Journal Home > Volume 16 , Issue 1

Remote controlled soft actuators have attracted ever-increasing interest in industrial, medical, robotics, and engineering fields. Soft actuators are charming than normal tools in executing dedicate tasks due to small volume and flexible body they have. However, it remains a challenge to design soft actuator that can adapt to multi-environments under remote stimuli with promising nano materials. Herein, we have developed a kind of near-infrared laser driven soft actuators with multi locomotive modes based on WSe2 and graphene nanosheets heterojunction. Different locomotion modes are driven by photothermal effect induced deformation to adapt to different working conditions. Moreover, the specially designed gripper driven by pulsed laser can lift a heavy load which is four times of its weight. This work broadens the choice of advanced nanomaterials for photothermal conversion of soft actuators. It is promising to realize applications including photothermal therapy and complex environment detection through the combination of the intelligent robot design and optical fiber system.


menu
Abstract
Full text
Outline
Electronic supplementary material
About this article

Light-driven soft actuator based on graphene and WSe2 nanosheets composite for multimodal motion and remote manipulation

Show Author's information Zewen Su1Yingjie Zhao1Youqiang Huang1Chaoyue Xu2Xiaolei Yang1Binrui Wang2( )Beibei Xu3Shiqing Xu1( )Gongxun Bai1( )
College of Optical and Electronic Technology, China Jiliang University, Hangzhou 310018, China
College of Mechanical and Electrical Engineering, China Jiliang University, Hangzhou 310018, China
Key laboratory of Modern Optical Instruments, Zhejiang University, Hangzhou 310018, China

Abstract

Remote controlled soft actuators have attracted ever-increasing interest in industrial, medical, robotics, and engineering fields. Soft actuators are charming than normal tools in executing dedicate tasks due to small volume and flexible body they have. However, it remains a challenge to design soft actuator that can adapt to multi-environments under remote stimuli with promising nano materials. Herein, we have developed a kind of near-infrared laser driven soft actuators with multi locomotive modes based on WSe2 and graphene nanosheets heterojunction. Different locomotion modes are driven by photothermal effect induced deformation to adapt to different working conditions. Moreover, the specially designed gripper driven by pulsed laser can lift a heavy load which is four times of its weight. This work broadens the choice of advanced nanomaterials for photothermal conversion of soft actuators. It is promising to realize applications including photothermal therapy and complex environment detection through the combination of the intelligent robot design and optical fiber system.

Keywords: heterostructure, graphene, nanosheets, light-driven, WSe2, photothermal conversion, soft actuator

References(41)

[1]

Kaspar, C.; Ravoo, B. J.; Van Der Wiel, W. G.; Wegner, S. V.; Pernice, W. H. P. The rise of intelligent matter. Nature 2021, 594, 345–355.

[2]

Hu, W. Q.; Lum, G. Z.; Mastrangeli, M.; Sitti, M. Small-scale soft-bodied robot with multimodal locomotion. Nature 2018, 554, 81–85.

[3]

Khodambashi, R.; Alsaid, Y.; Rico, R.; Marvi, H.; Peet, M. M.; Fisher, R. E.; Berman, S.; He, X. M.; Aukes, D. M. Heterogeneous hydrogel structures with spatiotemporal reconfigurability using addressable and tunable voxels. Adv. Mater. 2021, 33, 2005906.

[4]

Rafsanjani, A.; Zhang, Y. R.; Liu, B. Y.; Rubinstein, S. M.; Bertoldi, K. Kirigami skins make a simple soft actuator crawl. Sci. Robot. 2018, 3, eaar7555.

[5]

He, Q. G.; Wang, Z. J.; Wang, Y.; Minori, A.; Tolley, M. T.; Cai, S. Q. Electrically controlled liquid crystal elastomer-based soft tubular actuator with multimodal actuation. Sci. Adv. 2019, 5, eaax5746.

[6]

Zhang, J. C.; Ren, Z. Y.; Hu, W. Q.; Soon, R. H.; Yasa, I. C.; Liu, Z. M.; Sitti, M. Voxelated three-dimensional miniature magnetic soft machines via multimaterial heterogeneous assembly. Sci. Robot. 2021, 6, eabf0112.

[7]

Nie, Z. Z.; Zuo, B.; Wang, M.; Huang, S.; Chen, X. M.; Liu, Z. Y.; Yang, H. Light-driven continuous rotating Möbius strip actuators. Nat. Commun. 2021, 12, 2334.

[8]

Cheng, Y. C.; Lu, H. C.; Lee, X.; Zeng, H.; Priimagi, A. Kirigami-based light-induced shape-morphing and locomotion. Adv. Mater. 2020, 32, 1906233.

[9]

Umrao, S.; Tabassian, R.; Kim, J.; Nguyen, V. H.; Zhou, Q. T.; Nam, S.; Oh, I. K. MXene artificial muscles based on ionically cross-linked Ti3C2Tx electrode for kinetic soft robotics. Sci. Robot. 2019, 4, eaaw7797.

[10]

Xiao, J. L.; Zhou, T.; Yao, N.; Ma, S. Q.; Pan, C. X. Y.; Wang, P.; Fu, H. R.; Liu, H. T.; Pan, J.; Yu, L. T. et al. Optical fibre taper-enabled waveguide photoactuators. Nat. Commun. 2022, 13, 363.

[11]

Hu, Y.; Ji, Q. X.; Huang, M. J.; Chang, L. F.; Zhang, C. C.; Wu, G.; Zi, B.; Bao, N. Z.; Chen, W.; Wu, Y. C. Light-driven self-oscillating actuators with phototactic locomotion based on black phosphorus heterostructure. Angew. Chem., Int. Ed. 2021, 60, 20511–20517.

[12]

Li, Z. W.; Myung, N. V.; Yin, Y. D. Light-powered soft steam engines for self-adaptive oscillation and biomimetic swimming. Sci. Robot. 2021, 6, eabi4523.

[13]

Zhang, M. C.; Shahsavan, H.; Guo, Y. B.; Pena-Francesch, A.; Zhang, Y. Y.; Sitti, M. Liquid-crystal-elastomer-actuated reconfigurable microscale Kirigami metastructures. Adv. Mater. 2021, 33, 2008605.

[14]

Cai, G. F.; Ciou, J. H.; Liu, Y. Z.; Jiang, Y.; Lee, P. S. Leaf-inspired multiresponsive MXene-based actuator for programmable smart devices. Sci. Adv. 2019, 5, eaaw7956.

[15]

Ying, Y. L.; Plutnar, J.; Pumera, M. Six-degree-of-freedom steerable visible-light-driven microsubmarines using water as a fuel: Application for explosives decontamination. Small 2021, 17, 2100294.

[16]

Banerjee, S. S.; Arief, I.; Berthold, R.; Wiese, M.; Bartholdt, M.; Ganguli, D.; Mitra, S.; Mandal, S.; Wallaschek, J.; Raatz, A. et al. Super-elastic ultrasoft natural rubber-based piezoresistive sensors for active sensing interface embedded on soft robotic actuator. Appl. Mater. Today 2021, 25, 101219.

[17]

Chen, Y. H.; Yang, J. J.; Zhang, X.; Feng, Y. Y.; Zeng, H.; Wang, L.; Feng, W. Light-driven bimorph soft actuators: Design, fabrication, and properties. Mater. Horiz. 2021, 8, 728–757.

[18]

Fan, X. Q.; Ding, Y.; Liu, Y.; Liang, J. J.; Chen, Y. S. Plasmonic Ti3C2Tx MXene enables highly efficient photothermal conversion for healable and transparent wearable device. ACS Nano 2019, 13, 8124–8134.

[19]

Gao, D. C.; Lin, M. F.; Xiong, J. Q.; Li, S. H.; Lou, S. N.; Liu, Y. Z.; Ciou, J. H.; Zhou, X. R.; Lee, P. S. Photothermal actuated origamis based on graphene oxide-cellulose programmable bilayers. Nanoscale Horiz. 2020, 5, 730–738.

[20]

Han, B.; Zhang, Y. L.; Chen, Q. D.; Sun, H. B. Carbon-based photothermal actuators. Adv. Func. Mater. 2018, 28, 1802235.

[21]

Xiang, S. L.; Su, Y. X.; Yin, H.; Li, C.; Zhu, M. Q. Visible-light-driven isotropic hydrogels as anisotropic underwater actuators. Nano Energy 2021, 85, 105965.

[22]

Li, C.; Iscen, A.; Palmer, L. C.; Schatz, G. C.; Stupp, S. I. Light-driven expansion of spiropyran hydrogels. J. Am. Chem. Soc. 2020, 142, 8447–8453.

[23]

Yang, Y. Y.; Liu, Y. T.; Shen, Y. J. Plasmonic-assisted graphene oxide films with enhanced photothermal actuation for soft robots. Adv. Funct. Mater. 2020, 30, 1910172.

[24]

Da Cunha, M. P.; Ambergen, S.; Debije, M. G.; Homburg, E. F. G. A.; Den Toonder, J. M. J.; Schenning, A. P. H. J. A soft transporter robot fueled by light. Adv. Sci. 2020, 7, 1902842.

[25]

Hu, Y.; Yang, L. L.; Yan, Q. Y.; Ji, Q. X.; Chang, L. F.; Zhang, C. C.; Yan, J.; Wang, R. R.; Zhang, L.; Wu, G. et al. Self-locomotive soft actuator based on asymmetric microstructural Ti3C2Tx MXene film driven by natural sunlight fluctuation. ACS Nano 2021, 15, 5294–5306.

[26]

Zhu, Y.; Wang, Y. J.; Williams, G. R.; Fu, L. Y.; Wu, J. J.; Wang, H.; Liang, R. Z.; Weng, X. S.; Wei, M. Multicomponent transition metal dichalcogenide nanosheets for imaging-guided photothermal and chemodynamic therapy. Adv. Sci. 2020, 7, 2000272.

[27]

Su, Z. W.; Zhao, Y. J.; Huang, Y. Q.; Lian, Y. B.; Xu, S. Q.; Bai, G. X. Bi-functional nanocomposite based on phosphor and carbon nanotubes for tumor ablation in a photothermal fiber system with temperature feedback. Chem. Eng. J. 2022, 436, 134994.

[28]

Zhou, Z.; Li, B. W.; Shen, C.; Wu, D.; Fan, H. C.; Zhao, J. Q.; Li, H.; Zeng, Z. Y.; Luo, Z. M.; Ma, L. F. et al. Metallic 1T phase enabling MoS2 nanodots as an efficient agent for photoacoustic imaging guided photothermal therapy in the near-infrared-II window. Small 2020, 16, 2004173.

[29]

Liu, L.; Liu, M. H.; Deng, L. L.; Lin, B. P.; Yang, H. Near-infrared chromophore functionalized soft actuator with ultrafast photoresponsive speed and superior mechanical property. J. Am. Chem. Soc. 2017, 139, 11333–11336.

[30]

Liu, Y.; Xu, X.; Wei, Y.; Chen, Y. S.; Gao, M.; Zhang, Z. J.; Si, C. L.; Li, H. P.; Ji, X. Y.; Liang, J. J. Tailoring silver nanowire nanocomposite interfaces to achieve superior stretchability, durability, and stability in transparent conductors. Nano Lett. 2022, 22, 3784–3792.

[31]

Dong, Y.; Wang, L.; Xia, N.; Wang, Y.; Wang, S. J.; Yang, Z. X.; Jin, D. D.; Du, X. Z.; Yu, E.; Pan, C. F. et al. Multi-stimuli-response programmable soft actuators with site-specific and anisotropic deformation behavior. Nano Energy 2021, 88, 106254.

[32]

Wu, L. J.; Chauhan, I.; Tadesse, Y. A novel soft actuator for the musculoskeletal system. Adv. Mater. Technol. 2018, 3, 1700359.

[33]

Baumgartner, M.; Hartmann, F.; Drack, M.; Preninger, D.; Wirthl, D.; Gerstmayr, R.; Lehner, L.; Mao, G. Y.; Pruckner, R.; Demchyshyn, S. et al. Resilient yet entirely degradable gelatin-based biogels for soft robots and electronics. Nat. Mater. 2020, 19, 1102–1109.

[34]

Zhang, Y. F.; Zhang, N. B.; Hingorani, H.; Ding, N. Y.; Wang, D.; Yuan, C.; Zhang, B.; Gu, G. Y.; Ge, Q. Fast-response, stiffness-tunable soft actuator by hybrid multimaterial 3D printing. Adv. Funct. Mater. 2019, 29, 1806698.

[35]

Zou, M.; Li, S. T.; Hu, X. Y.; Leng, X. Q.; Wang, R.; Zhou, X.; Liu, Z. F. Progresses in tensile, torsional, and multifunctional soft actuators. Adv. Funct. Mater. 2021, 31, 2007437.

[36]

Liu, Y.; Ji, X. Y.; Liang, J. J. Rupture stress of liquid metal nanoparticles and their applications in stretchable conductors and dielectrics. npj Flex. Electron. 2021, 5, 11.

[37]

Liu, Y.; Fan, X. Q.; Feng, W. M.; Shi, X. L.; Li, F. C.; Wu, J. H.; Ji, X. Y.; Liang, J. J. An in situ and rapid self-healing strategy enabling a stretchable nanocomposite with extremely durable and highly sensitive sensing features. Mater. Horiz. 2021, 8, 250–258.

[38]

Chen, K.; He, J. Z.; Zhang, D.; You, L. Y.; Li, X. F.; Wang, H. Y.; Mei, J. G. Bioinspired dynamic camouflage from colloidal nanocrystals embedded electrochromics. Nano Lett. 2021, 21, 4500–4507.

[39]

Yuan, Z. Y.; Zhou, Y. K.; Qiao, Z.; Aik, C. E.; Tu, W. C.; Wu, X. Q.; Chen, Y. C. Stimulated chiral light-matter interactions in biological microlasers. ACS Nano 2021, 15, 8965–8975.

[40]

Wang, X. F.; Chen, X. L.; Zhou, Y. H.; Park, C.; An, C.; Zhou, Y.; Zhang, R. R.; Gu, C. C.; Yang, W. G.; Yang, Z. R. Pressure-induced iso-structural phase transition and metallization in WSe2. Sci. Rep. 2017, 7, 46694.

[41]

Salitra, G.; Hodes, G.; Klein, E.; Tenne, R. Highly oriented WSe2 thin films prepared by selenization of evaporated WO3. Thin Solid Films 1994, 245, 180–185.

Video
12274_2022_4827_MOESM2.mp4
12274_2022_4827_MOESM3.mp4
12274_2022_4827_MOESM4.mp4
File
12274_2022_4827_MOESM1_ESM.pdf (2.1 MB)
Publication history
Copyright
Acknowledgements

Publication history

Received: 05 June 2022
Revised: 10 July 2022
Accepted: 26 July 2022
Published: 31 August 2022
Issue date: January 2023

Copyright

© Tsinghua University Press 2022

Acknowledgements

Acknowledgements

This work was financed by the National Natural Science Foundation of China (No. 62175225), Zhejiang Provincial Natural Science Foundation of China (No. LZ21E020004), and Fundamental Research Funds for the Provincial Universities of Zhejiang, Young Top Talent Plan of Zhejiang (No. ZJWR0308004).

Return