Graphical Abstract

Discover the SciOpen Platform and Achieve Your Research Goals with Ease.
Search articles, authors, keywords, DOl and etc.
Alkali metals have been widely used as promoters of metal catalysts in various applications, yet the atomic understanding of the promotional mechanism remains elusive. In this work, we for the first time report the significant promotional effect of potassium to the Co-N-C single-atom catalyst for the direct dehydrogenation of ethylbenzene. K cation was introduced by impregnation of Co-N-C with KCl followed by calcination at 600 °C, which resulted in the bonding of K to the Co-O moiety of the Co-N-C catalyst as revealed by X-ray absorption spectroscopy in combination with theoretical calculations. The formation of Co-O-K moiety led to the increase of electron density at the O atom due to electron transfer of K to O, and consequently facilitated the heterolytic cleavage of the C–H bond of ethylbenzene across the Co-O moiety. The promotional effect of K was found to be a volcano-function with the K/Co ratio and became the greatest at the K/Co ratio of 1.36, which resulted in the highest steady-state reaction rate of 9.7 mmolEB·gcat−1·h−1 reported thus far. Moreover, the catalyst exhibited excellent stability during 100 h time on stream.
Sattler, J. J. H. B.; Ruiz-Martinez, J.; Santillan-Jimenez, E.; Weckhuysen, B. M. Catalytic dehydrogenation of light alkanes on metals and metal oxides. Chem. Rev. 2014, 114, 10613–10653.
Chen, S.; Chang, X.; Sun, G. D.; Zhang, T. T.; Xu, Y. Y.; Wang, Y.; Pei, C. L.; Gong, J. L. Propane dehydrogenation: Catalyst development, new chemistry, and emerging technologies. Chem. Soc. Rev. 2021, 50, 3315–3354.
Dai, Y. H.; Gao, X.; Wang, Q. J.; Wan, X. Y.; Zhou, C. M.; Yang, Y. H. Recent progress in heterogeneous metal and metal oxide catalysts for direct dehydrogenation of ethane and propane. Chem. Soc. Rev. 2021, 50, 5590–5630.
Liu, W.; Chen, B. X.; Duan, X. Z.; Wu, K. H.; Qi, W.; Guo, X. L.; Zhang, B. S.; Su, D. S. Molybdenum carbide modified nanocarbon catalysts for alkane dehydrogenation reactions. ACS Catal. 2017, 7, 5820–5827.
Han, Z. P.; Li, S. R.; Jiang, F.; Wang, T.; Ma, X. B.; Gong, J. L. Propane dehydrogenation over Pt-Cu bimetallic catalysts: The nature of coke deposition and the role of copper. Nanoscale 2014, 6, 10000–10008.
Lian, Z.; Si, C. W.; Jan, F.; Zhi, S. K.; Li, B. Coke deposition on Pt-based catalysts in propane direct dehydrogenation: Kinetics, suppression, and elimination. ACS Catal. 2021, 11, 9279–9292.
Lian, Z.; Ali, S.; Liu, T. F.; Si, C. W.; Li, B.; Su, D. S. Revealing the Janus character of the coke precursor in the propane direct dehydrogenation on Pt catalysts from a kMC simulation. ACS Catal. 2018, 8, 4694–4704.
Meima, G. R.; Menon, P. G. Catalyst deactivation phenomena in styrene production. Appl. Catal. A Gen. 2001, 212, 239–245.
Wang, A. Q.; Zhang, T. One-pot conversion of cellulose to ethylene glycol with multifunctional tungsten-based catalysts. Acc. Chem. Res. 2013, 46, 1377–1386.
Yang, M.; Qi, H. F.; Liu, F.; Ren, Y. J.; Pan, X. L.; Zhang, L. L.; Liu, X. Y.; Wang, H.; Pang, J. F.; Zheng, M. Y. et al. One-pot production of cellulosic ethanol via tandem catalysis over a multifunctional Mo/Pt/WOx catalyst. Joule 2019, 3, 1937–1948.
Peng, M.; Jia, Z. M.; Gao, Z. R.; Xu, M.; Cheng, D. Y.; Wang, M.; Li, C. Y.; Wang, L. L.; Cai, X. B.; Jiang, Z. et al. Antisintering Pd1 catalyst for propane direct dehydrogenation with in situ active sites regeneration ability. ACS Catal. 2022, 12, 2244–2252.
Hu, B.; Schweitzer, N. M.; Zhang, G. H.; Kraft, S. J.; Childers, D. J.; Lanci, M. P.; Miller, J. T.; Hock, A. S. Isolated FeII on silica as a selective propane dehydrogenation catalyst. ACS Catal. 2015, 5, 3494–3503.
Sun, G. D.; Zhao, Z. J.; Mu, R. T.; Zha, S.; Li, L. L.; Chen, S.; Zang, K. T.; Luo, J.; Li, Z. L.; Purdy, S. C. et al. Breaking the scaling relationship via thermally stable Pt/Cu single atom alloys for catalytic dehydrogenation. Nat. Commun. 2018, 9, 4454.
Marcinkowski, M. D.; Darby, M. T.; Liu, J. L.; Wimble, J. M.; Lucci, F. R.; Lee, S.; Michaelides, A.; Flytzani-Stephanopoulos, M.; Stamatakis, M.; Sykes, E. C. H. Pt/Cu single-atom alloys as coke-resistant catalysts for efficient C–H activation. Nat. Chem. 2018, 10, 325–332.
Chen, S.; Zhao, Z. J.; Mu, R. T.; Chang, X.; Luo, J.; Purdy, S. C.; Kropf, A. J.; Sun, G. D.; Pei, C. L.; Miller, J. T. et al. Propane dehydrogenation on single-site [PtZn4] intermetallic catalysts. Chem 2021, 7, 387–405.
Xiong, H. F.; Lin, S.; Goetze, J.; Pletcher, P.; Guo, H.; Kovarik, L.; Artyushkova, K.; Weckhuysen, B. M.; Datye, A. K. Thermally stable and regenerable platinum-tin clusters for propane dehydrogenation prepared by atom trapping on ceria. Angew. Chem., Int. Ed. 2017, 56, 8986–8991.
Nakaya, Y.; Hirayama, J.; Yamazoe, S.; Shimizu, K. I.; Furukawa, S. Single-atom Pt in intermetallics as an ultrastable and selective catalyst for propane dehydrogenation. Nat. Commun. 2020, 11, 2838.
Wegener, E. C.; Bukowski, B. C.; Yang, D. L.; Wu, Z. W.; Kropf, A. J.; Delgass, W. N.; Greeley, J.; Zhang, G. H.; Miller, J. T. Intermetallic compounds as an alternative to single-atom alloy catalysts: Geometric and electronic structures from advanced X-ray spectroscopies and computational studies. ChemCatChem 2020, 12, 1325–1333.
Xiong, Y.; Sun, W. M.; Han, Y. H.; Xin, P. Y.; Zheng, X. S.; Yan, W. S.; Dong, J. C.; Zhang, J.; Wang, D. S.; Li, Y. D. Cobalt single atom site catalysts with ultrahigh metal loading for enhanced aerobic oxidation of ethylbenzene. Nano Res. 2021, 14, 2418–2423.
Li, R. Z.; Wang, D. S. Understanding the structure-performance relationship of active sites at atomic scale. Nano Res. 2022, 15, 6888–6923.
Liu, W. G.; Chen, Y. J.; Qi, H. F.; Zhang, L. L.; Yan, W. S.; Liu, X. Y.; Yang, X. F.; Miao, S.; Wang, W. T.; Liu, C. G. et al. A durable nickel single-atom catalyst for hydrogenation reactions and cellulose valorization under harsh conditions. Angew. Chem., Int. Ed. 2018, 57, 7071–7075.
Qi, H. F.; Yang, J.; Liu, F.; Zhang, L. L.; Yang, J. Y.; Liu, X. Y.; Li, L.; Su, Y.; Liu, Y. F.; Hao, R. et al. Highly selective and robust single-atom catalyst Ru1/NC for reductive amination of aldehydes/ketones. Nat. Commun. 2021, 12, 3295.
Shi, J. J.; Wei, Y.; Zhou, D.; Zhang, L. L.; Yang, X. F.; Miao, Z. L.; Qi, H. F.; Zhang, S. X.; Li, A. Q.; Liu, X. Y. et al. Introducing Co-O moiety to Co-N-C single-atom catalyst for ethylbenzene dehydrogenation. ACS Catal. 2022, 12, 7760–7772.
Yang, M.; Li, S.; Wang, Y.; Herron, J. A.; Xu, Y.; Allard, L. F.; Lee, S.; Huang, J.; Mavrikakis, M.; Flytzani-Stephanopoulos, M. Catalytically active Au-O(OH)x-species stabilized by alkali ions on zeolites and mesoporous oxides. Science 2014, 346, 1498–1501.
Zugic, B.; Zhang, S. R.; Bell, D. C.; Tao, F.; Flytzani-Stephanopoulos, M. Probing the low-temperature water-gas shift activity of alkali-promoted platinum catalysts stabilized on carbon supports. J. Am. Chem. Soc. 2014, 136, 3238–3245.
Yang, X. L.; Su, X.; Chen, X. D.; Duan, H. M.; Liang, B. L.; Liu, Q. G.; Liu, X. Y.; Ren, Y. J.; Huang, Y. Q.; Zhang, T. Promotion effects of potassium on the activity and selectivity of Pt/zeolite catalysts for reverse water gas shift reaction. Appl. Catal. B:Environ. 2017, 216, 95–105.
Wang, Q. R.; Guo, J. P.; Chen, P. The impact of alkali and alkaline earth metals on green ammonia synthesis. Chem 2021, 7, 3203–3220.
Guo, J. P.; Chen, P. Interplay of alkali, transition metals, nitrogen, and hydrogen in ammonia synthesis and decomposition reactions. Acc. Chem. Res. 2021, 54, 2434–2444.
Urabe, K.; Aika, K. I.; Ozaki, A. Activation of nitrogen by alkali metal-promoted transition metal: VI. Hydrogen effect on isotopic equilibration of nitrogen and rate-determining step of ammonia synthesis on potassium-promoted ruthenium catalysts. J. Catal. 1976, 42, 197–204.
Li, J. F.; Cheng, X. F.; Zhang, C. H.; Chang, Q.; Wang, J.; Wang, X. P.; Lv, Z. G.; Dong, W. S.; Yang, Y.; Li, Y. W. Effect of alkalis on iron-based fischer-tropsch synthesis catalysts: Alkali-FeOx interaction, reduction, and catalytic performance. Appl. Catal. A Gen. 2016, 528, 131–141.
Zhai, P.; Li, Y. W.; Wang, M.; Liu, J. J.; Cao, Z.; Zhang, J.; Xu, Y.; Liu, X. W.; Li, Y. W.; Zhu, Q. J. et al. Development of direct conversion of syngas to unsaturated hydrocarbons based on Fischer–Tropsch route. Chem 2021, 7, 3027–3051.
Wei, H. S.; Ren, Y. J.; Wang, A. Q.; Liu, X. Y.; Liu, X.; Zhang, L. L.; Miao, S.; Li, L.; Liu, J. Y.; Wang, J. H. et al. Remarkable effect of alkalis on the chemoselective hydrogenation of functionalized nitroarenes over high-loading Pt/FeOx catalysts. Chem. Sci. 2017, 8, 5126–5131.
Qin, R. X.; Zhou, L. Y.; Liu, P. X.; Gong, Y.; Liu, K. L.; Xu, C. F.; Zhao, Y.; Gu, L.; Fu, G.; Zheng, N. F. Alkali ions secure hydrides for catalytic hydrogenation. Nat. Catal. 2020, 3, 703–709.
Hirano, T. Roles of potassium in potassium-promoted iron oxide catalyst for dehydrogenation of ethylbenzene. Appl. Catal. 1986, 26, 65–79.
Rossetti, I.; Bencini, E.; Trentini, L.; Forni, L. Study of the deactivation of a commercial catalyst for ethylbenzene dehydrogenation to styrene. Appl. Catal. A Gen. 2005, 292, 118–123.
Zhou, D.; Zhang, L. L.; Liu, X. Y.; Qi, H. F.; Liu, Q. G.; Yang, J.; Su, Y.; Ma, J. Y.; Yin, J. Z.; Wang, A. Q. Tuning the coordination environment of single-atom catalyst M-N-C towards selective hydrogenation of functionalized nitroarenes. Nano Res. 2022, 15, 519–527.
Stoch, J.; Ladecka, M. An XPS study of the KCl surface oxidation in oxygen glow discharge. Appl. Surf. Sci. 1988, 31, 426–436.
Romanyuk, O.; Jiricek, P.; Zemek, J.; Houdkova, J.; Jurek, K.; Gedeon, O. Irradiation of potassium-silicate glass surfaces: XPS and REELS study. Surf. Interface Anal. 2016, 48, 543–546.
Bunău, O.; Joly, Y. Self-consistent aspects of X-ray absorption calculations. J. Phys. Condens. Mat. 2009, 21, 345501.
Yang, J.; Liu, W. G.; Xu, M. Q.; Liu, X. Y.; Qi, H. F.; Zhang, L. L.; Yang, X. F.; Niu, S. S.; Zhou, D.; Liu, Y. F. et al. Dynamic behavior of single-atom catalysts in electrocatalysis: Identification of Cu-N3 as an active site for the oxygen reduction reaction. J. Am. Chem. Soc. 2021, 143, 14530–14539.
Liu, W. G.; Zhang, L. L.; Yan, W. S.; Liu, X. Y.; Yang, X. F.; Miao, S.; Wang, W. T.; Wang, A. Q.; Zhang, T. Single-atom dispersed Co-N-C catalyst: Structure identification and performance for hydrogenative coupling of nitroarenes. Chem. Sci. 2016, 7, 5758–5764.
Li, Q.; Sui, Z.; Zhou, X. G.; Chen, D. Kinetics of propane dehydrogenation over Pt-Sn/Al2O3 catalyst. Appl. Catal. A Gen. 2011, 398, 18–26.
Zhou, Q.; Zhao, Z. K. Sulfate surfactant assisted approach to fabricate sulphur-doped supported nanodiamond catalyst on carbon nanotube with unprecedented catalysis for ethylbenzene dehydrogenation. ChemCatChem 2020, 12, 342–349.
Zhang, J.; Su, D. S.; Blume, R.; Schlögl, R.; Wang, R.; Yang, X. G.; Gajovic, A. Surface chemistry and catalytic reactivity of a nanodiamond in the steam-free dehydrogenation of ethylbenzene. Angew. Chem., Int. Ed. 2010, 49, 8840–8844.
Liang, B. L.; Duan, H. M.; Su, X.; Chen, X. D.; Huang, Y. Q.; Chen, X. W.; Delgado, J. J.; Zhang, T. Promoting role of potassium in the reverse water gas shift reaction on Pt/mullite catalyst. Catal. Today 2017, 281, 319–326.
Lamontagne, B.; Semond, F.; Roy, D. K overlayer oxidation studied by XPS: The effects of the adsorption and oxidation conditions. Surf. Sci. 1995, 327, 371–378.
Choo, C. K.; Suzawa, D.; Tanaka, K. Deposition of potassium-oxygen on silicon surfaces by pulsed laser ablation of potassium superoxide: Study of work function changes. Surf. Sci. 2006, 600, 1518–1525.