotential. ACS Appl. Energy Mater. 2021, 4, 2130–2137.

[100]

Xie, X. H.; Chen, S. G.; Ding, W.; Nie, Y.; Wei, Z. D. An extraordinarily stable catalyst: Pt NPs supported on two-dimensional Ti3C2X2 (X = OH, F) nanosheets for oxygen reduction reaction. Chem. Commun. 2013, 49, 10112–10114.

[101]

Peera, S. G.; Liu, C.; Sahu, A. K.; Selvaraj, M.; Rao, M. C.; Lee, T. G.; Koutavarapu, R.; Shim, J.; Singh, L. Recent advances on MXene-based electrocatalysts toward oxygen reduction reaction: A focused review. Adv. Mater. Interf. 2021, 8, 2100975.

[102]

Junaidi, N. H. A.; Wong, W. Y.; Loh, K. S.; Rahman, S.; Daud, W. R. W. A comprehensive review of MXenes as catalyst supports for the oxygen reduction reaction in fuel cells. Int. J. Energy Res. 2021, 45, 15760–15782.

[103]

Gogotsi, Y.; Anasori, B. The rise of MXenes. ACS Nano 2019, 13, 8491–8494.

[104]

Saha, S.; Rajbongshi, B. M.; Ramani, V.; Verma, A. Titanium carbide: An emerging electrocatalyst for fuel cell and electrolyser. Int. J. Hydrogen Energy 2021, 46, 12801–12821.

[105]

Naguib, M.; Kurtoglu, M.; Presser, V.; Lu, J.; Niu, J. J.; Heon, M.; Hultman, L.; Gogotsi, Y.; Barsoum, M. W. Two-dimensional nanocrystals produced by exfoliation of Ti3AlC2. Adv. Mater. 2011, 23, 4248–4253.

[106]

Lee, Y.; Ahn, J. H.; Park, H. Y.; Jung, J.; Jeon, Y.; Lee, D. G.; Kim, M. H.; Lee, E.; Kim, C.; Kwon, Y. et al. Support structure-catalyst electroactivity relation for oxygen reduction reaction on platinum supported by two-dimensional titanium carbide. Nano Energy 2021, 79, 105363.

[107]

Hamo, E. R.; Tereshchuk, P.; Zysler, M.; Zitoun, D.; Natan, A.; Rosen, B. A. Corrosion resistance and acidic ORR activity of Pt-based catalysts supported on nanocrystalline alloys of molybdenum and tantalum carbide. J. Electrochem. Soc. 2019, 166, F1292–F1300.

[108]

He, G. Q.; Yan, Z. X.; Ma, X. M.; Meng, H.; Shen, P. K.; Wang, C. X. A universal method to synthesize nanoscale carbides as electrocatalyst supports towards oxygen reduction reaction. Nanoscale 2011, 3, 3578–3582.

[109]

Yan, Z. X.; Xie, J. M.; Shen, P. K. Hollow molybdenum carbide sphere promoted Pt electrocatalyst for oxygen reduction and methanol oxidation reaction. J. Power Sources 2015, 286, 239–246.

[110]

Yan, Z. X.; He, G. Q.; Shen, P. K.; Luo, Z. B.; Xie, J. M.; Chen, M. MoC-graphite composite as a Pt electrocatalyst support for highly active methanol oxidation and oxygen reduction reaction. J. Mater. Chem. A 2014, 2, 4014–4022.

[111]

Yan, Z. X.; Cai, M.; Shen, P. K. Nanosized tungsten carbide synthesized by a novel route at low temperature for high performance electrocatalysis. Sci. Rep. 2013, 3, 1646.

[112]

Du, L.; Shao, Y. Y.; Sun, J. M.; Yin, G. P.; Liu, J.; Wang, Y. Advanced catalyst supports for PEM fuel cell cathodes. Nano Energy 2016, 29, 314–322.

[113]

Cherevko, S.; Kulyk, N.; Mayrhofer, K. J. J. Durability of platinum-based fuel cell electrocatalysts: Dissolution of bulk and nanoscale platinum. Nano Energy 2016, 29, 275–298.

[114]

Yuan, X. Z.; Li, H.; Zhang, S. S.; Martin, J.; Wang, H. J. A review of polymer electrolyte membrane fuel cell durability test protocols. J. Power Sources 2011, 196, 9107–9116.

[115]

Gan, J.; Zhang, J. K.; Zhang, B. Y.; Chen, W. Y.; Niu, D. F.; Qin, Y.; Duan, X. Z.; Zhou, X. G. Active sites engineering of Pt/CNT oxygen reduction catalysts by atomic layer deposition. J. Energy Chem 2020, 45, 59–66.

[116]

Sharma, S.; Pollet, B. G. Support materials for PEMFC and DMFC electrocatalysts—A review. J. Power Sources 2012, 208, 96–119.

[117]

Knupp, S. L.; Li, W. Z.; Paschos, O.; Murray, T. M.; Snyder, J.; Haldar, P. The effect of experimental parameters on the synthesis of carbon nanotube/nanofiber supported platinum by polyol processing techniques. Carbon 2008, 46, 1276–1284.

[118]

Speder, J.; Zana, A.; Spanos, I.; Kirkensgaard, J. J. K.; Mortensen, K.; Arenz, M. On the influence of the Pt to carbon ratio on the degradation of high surface area carbon supported PEM fuel cell electrocatalysts. Electrochem. Commun. 2013, 34, 153–156.

[119]

Alegre, C.; Gálvez, M. E.; Moliner, R.; Lázaro, M. J. Influence of the synthesis method for Pt catalysts supported on highly mesoporous carbon xerogel and vulcan carbon black on the electro-oxidation of methanol. Catalysts 2015, 5, 392–405.

[120]

Meier, J. C.; Galeano, C.; Katsounaros, I.; Topalov, A. A.; Kostka, A.; Schüth, F.; Mayrhofer, K. J. J. Degradation mechanisms of Pt/C fuel cell catalysts under simulated start–stop conditions. ACS Catal. 2012, 2, 832–843.

[121]

Wang, Y. J.; Wilkinson, D. P.; Zhang, J. J. Noncarbon support materials for polymer electrolyte membrane fuel cell electrocatalysts. Chem. Rev. 2011, 111, 7625–7651.

[122]

Hsu, I. J.; Hansgen, D. A.; McCandless, B. E.; Willis, B. G.; Chen, J. G. Atomic layer deposition of Pt on tungsten monocarbide (WC) for the oxygen reduction reaction. J. Phys. Chem. C 2011, 115, 3709–3715.

[123]

Saha, S.; Rodas, J. A. C.; Tan, S.; Li, D. M. Performance evaluation of platinum-molybdenum carbide nanocatalysts with ultralow platinum loading on anode and cathode catalyst layers of proton exchange membrane fuel cells. J. Power Sources 2018, 378, 742–749.

[124]

Hamo, E. R.; Rosen, B. A. Improved durability and activity in Pt/Mo2C fuel cell cathodes by magnetron sputtering of tantalum. ChemElectroChem 2021, 8, 3123–3134.

[125]

Hofer, A. M.; Mori, G.; Fian, A.; Winkler, J.; Mitterer, C. Improvement of oxidation and corrosion resistance of Mo thin films by alloying with Ta. Thin Solid Films 2016, 599, 1–6.

[126]

Ren, H.; Sosnowski, M. Tantalum thin films deposited by ion assisted magnetron sputtering. Thin Solid Films 2008, 516, 1898–1905.

[127]

Bernoulli, D.; Müller, U.; Schwarzenberger, M.; Hauert, R.; Spolenak, R. Magnetron sputter deposited tantalum and tantalum nitride thin films: An analysis of phase, hardness and composition. Thin Solid Films 2013, 548, 157–161.

[128]

Yarlagadda, V.; McKinney, S. E.; Keary, C. L.; Thompson, L.; Zulevi, B.; Kongkanand, A. Preparation of PEMFC electrodes from milligram-amounts of catalyst powder. J. Electrochem. Soc. 2017, 164, F845–F849.

[129]

Thanasilp, S.; Hunsom, M. Effect of MEA fabrication techniques on the cell performance of Pt-Pd/C electrocatalyst for oxygen reduction in PEM fuel cell. Fuel 2010, 89, 3847–3852.

[130]

Yan, Z. X.; Zhang, M. M.; Xie, J. M.; Zhu, J. J.; Shen, P. K. A bimetallic carbide Fe2MoC promoted Pd electrocatalyst with performance superior to Pt/C towards the oxygen reduction reaction in acidic media. Appl. Catal. B:Environ. 2015, 165, 636–641.

[131]

Ma, X. M.; Meng, H.; Cai, M.; Shen, P. K. Bimetallic carbide nanocomposite enhanced pt catalyst with high activity and stability for the oxygen reduction reaction. J. Am. Chem. Soc. 2012, 134, 1954–1957.

[132]

Yurtsever, F. M.; Yurukcu, M.; Begum, M.; Watanabe, F.; Karabacak, T. Stacked and core–shell Pt : Ni/WC nanorod array electrocatalyst for enhanced oxygen reduction reaction in polymer electrolyte membrane fuel cells. ACS Appl. Energy Mater. 2018, 1, 6115–6122.

[133]

Ignaszak, A.; Song, C. J.; Zhu, W. M.; Zhang, J. J.; Bauer, A.; Baker, R.; Neburchilov, V.; Ye, S. Y.; Campbell, S. Titanium carbide and its core–shelled derivative TiC@TiO2 as catalyst supports for proton exchange membrane fuel cells. Electrochim. Acta 2012, 69, 397–405.

[134]

Seh, Z. W.; Kibsgaard, J.; Dickens, C. F.; Chorkendorff, I.; Nørskov, J. K.; Jaramillo, T. F. Combining theory and experiment in electrocatalysis: Insights into materials design. Science 2017, 355, eaad4998.

Publication history
Copyright

Publication history

Received: 15 May 2022
Revised: 28 July 2022
Accepted: 29 July 2022
Published: 17 September 2022
Issue date: December 2022

Copyright

© Tsinghua University Press 2022
Return