Journal Home > Volume 16 , Issue 3

Deep-red and near-infrared emissive carbon dots (CDs) are highly desired for bioimaging, especially in deep tissue imaging, but they are extremely rare and the known ones usually suffer from low-efficient fluorescence in water and aggregation-induced fluorescence quenching in solid state. In this work, CDs with intriguing solvent-dependent and two-photon fluorescence emissions have been prepared by a facile solvothermal method. Detailed characterizations reveal that there is an n→π* interaction between the carboxyl functional groups on CDs and the electron donor groups in solvent, which leads to the increase of energy density of CDs and the decrease of energy level, resulting in the red shift of luminescence with enhanced electron donating ability of solvent. Inspired by this finding, mesoporous silica nanoparticles (MSNs) with suitable pore size and low biological toxicity are modified by amino groups to confine CDs, thus the deep-red fluorescence emission is achieved both in solid state and in water facilitated by the n→π* interaction of host–guest. The as-prepared CDs@EDA-MSN composite exhibits high-efficient fluorescence with 650 nm wavelength, low toxicity, and good biocompatibility, which endow them a promising application in bio-imaging.


menu
Abstract
Full text
Outline
Electronic supplementary material
About this article

Confining carbon dots in amino-functionalized mesoporous silica: n→π* interaction triggered deep-red solid-state fluorescence

Show Author's information Hongyue Zhang1,4Qingyi Li2Shuo Wang3Xiaowei Yu1Bolun Wang1Guangrui Chen1Li Ren3Jiyang Li1( )Mingxing Jin2Jihong Yu1,4( )
State Key Laboratory of Inorganic Synthesis and Preparative Chemistry, College of Chemistry, Jilin University, Changchun 130012, China
Institute of Atomic and Molecular Physics, Jilin University, Changchun 130012, China
Key Laboratory for Molecular Enzymology and Engineering, The Ministry of Education, Jilin University, Changchun 130012, China
International Center of Future Science, Jilin University, Changchun 130012, China

Abstract

Deep-red and near-infrared emissive carbon dots (CDs) are highly desired for bioimaging, especially in deep tissue imaging, but they are extremely rare and the known ones usually suffer from low-efficient fluorescence in water and aggregation-induced fluorescence quenching in solid state. In this work, CDs with intriguing solvent-dependent and two-photon fluorescence emissions have been prepared by a facile solvothermal method. Detailed characterizations reveal that there is an n→π* interaction between the carboxyl functional groups on CDs and the electron donor groups in solvent, which leads to the increase of energy density of CDs and the decrease of energy level, resulting in the red shift of luminescence with enhanced electron donating ability of solvent. Inspired by this finding, mesoporous silica nanoparticles (MSNs) with suitable pore size and low biological toxicity are modified by amino groups to confine CDs, thus the deep-red fluorescence emission is achieved both in solid state and in water facilitated by the n→π* interaction of host–guest. The as-prepared CDs@EDA-MSN composite exhibits high-efficient fluorescence with 650 nm wavelength, low toxicity, and good biocompatibility, which endow them a promising application in bio-imaging.

Keywords: bioimaging, carbon dots, mesoporous silica, deep-red fluorescence, donor-acceptor modulation

References(41)

[1]

Xu, X. Y.; Ray, R.; Gu, Y. L.; Ploehn, H. J.; Gearheart, L.; Raker, K.; Scrivens, W. A. Electrophoretic analysis and purification of fluorescent single-walled carbon nanotube fragments. J. Am. Chem. Soc. 2004, 126, 12736–12737.

[2]

Li, C.; Chen, K.; Guan, M. X.; Wang, X. W.; Zhou, X.; Zhai, F.; Dai, J. Y.; Li, Z. J.; Sun, Z. P.; Meng, S. et al. Extreme nonlinear strong-field photoemission from carbon nanotubes. Nat. Commun. 2019, 10, 4891.

[3]

Yuan, F. L.; Wang, Y. K.; Sharma, G.; Dong, Y. T.; Zheng, X. P.; Li, P. C.; Johnston, A.; Bappi, G.; Fan, J. Z.; Kung, H. et al. Bright high-colour-purity deep-blue carbon dot light-emitting diodes via efficient edge amination. Nat. Photonics 2020, 14, 171–176.

[4]

Zhao, B.; Wang, Z. B.; Tan, Z. A. Deep-blue carbon dots offer high colour purity. Nat. Photonics 2020, 14, 130–131.

[5]

Jiang, L.; Ding, H. Z.; Xu, M. S.; Hu, X. L.; Li, S. L.; Zhang, M. Z.; Zhang, Q.; Wang, Q. Y.; Lu, S. Y.; Tian, Y. P. et al. UV–Vis–NIR full-range responsive carbon dots with large multiphoton absorption cross sections and deep-red fluorescence at nucleoli and in vivo. Small 2020, 16, e2000680.

[6]

Li, D.; Ushakova, E. V.; Rogach, A. L.; Qu, S. N. Optical properties of carbon dots in the deep-red to near-infrared region are attractive for biomedical applications. Small 2021, 17, 2102325.

[7]
Liu, Y. P.; Lei, J. H.; Wang, G.; Zhang, Z. M.; Wu, J.; Zhang, B. H.; Zhang, H. Q.; Liu, E. S.; Wang, L. M.; Liu, T. M. et al. Toward strong near-infrared absorption/emission from carbon dots in aqueous media through solvothermal fusion of large conjugated perylene derivatives with post-surface engineering. Adv. Sci., in press, https://doi.org/10.1002/advs.202202283.
DOI
[8]

Ðorđević, L.; Arcudi, F.; Cacioppo, M.; Prato, M. A multifunctional chemical toolbox to engineer carbon dots for biomedical and energy applications. Nat. Nanotechnol. 2022, 17, 112–130.

[9]

Wang, B. Y.; Wei, Z. H.; Sui, L.; Yu, J. K.; Zhang, B. W.; Wang, X. Y.; Feng, S. N.; Song, H. Q.; Yong, X.; Tian, Y. X. et al. Electron-phonon coupling-assisted universal red luminescence of o-phenylenediamine-based carbon dots. Light Sci. Appl. 2022, 11, 172.

[10]

Zhang, Y. Q.; Song, H. Q.; Wang, L.; Yu, J. K.; Wang, B. Y.; Hu, Y. S.; Zang, S. Q.; Yang, B.; Lu, S. Y. Solid-state red laser with a single longitudinal mode from carbon dots. Angew. Chem., Int. Ed. 2021, 60, 25514–25521.

[11]

Shi, Y. X.; Wang, Z. B.; Meng, T.; Yuan, T.; Ni, R. H.; Li, Y. C.; Li, X. H.; Zhang, Y.; Tan, Z.; Lei, S. B. et al. Red phosphorescent carbon quantum dot organic framework-based electroluminescent light-emitting diodes exceeding 5% external quantum efficiency. J. Am. Chem. Soc. 2021, 143, 18941–18951.

[12]

Li, D. N.; Kou, E. F.; Li, W.; Zhang, H. R.; Zhang, X. J.; Zhuang, J. L.; Liu, Y. L.; Hu, C. F.; Zheng, Y. J.; Yang, Q. C. et al. Oxidation-induced quenching mechanism of ultrabright red carbon dots and application in antioxidant RCDs/PVA film. Chem. Eng. J. 2021, 425, 131653.

[13]

Zhang, Q.; Wang, R. Y.; Feng, B. W.; Zhong, X. X.; Ostrikov, K. Photoluminescence mechanism of carbon dots: Triggering high-color-purity red fluorescence emission through edge amino protonation. Nat. Commun. 2021, 12, 6856.

[14]

Ding, H.; Wei, J. S.; Zhang, P.; Zhou, Z. Y.; Gao, Q. Y.; Xiong, H. M. Solvent-controlled synthesis of highly luminescent carbon dots with a wide color gamut and narrowed emission peak widths. Small 2018, 14, e1800612.

[15]

Liu, J. J.; Geng, Y. J.; Li, D. W.; Yao, H.; Huo, Z. P.; Li, Y. F.; Zhang, K.; Zhu, S. J.; Wei, H. T.; Xu, W. Q. et al. Deep red emissive carbonized polymer dots with unprecedented narrow full width at half maximum. Adv. Mater. 2020, 32, e1906641.

[16]

Lu, S. Y.; Sui, L.; Liu, J. J.; Zhu, S. J.; Chen, A. M.; Jin, M. X.; Yang, B. Near-infrared photoluminescent polymer-carbon nanodots with two-photon fluorescence. Adv. Mater. 2017, 29, 1603443.

[17]

Li, D.; Jing, P. T.; Sun, L. H.; An, Y.; Shan, X. Y.; Lu, X. H.; Zhou, D.; Han, D.; Shen, D. Z.; Zhai, Y. C. et al. Near-infrared excitation/emission and multiphoton-induced fluorescence of carbon dots. Adv. Mater. 2018, 30, 1705913.

[18]

Tian, Z.; Zhang, X. T.; Li, D.; Zhou, D.; Jing, P. T.; Shen, D. Z.; Qu, S. N.; Zboril, R.; Rogach, A. L. Full-color inorganic carbon dot phosphors for white-light-emitting diodes. Adv. Opt. Mater. 2017, 5, 1700416.

[19]

Wang, Z. F.; Yuan, F. L.; Li, X. H.; Li, Y. C.; Zhong, H. Z.; Fan, L. Z.; Yang, S. H. 53% Efficient red emissive carbon quantum dots for high color rendering and stable warm white-light-emitting diodes. Adv. Mater. 2017, 29, 1702910.

[20]

Shen, D. K.; Yang, J. P.; Li, X. M.; Zhou, L.; Zhang, R. Y.; Li, W.; Chen, L.; Wang, R.; Zhang, F.; Zhao, D. Y. Biphase stratification approach to three-dimensional dendritic biodegradable mesoporous silica nanospheres. Nano Lett. 2014, 14, 923–932.

[21]

Zhu, S. J.; Meng, Q. N.; Wang, L.; Zhang, J. H.; Song, Y. B.; Jin, H.; Zhang, K.; Sun, H. C.; Wang, H. Y.; Yang, B. Highly photoluminescent carbon dots for multicolor patterning, sensors, and bioimaging. Angew. Chem., Int. Ed. 2013, 52, 3953–3957.

[22]

Li, S. H.; Su, W.; Wu, H.; Yuan, T.; Yuan, C.; Liu, J.; Deng, G.; Gao, X. C.; Chen, Z. M.; Bao, Y. M. et al. Targeted tumour theranostics in mice via carbon quantum dots structurally mimicking large amino acids. Nat. Biomed. Eng. 2020, 4, 704–716.

[23]

Wang, B. Y.; Lu, S. Y. The light of carbon dots: From mechanism to applications. Matter 2022, 5, 110–149.

[24]

Mayer, U.; Gutmann, V.; Gerger, W. The acceptor number—A quantitative empirical parameter for the electrophilic properties of solvents. Monatsh. Chem. 1975, 106, 1235–1257.

[25]

Marzec, A.; Juzwa, M.; Betlej, K.; Sobkowiak, M. Bituminous coal extraction in terms of electron-donor and -acceptor interactions in the solvent/coal system. Fuel Process. Technol. 1979, 2, 35–44.

[26]

Huo, Z. P.; Xu, W. Q.; Chen, G.; Wang, Z. Z.; Xu, S. P. Surface-state triggered solvatochromism of carbonized polymer dot and its two-photon luminescence. Nano Res. 2022, 15, 2567–2575.

[27]

Gao, D.; Liu, A. M.; Zhang, Y. S.; Zhu, Y. D.; Wei, D.; Sun, J.; Luo, H. R.; Fan, H. S. Temperature triggered high-performance carbon dots with robust solvatochromic effect and self-quenching-resistant deep red solid state fluorescence for specific lipid droplet imaging. Chem. Eng. J. 2021, 415, 128984.

[28]

Hua, X. W.; Bao, Y. W.; Zeng, J.; Wu, F. G. Nucleolus-targeted red emissive carbon dots with polarity-sensitive and excitation-independent fluorescence emission: High-resolution cell imaging and in vivo tracking. ACS Appl. Mater. Interfaces 2019, 11, 32647–32658.

[29]

Wang, B. Y.; Yu, J. K.; Sui, L. Z.; Zhu, S. J.; Tang, Z. Y.; Yang, B.; Lu, S. Y. Rational design of multi-color-emissive carbon dots in a single reaction system by hydrothermal. Adv. Sci. 2020, 8, 2001453.

[30]

Liu, W. D.; Xu, S. M.; Guan, S. Y.; Liang, R. Z.; Wei, M.; Evans, D. G.; Duan, X. Confined synthesis of carbon nitride in a layered host matrix with unprecedented solid-state quantum yield and stability. Adv. Mater. 2018, 30, 1704376.

[31]

Viesser, R. V.; Ducati, L. C.; Tormena, C. F.; Autschbach, J. The unexpected roles of σ and π orbitals in electron donor and acceptor group effects on the 13C NMR chemical shifts in substituted benzenes. Chem. Sci. 2017, 8, 6570–6576.

[32]

Yuan, F. L.; Wang, Z. B.; Li, X. H.; Li, Y. C.; Tan, Z.; Fan, L. Z.; Yang, S. H. Bright multicolor bandgap fluorescent carbon quantum dots for electroluminescent light-emitting diodes. Adv. Mater. 2017, 29, 1604436.

[33]

Li, D. N.; Li, W.; Zhang, H. R.; Zhang, X. J.; Zhuang, J. L.; Liu, Y. L.; Hu, C. F.; Lei, B. F. Far-red carbon dots as efficient light-harvesting agents for enhanced photosynthesis. ACS Appl. Mater. Interfaces 2020, 12, 21009–21019.

[34]

Jing, P. T.; Han, D.; Li, D.; Zhou, D.; Zhang, L. G.; Zhang, H.; Shen, D. Z.; Qu, S. N. Origin of anisotropic photoluminescence in heteroatom-doped carbon nanodots. Adv. Opt. Mater. 2017, 5, 1601049.

[35]

Lu, S. Y.; Xiao, G. J.; Sui, L. Z.; Feng, T. L.; Yong, X.; Zhu, S. J.; Li, B. J.; Liu, Z. Y.; Zou, B.; Jin, M. X. et al. Piezochromic carbon dots with two-photon fluorescence. Angew. Chem., Int. Ed. 2017, 56, 6187–6191.

[36]

Gao, D.; Zhang, Y. S.; Liu, A. M.; Zhu, Y. D.; Chen, S. P.; Wei, D.; Sun, J.; Guo, Z. Z.; Fan, H. S. Photoluminescence-tunable carbon dots from synergy effect of sulfur doping and water engineering. Chem. Eng. J. 2020, 388, 124199.

[37]

Li, W.; Zhou, W.; Zhou, Z. S.; Zhang, H. R.; Zhang, X. J.; Zhuang, J. L.; Liu, Y. L.; Lei, B. F.; Hu, C. F. A universal strategy for activating the multicolor room-temperature afterglow of carbon dots in a boric acid matrix. Angew. Chem. 2019, 131, 7356–7361.

[38]

Newberry, R. W.; Raines, R. T. The n→π* interaction. Acc. Chem. Res. 2017, 50, 1838–1846.

[39]

Zhang, H. K.; Tang, B. Z. Through-space interactions in clusteroluminescence. JACS Au 2021, 1, 1805–1814.

[40]

Chen, H.; Ye, H. B.; Hai, Y.; Zhang, L.; You, L. n→π* interactions as a versatile tool for controlling dynamic imine chemistry in both organic and aqueous media. Chem. Sci. 2020, 11, 2707–2715.

[41]

Liu, Y. F.; Gou, H. L.; Huang, X.; Zhang, G. Y.; Xi, K.; Jia, X. D. Rational synthesis of highly efficient ultra-narrow red-emitting carbon quantum dots for NIR-II two-photon bioimaging. Nanoscale 2020, 12, 1589–1601.

File
12274_2022_4829_MOESM1_ESM.pdf (611 KB)
Publication history
Copyright
Acknowledgements

Publication history

Received: 30 June 2022
Revised: 26 July 2022
Accepted: 27 July 2022
Published: 22 August 2022
Issue date: March 2023

Copyright

© Tsinghua University Press 2022

Acknowledgements

Acknowledgements

The authors thank the financial supports by the National Natural Science Foundation of China (Nos. 21920102005, 21835002, and 21621001) and the 111 Project of China (No. B17020).

Return