Discover the SciOpen Platform and Achieve Your Research Goals with Ease.
Search articles, authors, keywords, DOl and etc.
Dentine hypersensitivity is an annoying worldwide disease, yet its mechanism remains unclear. The long-used hydrodynamic theory, a stimuli-induced fluid-flow process, describes the pain processes. However, no experimental evidence supports the statements. Here, we demonstrate that stimuli-induced directional cation transport, rather than fluid-flow, through dentinal tubules actually leads to dentine hypersensitivity. The in vitro/in vivo electro-chemical and electro-neurophysiological approaches reveal the cation current through the nanoconfined negatively charged dentinal tubules coming from external stimuli (pressure, pH, and temperature) on dentin surface and further triggering the nerve impulses causing the dentine hypersensitivity. Furthermore, the cationic-hydrogels blocked dentinal tubules could significantly reduce the stimuli-triggered nerve action potentials and the anion-hydrogels counterpart enhances those, supporting the cation-flow transducing dentine hypersensitivity. Therefore, the inspired ion-blocking desensitizing therapies have achieved remarkable pain relief in clinical applications. The proposed mechanism would enrich the basic knowledge of dentistry and further foster breakthrough initiatives in hypersensitivity mitigation and cure.
Walters, P. A. Dentinal hypersensitivity: A review. J. Contemp. Dent. Pract. 2005, 6, 107–117.
Irwin, C. R.; McCusker, P. Prevalence of dentine hypersensitivity in a general dental population. J. Ir. Dent Assoc. 1997, 43, 7–9.
Bahşi, E.; Dalli, M.; Uzgur, R.; Turkal, M.; Hamidi, M. M.; Colak, H. An analysis of the aetiology, prevalence and clinical features of dentine hypersensitivity in a general dental population. Eur. Rev. Med. Pharmacol. Sci. 2012, 16, 1107–1116.
Rees, J. S.; Addy, M. A cross-sectional study of dentine hypersensitivity. J. Clin. Periodontol. 2002, 29, 997–1003.
Dababneh, R. H.; Khouri, A. T.; Addy, M. Dentine hypersensitivity—An enigma? A review of terminology, mechanisms, aetiology and management. Br. Dent. J. 1999, 187, 606–611.
Bamise, C. T.; Esan, T. A. Mechanisms and treatment approaches of dentine hypersensitivity: A literature review. Oral. Health Prev. Dent. 2011, 9, 353–367.
West, N. X.; Lussi, A.; Seong, J.; Hellwig, E. Dentin hypersensitivity: Pain mechanisms and aetiology of exposed cervical dentin. Clin. Oral Investig. 2013, 17, 9–19.
Lindén, L.; Brännström, M. Fluid movements in dentine and pulp. An in vitro study of flow produced by chemical solutions on exposed dentine. Odontol. Revy 1967, 18, 227–236.
Brännström, M. Dentin sensitivity and aspiration of odontoblasts. J. Am. Dent. Assoc. 1963, 66, 366–370.
Brännström, M.; Aström, A. The hydrodynamics of the dentine; its possible relationship to dentinal pain. Int. Dent. J. 1972, 22, 219–227.
Mantzourani, M.; Sharma, D. Dentine sensitivity: Past, present and future. J. Dent. 2013, 41, S3–S17.
Cunha-Cruz, J.; Stout, J. R.; Heaton, L. J.; Heaton, J. C.; For Northwest PRECEDENT. Dentin hypersensitivity and oxalates: A systematic review. J. Dent. Res. 2011, 90, 304–310.
Addy, M.; Dowell, P. Dentine hypersensitivity - a review. J. Clin. Periodontol. 1983, 10, 351–363.
Närhi, M.; Kontturi-Närhi, V.; Hirvonen, T.; Ngassapa, D. Neurophysiological mechanisms of dentin hypersensitivity. Proc. Finn. Dent. Soc. 1992, 88, 15–22.
Gysi, A. An attempt to explain the sensitiveness of dentin. Br. J. Dent. Sci. 1900, 43, 865–868.
Brännström, M. The elicitation of pain in human dentine and pulp by chemical stimuli. Arch. Oral Biol. 1962, 7, 59–62.
Brännström, M. The surface of sensitive dentine. An experimental study using replication. Odontol. Revy 1965, 16, 293–299.
Brännström, M.; Lindén, L. A.; Aström, A. The hydrodynamics of the dental tubule and of pulp fluid. A discussion of its significance in relation to dentinal sensitivity. Caries. Res. 1967, 1, 310–317.
Liu, X. X.; Tenenbaum, H. C.; Wilder, R. S.; Quock, R.; Hewlett, E. R.; Ren, Y. F. Pathogenesis, diagnosis and management of dentin hypersensitivity: An evidence-based overview for dental practitioners. BMC Oral Health 2020, 20, 220.
Linsuwanont, P.; Versluis, A.; Palamara, J. E.; Messer, H. H. Thermal stimulation causes tooth deformation: A possible alternative to the hydrodynamic theory? Arch. Oral Biol. 2008, 53, 261–272.
Yam, M. F.; Loh, Y. C.; Tan, C. S.; Adam, S. K.; Manan, N. A.; Basir, R. General pathways of pain sensation and the major neurotransmitters involved in pain regulation. Int. J. Mol. Sci. 2018, 19, 2164.
Dubin, A. E.; Patapoutian, A. Nociceptors: The sensors of the pain pathway. J. Clin. Investig. 2010, 120, 3760–3772.
Basbaum, A. I.; Bautista, D. M.; Scherrer, G.; Julius, D. Cellular and molecular mechanisms of pain. Cell 2009, 139, 267–284.
Iwata, K.; Sessle, B. J. The evolution of neuroscience as a research field relevant to dentistry. J. Dent. Res. 2019, 98, 1407–1417.
Zhao, X. L.; Li, L.; Xie, W. Y.; Qian, Y. C.; Chen, W. P.; Niu, B.; Chen, J. J.; Kong, X. Y.; Jiang, L.; Wen, L. P. pH-regulated thermo-driven nanofluidics for nanoconfined mass transport and energy conversion. Nanoscale Adv. 2020, 2, 4070–4076.
Xiao, K.; Wan, C. J.; Jiang, L.; Chen, X. D.; Antonietti, M. Bioinspired ionic sensory systems: The successor of electronics. Adv. Mater. 2020, 32, 2000218.
Xin, W. W.; Xiao, H. Y.; Kong, X. Y.; Chen, J. J.; Yang, L. S.; Niu, B.; Qian, Y. C.; Teng, Y. F.; Jiang, L.; Wen, L. P. Biomimetic nacre-like silk-crosslinked membranes for osmotic energy harvesting. ACS Nano 2020, 14, 9701–9710.
Yarar, E.; Kuruoglu, E.; Kocabıcak, E.; Altun, A.; Genc, E.; Ozyurek, H.; Kefeli, M.; Marangoz, A. H.; Aydın, K.; Cokluk, C. Electrophysiological and histopathological effects of mesenchymal stem cells in treatment of experimental rat model of sciatic nerve injury. Int. J. Clin. Exp. Med. 2015, 8, 8776–8784.
Han, D.; Lu, J. Z.; Xu, L.; Xu, J. G. Comparison of two electrophysiological methods for the assessment of progress in a rat model of nerve repair. Int. J. Clin. Exp. Med. 2015, 8, 2392–2398.
Murakami, M.; Kijima, H. Transduction ion channels directly gated by sugars on the insect taste cell. J. Gen. Physiol. 2000, 115, 455–466.
Pérez, C. A.; Margolskee, R. F.; Kinnamon, S. C.; Ogura, T. Making sense with TRP channels: Store-operated calcium entry and the ion channel Trpm5 in taste receptor cells. Cell Calcium. 2003, 33, 541–549.
Weckström, M.; Laughlin, S. B. Visual ecology and voltage-gated ion channels in insect photoreceptors. Trends Neurosci. 1995, 18, 17–21.
Dumont, R. A.; Gillespie, P. G. Ion channels: Hearing aid. Nature 2003, 424, 28–29.
Wu, X. D.; Ahmed, M.; Khan, Y.; Payne, M. E.; Zhu, J.; Lu, C. H.; Evans, J. W.; Arians, A. C. A potentiometric mechanotransduction mechanism for novel electronic skins. Sci. Adv. 2020, 6, eaba1062.
Chou, H. H.; Nguyen, A.; Chortos, A.; To, J. W. F.; Lu, C. E.; Mei, J. G.; Kurosawa, T.; Bae, W. G.; Tok, J. B. H.; Bao, Z. N. A chameleon-inspired stretchable electronic skin with interactive colour changing controlled by tactile sensing. Nat. Commun. 2015, 6, 8011.
Schilke, R.; Lisson, J. A.; Bauß, O.; Geurtsen, W. Comparison of the number and diameter of dentinal tubules in human and bovine dentine by scanning electron microscopic investigation. Arch. Oral Biol. 2000, 45, 355–361.
Giudice, G. L.; Cutroneo, G.; Centofanti, A.; Artemisia, A.; Bramanti, E.; Militi, A.; Rizzo, G.; Favaloro, A.; Irrera, A.; Lo Giudice, R. Dentin morphology of root canal surface: A quantitative evaluation based on a scanning electronic microscopy study. BioMed. Res. Int. 2015, 2015, 164065.
Hameed, S. Nav1.7 and Nav1.8: Role in the pathophysiology of pain. Mol. Pain 2019, 15, 1744806919858801.
Zhou, X.; Ma, T. B.; Yang, L. Y.; Peng, S. J.; Li, L. L.; Wang, Z. Q.; Xiao, Z.; Zhang, Q. F.; Wang, L.; Huang, Y. Z. et al. Spider venom-derived peptide induces hyperalgesia in Nav1.7 knockout mice by activating Nav1.9 channels. Nat. Commun. 2020, 11, 2293.
Yang, F.; Anderson, M.; He, S. Q.; Stephens, K.; Zheng, Y.; Chen, Z. Y.; Raja, S. N.; Aplin, F.; Guan, Y.; Fridman, G. Differential expression of voltage-gated sodium channels in afferent neurons renders selective neural block by ionic direct current. Sci. Adv. 2018, 4, eaaq1438.