Journal Home > Volume 16 , Issue 1

The rapid development of miniaturized, highly integrated, and multifunctional modern electronic devices has generated a growing demand for anisotropic heat dissipation in polymer nanocomposites for thermal management applications. These anisotropic thermally conductive multifunctional polymer nanocomposites use bio-inspired structural design based on natural nacre, which is the gold standard for biomimetics. However, to date, a comprehensive review and critique on the highly-anisotropic thermal conduction of nacre-mimetic nanocomposites is nonexistent. As such, this extensive review of the nacre-inspired highly anisotropic thermal management nanocomposites summarizes the current design strategies, and explains the thermal conduction mechanisms, and factors affecting anisotropic thermal conductivity. Furthermore, the practical applications of the as-prepared nacre-inspired highly anisotropic nanocomposites are highlighted. Finally, the key challenges and potential solution strategies associated with these nacre-inspired highly anisotropic nanocomposites are discussed and outlooks for future research opportunities are also proposed.


menu
Abstract
Full text
Outline
Electronic supplementary material
About this article

Recent advances in nacre-inspired anisotropic thermally conductive polymeric nanocomposites

Show Author's information Qiang Chen1Zhewen Ma1Mingchao Wang3Zhengzhou Wang1,2( )Jiabing Feng4Venkata Chevali4Pingan Song4( )
Department of Polymer Materials, School of Materials Science and Engineering, Tongji University, Shanghai 201804, China
Key Laboratory of Advanced Civil Engineering Materials (Tongji University), Ministry of Education, Shanghai 201804, China
Centre for Theoretical and Computational Molecular Science, Australian Institute for Bioengineering and Nanotechnology, The University of Queensland, St Lucia, QLD 4072, Australia
Centre for Future Materials, University of Southern Queensland, Springfield 4300, Australia

Abstract

The rapid development of miniaturized, highly integrated, and multifunctional modern electronic devices has generated a growing demand for anisotropic heat dissipation in polymer nanocomposites for thermal management applications. These anisotropic thermally conductive multifunctional polymer nanocomposites use bio-inspired structural design based on natural nacre, which is the gold standard for biomimetics. However, to date, a comprehensive review and critique on the highly-anisotropic thermal conduction of nacre-mimetic nanocomposites is nonexistent. As such, this extensive review of the nacre-inspired highly anisotropic thermal management nanocomposites summarizes the current design strategies, and explains the thermal conduction mechanisms, and factors affecting anisotropic thermal conductivity. Furthermore, the practical applications of the as-prepared nacre-inspired highly anisotropic nanocomposites are highlighted. Finally, the key challenges and potential solution strategies associated with these nacre-inspired highly anisotropic nanocomposites are discussed and outlooks for future research opportunities are also proposed.

Keywords: thermal conductivity, nanocomposites, nacre-inspired structure, high anisotropy

References(162)

[1]

Zhang, F.; Feng, Y. Y.; Feng, W. Three-dimensional interconnected networks for thermally conductive polymer composites: Design, preparation, properties, and mechanisms. Mater. Sci. Eng. :R:Rep. 2020, 142, 100580.

[2]
Tan, M. Y.; Chen, D. M.; Cheng, Y.; Sun, H. Q.; Chen, G. Q.; Dong, S.; Zhao, G. D.; Sun, B. Q.; Wu, S. Q.; Zhang, W. Z. et al. Anisotropically oriented carbon films with dual-function of efficient heat dissipation and excellent electromagnetic interference shielding performances. Adv. Funct. Mater., in press, https://doi.org/10.1002/adfm.202202057.
[3]

Wang, D.; Ren, S. Y.; Chen, J. Y.; Li, Y. K.; Wang, Z. F.; Xu, J. H.; Jia, X.; Fu, J. J. Healable, highly thermal conductive, flexible polymer composite with excellent mechanical properties and multiple functionalities. Chem. Eng. J. 2022, 430, 133163.

[4]

Song, H. F.; Liu, J. M.; Liu, B. L.; Wu, J. Q.; Cheng, H. M.; Kang, F. Y. Two-dimensional materials for thermal management applications. Joule 2018, 2, 442–463.

[5]

Morishita, T.; Matsushita, M. Ultra-highly electrically insulating carbon materials and their use for thermally conductive and electrically insulating polymer composites. Carbon 2021, 184, 786–798.

[6]

Hong, H.; Jung, Y. H.; Lee, J. S.; Jeong, C.; Kim, J. U.; Lee, S.; Ryu, H.; Kim, H.; Ma, Z. Q.; Kim, T. I. Anisotropic thermal conductive composite by the guided assembly of boron nitride nanosheets for flexible and stretchable electronics. Adv. Funct. Mater. 2019, 29, 1902575.

[7]

Han, J. K.; Du, G. L.; Gao, W. W.; Bai, H. An anisotropically high thermal conductive boron nitride/epoxy composite based on nacre-mimetic 3D network. Adv. Funct. Mater. 2019, 29, 1900412.

[8]

Azizi, A.; Gadinski, M. R.; Li, Q.; AlSaud, M. A.; Wang, J. J.; Wang, Y.; Wang, B.; Liu, F. H.; Chen, L. Q.; Alem, N. et al. High-performance polymers sandwiched with chemical vapor deposited hexagonal boron nitrides as scalable high-temperature dielectric materials. Adv. Mater. 2017, 29, 1701864.

[9]

Zeng, X. L.; Sun, J. J.; Yao, Y. M.; Sun, R.; Xu, J. B.; Wong, C. P. A combination of boron nitride nanotubes and cellulose nanofibers for the preparation of a nanocomposite with high thermal conductivity. ACS Nano 2017, 11, 5167–5178.

[10]

Huang, C. L.; Qian, X.; Yang, R. G. Thermal conductivity of polymers and polymer nanocomposites. Mater. Sci. Eng. :R:Rep. 2018, 132, 1–22.

[11]

Meng, X. G.; Yu, H. J.; Wang, L.; Wu, X. D.; Amin, B. U. Recent progress on fabrication and performance of polymer composites with highly thermal conductivity. Macromol. Mater. Eng. 2021, 306, 2100434.

[12]

Huang, X. Y.; Zhi, C. Y.; Lin, Y.; Bao, H.; Wu, G. N.; Jiang, P. K.; Mai, Y. W. Thermal conductivity of graphene-based polymer nanocomposites. Mater. Sci. Eng. :R:Rep. 2020, 142, 100577.

[13]

Li, H.; Zhao, J. Z.; Wang, J. F. Total-conversion, high-concentration exfoliation of two-dimensional boron nitride by paste-based sand milling strategy for massively producing high-performance nanocomposites. Compos. Sci. Technol. 2021, 201, 108545.

[14]

Shen, X.; Zheng, Q. B.; Kim, J. K. Rational design of two-dimensional nanofillers for polymer nanocomposites toward multifunctional applications. Prog. Mater. Sci. 2021, 115, 100708.

[15]

Wang, J. F.; Shen, M. M.; Liu, Z. X.; Wang, W. J. Mxene materials for advanced thermal management and thermal energy utilization. Nano Energy 2022, 97, 107177.

[16]

Yang, G.; Zhang, X. D.; Pan, D.; Zhang, W.; Shang, Y.; Su, F. M.; Ji, Y. X.; Liu, C. T.; Shen, C. Y. Highly thermal conductive poly(vinyl alcohol) composites with oriented hybrid networks: Silver nanowire bridged boron nitride nanoplatelets. ACS Appl. Mater. Interfaces 2021, 13, 32286–32294.

[17]

Yu, H. T.; Guo, P. L.; Qin, M. M.; Han, G. Y.; Chen, L.; Feng, Y. Y.; Feng, W. Highly thermally conductive polymer composite enhanced by two-level adjustable boron nitride network with leaf venation structure. Compos. Sci. Technol. 2022, 222, 109406.

[18]

Chen, Q.; Wang, Z. Z. A copper organic phosphonate functionalizing boron nitride nanosheet for PVA film with excellent flame retardancy and improved thermal conductive property. Compos. Part A: Appl. Sci. Manuf. 2022, 153, 106738.

[19]

Chen, H. Y.; Ginzburg, V. V.; Yang, J.; Yang, Y. F.; Liu, W.; Huang, Y.; Du, L. B.; Chen, B. Thermal conductivity of polymer-based composites: Fundamentals and applications. Prog. Polym. Sci. 2016, 59, 41–85.

[20]

Leung, S. N. Thermally conductive polymer composites and nanocomposites: Processing-structure-property relationships. Compos. Part B: Eng. 2018, 150, 78–92.

[21]

Ding, D. L.; Huang, R. Y.; Wang, X.; Zhang, S. Y.; Wu, Y.; Zhang, X. A.; Qin, G. Z.; Liu, Z. G.; Zhang, Q. Y.; Chen, Y. H. Thermally conductive silicone rubber composites with vertically oriented carbon fibers: A new perspective on the heat conduction mechanism. Chem. Eng. J. 2022, 441, 136104.

[22]

Fan, L.; Zhang, S.; Zhao, G. J.; Fu, Q. Constructing fibrillated skeleton with highly aligned boron nitride nanosheets confined in alumina fiber via electrospinning and sintering for thermally conductive composite. Compos. Part A: Appl. Sci. Manuf. 2021, 143, 106282.

[23]

Gu, J. W.; Ruan, K. P. Breaking through bottlenecks for thermally conductive polymer composites: A perspective for intrinsic thermal conductivity, interfacial thermal resistance and theoretics. Nano-Micro Lett. 2021, 13, 110.

[24]

Zhou, X. N.; Xu, S. S.; Wang, Z. Y.; Hao, L. C.; Shi, Z. Q.; Zhao, J. P.; Zhang, Q. G.; Ishizaki, K.; Wang, B.; Yang, J. F. Wood-derived, vertically aligned, and densely interconnected 3D sic frameworks for anisotropically highly thermoconductive polymer composites. Adv. Sci. 2022, 9, 2103592.

[25]

Jiang, F.; Song, N.; Ouyang, R. H.; Ding, P. Wall density-controlled thermal conductive and mechanical properties of three-dimensional vertically aligned boron nitride network-based polymeric composites. ACS Appl. Mater. Interfaces 2021, 13, 7556–7566.

[26]

Ma, Z. W.; Zhang, J. Z.; Maluk, C.; Yu, Y. M.; Seraji, S. M.; Yu, B.; Wang, H.; Song, P. A. A lava-inspired micro/nano-structured ceramifiable organic-inorganic hybrid fire-extinguishing coating. Matter 2022, 5, 911–932.

[27]

Hu, D. C.; Liu, H. Q.; Ding, Y.; Ma, W. S. Synergetic integration of thermal conductivity and flame resistance in nacre-like nanocellulose composites. Carbohydr. Polym. 2021, 264, 118058.

[28]

Zhao, H. W.; Yang, Z.; Guo, L. Nacre-inspired composites with different macroscopic dimensions: Strategies for improved mechanical performance and applications. NPG Asia Mater. 2018, 10, 1–22.

[29]

Yaraghi, N. A.; Kisailus, D. Biomimetic structural materials: Inspiration from design and assembly. Annu. Rev. Phys. Chem. 2018, 69, 23–57.

[30]

Wegst, U. G. K; Bai, H.; Saiz, E.; Tomsia, A. P.; Ritchie, R. O. Bioinspired structural materials. Nat. Mater. 2015, 14, 23–36.

[31]
Li, X. D.; Xu, Z. H.; Wang, R. Z. In situ observation of nanograin rotation and deformation in nacre. Nano Lett. 2006, 6, 2301–2304.
[32]

Song, F.; Soh, A. K.; Bai, Y. L. Structural and mechanical properties of the organic matrix layers of nacre. Biomaterials 2003, 24, 3623–3631.

[33]

Meyers, M. A.; Chen, P. Y.; Lin, A. Y. M.; Seki, Y. Biological materials: Structure and mechanical properties. Prog. Mater. Sci. 2008, 53, 1–206.

[34]

Rabiei, R.; Bekah, S.; Barthelat, F. Failure mode transition in nacre and bone-like materials. Acta Biomater. 2010, 6, 4081–4089.

[35]

Wang, Y.; Yuan, H.; Ma, P. M.; Bai, H. Y.; Chen, M. Q.; Dong, W. F.; Xie, Y.; Deshmukh, Y. S. Superior performance of artificial nacre based on graphene oxide nanosheets. ACS Appl. Mater. Interfaces 2017, 9, 4215–4222.

[36]

Meyers, M. A.; Mckittrick, J.; Chen, P. Y. Structural biological materials: Critical mechanics–materials connections. Science 2013, 339, 773–779.

[37]

Wang, Z. G.; Chen, M. Z.; Liu, Y. H.; Duan, H. J.; Xu, L.; Zhou, L.; Xu, J. Z.; Lei, J.; Li, Z. M. Nacre-like composite films with high thermal conductivity, flexibility, and solvent stability for thermal management applications. J. Mater. Chem. C 2019, 7, 9018–9024.

[38]

He, G. S.; Li, X.; Dai, Y.; Yang, Z. J.; Zeng, C. C.; Lin, C. M.; He, S. W. Constructing bioinspired hierarchical structure in polymer based energetic composites with superior thermal conductivity. Compos. Part B: Eng. 2019, 162, 678–684.

[39]

Shi, A.; Li, Y.; Liu, W.; Xu, J. Z.; Yan, D. X.; Lei, J.; Li, Z. M. Highly thermally conductive and mechanically robust composite of linear ultrahigh molecular weight polyethylene and boron nitride via constructing nacre-like structure. Compos. Sci. Technol. 2019, 184, 107858.

[40]

Xu, X. F.; Chen, J.; Zhou, J.; Li, B. W. Thermal conductivity of polymers and their nanocomposites. Adv. Mater. 2018, 30, 1705544.

[41]

Xu, Y. F.; Wang, X. J.; Hao, Q. A mini review on thermally conductive polymers and polymer-based composites. Compos. Commun. 2021, 24, 100617.

[42]

Kim, H. S.; Jang, J. U.; Lee, H.; Kim, S. Y.; Kim, S. H.; Kim, J.; Jung, Y. C.; Yang, B. J. Thermal management in polymer composites: A review of physical and structural parameters. Adv. Eng. Mater. 2018, 20, 1800204.

[43]

Nan, C. W.; Birringer, R.; Clarke, D. R.; Gleiter, H. Effective thermal conductivity of particulate composites with interfacial thermal resistance. J. Appl. Phys. 1997, 81, 6692–6699.

[44]

Foygel, M.; Morris, R. D.; Anez, D.; French, S.; Sobolev, V. L. Theoretical and computational studies of carbon nanotube composites and suspensions: Electrical and thermal conductivity. Phys. Rev. B 2005, 71, 104201.

[45]

Lewis, T. B.; Nielsen, L. E. Dynamic mechanical properties of particulate-filled composites. J. Appl. Polym. Sci. 1970, 14, 1449–1471.

[46]

Hatta, H.; Taya, M.; Kulacki, F. A.; Harder, J. F. Thermal diffusivities of composites with various types of filler. J. Compos. Mater. 1992, 26, 612–625.

[47]

Lin, Z. Y.; Liu, Y.; Raghavan, S.; Moon, K. S.; Sitaraman, S. K.; Wong, C. P. Magnetic alignment of hexagonal boron nitride platelets in polymer matrix: Toward high performance anisotropic polymer composites for electronic encapsulation. ACS Appl. Mater. Interfaces 2013, 5, 7633–7640.

[48]

Yuan, J.; Qian, X. T; Meng, Z. C.; Yang, B.; Liu, Z. Q. Highly thermally conducting polymer-based films with magnetic field-assisted vertically aligned hexagonal boron nitride for flexible electronic encapsulation. ACS Appl. Mater. Interfaces 2019, 11, 17915–17924.

[49]

Yang, S. D.; Xue, B.; Li, Y.; Li, X. J.; Xie, L.; Qin, S. H.; Xu, K. H.; Zheng, Q. Controllable Ag-rGO heterostructure for highly thermal conductivity in layer-by-layer nanocellulose hybrid films. Chem. Eng. J. 2020, 383, 123072.

[50]

Lee, T.; Min, S. H.; Gu, M. S.; Jung, Y. K.; Lee, W.; Lee, J. U.; Seong, D. G.; Kim, B. S. Layer-by-layer assembly for graphene-based multilayer nanocomposites: Synthesis and applications. Chem. Mater. 2015, 27, 3785–3796.

[51]

Joshi, B.; Samuel, E.; Kim, Y. I.; Yarin, A. L.; Swihart, M. T.; Yoon, S. S. Electrostatically sprayed nanostructured electrodes for energy conversion and storage devices. Adv. Funct. Mater. 2021, 31, 2008181.

[52]

Shi, A.; Li, Y.; Liu, W.; Lei, J.; Li, Z. M. High thermal conductivity of chain-aligned bulk linear ultra-high molecular weight polyethylene. J. Appl. Phys. 2019, 125, 245110.

[53]

Valino, A. D.; Dizon, J. R. C.; Espera, A. H. Jr. ; Chen, Q. Y. ; Messman, J. ; Advincula, R. C. Advances in 3D printing of thermoplastic polymer composites and nanocomposites. Prog. Polym. Sci. 2019, 98, 101162.

[54]

Bao, D.; Gao, Y. Y.; Cui, Y. X.; Xu, F.; Shen, X. S.; Geng, H. L.; Zhang, X. G.; Lin, D.; Zhu, Y. J.; Wang, H. Y. A novel modified expanded graphite/epoxy 3D composite with ultrahigh thermal conductivity. Chem. Eng. J. 2022, 433, 133519.

[55]

Vu, M. C.; Park, P. J.; Bae, S. R.; Kim, S. Y.; Kang, Y. M.; Choi, W. K.; Islam, A.; Won, J. C.; Park, M.; Kim, S. R. Scalable ultrarobust thermoconductive nonflammable bioinspired papers of graphene nanoplatelet crosslinked aramid nanofibers for thermal management and electromagnetic shielding. J. Mater. Chem. A 2021, 9, 8527–8540.

[56]

Wang, Y. J.; Xia, S.; Li, H.; Wang, J. F. Unprecedentedly tough, folding-endurance, and multifunctional graphene-based artificial nacre with predesigned 3D nanofiber network as matrix. Adv. Funct. Mater. 2019, 29, 1903876.

[57]

Zhang, X. L.; Xu, Y.; Zhang, X.; Wu, H.; Shen, J. B.; Chen, R.; Xiong, Y.; Li, J.; Guo, S. Y. Progress on the layer-by-layer assembly of multilayered polymer composites: Strategy, structural control and applications. Prog. Polym. Sci. 2019, 89, 76–107.

[58]

Lee, S.; Yeom, B.; Kim, Y.; Cho, J. Layer-by-layer assembly for ultrathin energy-harvesting films: Piezoelectric and triboelectric nanocomposite films. Nano Energy 2019, 56, 1–15.

[59]

Xiao, F. X.; Pagliaro, M.; Xu, Y. J.; Liu, B. Layer-by-layer assembly of versatile nanoarchitectures with diverse dimensionality: A new perspective for rational construction of multilayer assemblies. Chem. Soc. Rev. 2016, 45, 3088–3121.

[60]

Li, Y.; Wang, X.; Sun, J. Q. Layer-by-layer assembly for rapid fabrication of thick polymeric films. Chem. Soc. Rev. 2012, 41, 5998–6009.

[61]

Zhang, S. W.; Xia, F.; Demoustier-Champagne, S.; Jonas, A. M. Layer-by-layer assembly in nanochannels: Assembly mechanism and applications. Nanoscale 2021, 13, 7471–7497.

[62]

Richardson, J. J.; Björnmalm, M.; Caruso, F. Technology-driven layer-by-layer assembly of nanofilms. Science 2015, 348, aaa2491.

[63]

Chen, Q.; Ma, Z. W.; Wang, Z. Z.; Liu, L.; Zhu, M. H.; Lei, W. W.; Song, P. A. Scalable, robust, low-cost, and highly thermally conductive anisotropic nanocomposite films for safe and efficient thermal management. Adv. Funct. Mater. 2022, 32, 2110782.

[64]

Zhou, S. S.; Xu, T. L.; Jin, L. Y.; Song, N.; Ding, P. Ultraflexible polyamide-imide films with simultaneously improved thermal conductive and mechanical properties: Design of assembled well-oriented boron nitride nanosheets. Compos. Sci. Technol. 2022, 219, 109259.

[65]

Guo, Y. Q.; Qiu, H.; Ruan, K. P.;, Zhang, Y. L.; Gu, J. W. Hierarchically multifunctional polyimide composite films with strongly enhanced thermal conductivity. Nano-Micro Lett. 2022, 14, 26.

[66]

Zhou, B.; Li, Q. T.; Xu, P. H.; Feng, Y. Z.; Ma, J. M.; Liu, C. T.; Shen, C. Y. An asymmetric sandwich structural cellulose-based film with self-supported MXene and AgNW layers for flexible electromagnetic interference shielding and thermal management. Nanoscale 2021, 13, 2378–2388.

[67]

Shang, Y.; Ji, Y. X.; Dong, J. W.; Yang, G.; Zhang, X. D.; Su, F. M.; Feng, Y. Z.; Liu, C. T. Sandwiched cellulose nanofiber/boron nitride nanosheet/Ti3C2Tx MXene composite film with high electromagnetic shielding and thermal conductivity yet insulation performance. Compos. Sci. Technol. 2021, 214, 108974.

[68]

Han, G. J.; Zhang, D.; Kong, C. M.; Zhou, B.; Shi, Y. Q.; Feng, Y. Z.; Liu, C. T.; Wang, D. Y. Flexible, thermostable and flame-resistant epoxy-based thermally conductive layered films with aligned ionic liquid-wrapped boron nitride nanosheets via cyclic layer-by-layer blade-casting. Chem. Eng. J. 2022, 437, 135482.

[69]

Xue, Y.; Wang, H. S.; Li, X. F.; Chen, Y. F. Exceptionally thermally conductive and electrical insulating multilaminar aligned silicone rubber flexible composites with highly oriented and dispersed filler network by mechanical shearing. Compos. Part A: Appl. Sci. Manuf. 2021, 144, 106336.

[70]

Gao, Q. S.; Pan, Y. M.; Zheng, G. Q.; Liu, C. T.; Shen, C. Y.; Liu, X. H. Flexible multilayered MXene/thermoplastic polyurethane films with excellent electromagnetic interference shielding, thermal conductivity, and management performances. Adv. Compos. Hybrid. Mater. 2021, 4, 274–285.

[71]

Chu, Z. Y.; Li, W. Z.; Song, S. Q.; Yuan, W. C.; Zhu, S. B.; Gan, W. J. Multilayered nacre-mimetic inspired flexible PEI film with high thermal conductivity and reliable dielectric performances. Ceram. Int. 2022, 48, 13794–13802.

[72]

Tan, Z. N.; Zhao, H.; Sun, F. R.; Ran, L. X.; Yi, L. F.; Zhao, L. J.; Wu, J. R. Fabrication of Chitosan/MXene multilayered film based on layer-by-layer assembly: Toward enhanced electromagnetic interference shielding and thermal management capacity. Compos. Part A: Appl Sci. Manuf. 2022, 155, 106809.

[73]

Ahn, E.; Lee, T.; Gu, M. S.; Park, M.; Min, S. H.; Kim, B. S. Layer-by-layer assembly for graphene-based multilayer nanocomposites: The field manual. Chem. Mater. 2017, 29, 69–79.

[74]

Menge, H. G.; Huynh, N. D.; Cho, C.; Choi, D.; Park, Y. T. Designable functional polymer nanocomposites via layer-by-layer assembly for highly deformable power-boosted triboelectric nanogenerators. Compos. Part B: Eng. 2022, 230, 109513.

[75]

Fang, H. M.; Bai, S. L.; Wong, C. P. Microstructure engineering of graphene towards highly thermal conductive composites. Compos. Part A: Appl. Sci. Manuf. 2018, 112, 216–238.

[76]

Shen, X.; Kim, J. K. 3D graphene and boron nitride structures for nanocomposites with tailored thermal conductivities: Recent advances and perspectives. Funct. Compos. Struct. 2020, 2, 022001.

[77]

Guan, L. Z.; Zhao, L.; Wan, Y. J.; Tang, L. C. Three-dimensional graphene-based polymer nanocomposites: Preparation, properties and applications. Nanoscale 2018, 10, 14788–14811.

[78]

Chen, Y. P.; Hou, X.; Liao, M. Z.; Dai, W.; Wang, Z. W.; Yan, C.; Li, H.; Lin, C. T.; Jiang, N.; Yu, J. H. Constructing a “pea-pod-like” alumina-graphene binary architecture for enhancing thermal conductivity of epoxy composite. Chem. Eng. J. 2020, 381, 122690.

[79]

Hao, M. Y.; Hu, Z.; Huang, Y. D.; Qian, X.; Wen, Z. P.; Wang, X. F.; Liu, L.; Lu, F.; Zhang, Y. G. Enhanced both in-plane and through-thickness thermal conductivity of carbon fiber/epoxy composites by fabricating high thermal conductive coaxial PAN/PBO carbon fibers. Compos. Part B: Eng. 2022, 229, 109468.

[80]

Yao, Y. M.; Sun, J. J.; Zeng, X. L.; Sun, R.; Xu, J. B.; Wong, C. P. Construction of 3D skeleton for polymer composites achieving a high thermal conductivity. Small 2018, 14, 1704044.

[81]

Wang, Y.; Zhang, Z.; Li, T.; Ma, P. M.; Zhang, X. H.; Xia, B. H.; Chen, M. Q.; Du, M. L.; Liu, T. X.; Dong, W. F. Artificial nacre epoxy nanomaterials based on janus graphene oxide for thermal management applications. ACS Appl. Mater. Interfaces 2020, 12, 44273–44280.

[82]

Hu, J. T.; Huang, Y.; Yao, Y. M.; Pan, G. R.; Sun, J. J.; Zeng, X. L.; Sun, R.; Xu, J. B.; Song, B.; Wong, C. P. Polymer composite with improved thermal conductivity by constructing a hierarchically ordered three-dimensional interconnected network of BN. ACS Appl. Mater. Interfaces 2017, 9, 13544–13553.

[83]

Ying, J. F.; Tan, X.; Lv, L.; Wang, X. Z.; Gao, J. Y.; Yan, Q. W.; Ma, H. B.; Nishimura, K.; Li, H.; Yu, J. H. et al. Tailoring highly ordered graphene framework in epoxy for high-performance polymer-based heat dissipation plates. ACS Nano 2021, 15, 12922–12934.

[84]

Zhang, F.; Ren, D. H.; Zhang, Y. H.; Huang, L. Q.; Sun, Y. X.; Wang, W.; Zhang, Q.; Feng, W.; Zheng, Q. B. Production of highly-oriented graphite monoliths with high thermal conductivity. Chem. Eng. J. 2022, 431, 134102.

[85]

Song, Y. X.; Li, B.; Yang, S. W.; Ding, G. Q.; Zhang, C. R.; Xie, X. M. Ultralight boron nitride aerogels via template-assisted chemical vapor deposition. Sci. Rep. 2015, 5, 10337.

[86]

Ullah, S.; Hasan, M.; Ta, H. Q.; Zhao, L.; Shi, Q. T.; Fu, L.; Choi, J.; Yang, R. Z.; Liu, Z. F.; Rümmeli, M. H. Synthesis of doped porous 3D graphene structures by chemical vapor deposition and its applications. Adv. Funct. Mater. 2019, 29, 1904457.

[87]

Shao, G. F.; Hanaor, D. A. H.; Shen, X. D.; Gurlo, A. Freeze casting: From low-dimensional building blocks to aligned porous structures-a review of novel materials, methods, and applications. Adv. Mater. 2020, 32, 1907176.

[88]

Yang, J.; Yang, W.; Chen, W.; Tao, X. M. An elegant coupling: Freeze-casting and versatile polymer composites. Prog. Polym. Sci. 2020, 109, 101289.

[89]

Hou, X.; Chen, Y. P.; Dai, W.; Wang, Z. W.; Li, H.; Lin, C. T.; Nishimura, K.; Jiang, N.; Yu, J. H. Highly thermal conductive polymer composites via constructing micro-phragmites communis structured carbon fibers. Chem. Eng. J. 2019, 375, 121921.

[90]

Wang, X. W.; Wu, P. Y. 3D vertically aligned bnns network with long-range continuous channels for achieving a highly thermally conductive composite. ACS Appl. Mater. Interfaces 2019, 11, 28943–28952.

[91]

Liu, P. F.; Li, X. F.; Min, P.; Chang, X. Y.; Shu, C.; Ding, Y.; Yu, Z. Z. 3D lamellar-structured graphene aerogels for thermal interface composites with high through-plane thermal conductivity and fracture toughness. Nano-Micro Lett. 2021, 13, 22.

[92]

Guo, F. M.; Shen, X.; Zhou, J. M.; Liu, D.; Zheng, Q. B.; Yang, J. L.; Jia, B. H.; Lau, A. K. T.; Kim, J. K. Highly thermally conductive dielectric nanocomposites with synergistic alignments of graphene and boron nitride nanosheets. Adv. Funct. Mater. 2020, 30, 1910826.

[93]

Tan, X.; Yuan, Q. L.; Qiu, M. T.; Yu, J. H.; Jiang, N.; Lin, C. T.; Dai, W. Rational design of graphene/polymer composites with excellent electromagnetic interference shielding effectiveness and high thermal conductivity: A mini review. J. Mater. Sci. Technol. 2022, 117, 238–250.

[94]

Guo, X. X.; Cheng, S. J.; Cai, W. W.; Zhang, Y. F.; Zhang, X. A. A review of carbon-based thermal interface materials: Mechanism, thermal measurements and thermal properties. Mater. Des. 2021, 209, 109936.

[95]

Cai, C. L.; Wang, T.; Qu, G. W.; Feng, Z. Q. High thermal conductivity of graphene and structure defects: Prospects for thermal applications in graphene sheets. Chin. Chem. Lett. 2021, 32, 1293–1298.

[96]

Wu, Z. H.; Xu, C.; Ma, C. Q.; Liu, Z. B.; Cheng, H. M.; Ren, W. C. Synergistic effect of aligned graphene nanosheets in graphene foam for high-performance thermally conductive composites. Adv. Mater. 2019, 31, 1900199.

[97]

Peng, L.; Xu, Z.; Liu, Z.; Guo, Y.; Li, P.; Gao, C. Ultrahigh thermal conductive yet superflexible graphene films. Adv. Mater. 2017, 29, 1700589.

[98]

Weng, C. J.; Li, W.; Wu, J.; Shen, L. M.; Yang, W. Z.; Deng, C.; Bao, N. Z. Thermal shock exfoliated and siloxane cross-linked graphene framework for high performance epoxy-based thermally conductive composites. J. Mater. Sci. 2021, 56, 17601–17614.

[99]

Dai, W.; Lv, L.; Ma, T. F.; Wang, X. Z.; Ying, J. F.; Yan, Q. W.; Tan, X.; Gao, J. Y.; Xue, C.; Yu, J. H. et al. Multiscale structural modulation of anisotropic graphene framework for polymer composites achieving highly efficient thermal energy management. Adv. Sci. 2021, 8, 2003734.

[100]

Wu, N.; Che, S.; Li, H. W.; Wang, C. N.; Tian, X. J.; Li, Y. F. A review of three-dimensional graphene networks for use in thermally conductive polymer composites: Construction and applications. New Carbon Mater. 2021, 36, 911–926.

[101]

Vu, M. C.; Choi, W. K.; Lee, S. G.; Park, P. J.; Kim, D. H.; Islam, A.; Kim, S. R. High thermal conductivity enhancement of polymer composites with vertically aligned silicon carbide sheet scaffolds. ACS Appl. Mater. Interfaces 2020, 12, 23388–23398.

[102]

Guan, C. L.; Qin, Y.; Wang, B.; Li, L. H.; Wang, M. J.; Lin, C. T.; He, X. D.; Nishimura, K.; Yu, J. H.; Yi, J. et al. Highly thermally conductive polymer composites with barnacle-like nano-crystalline diamond@silicon carbide hybrid architecture. Compos. Part B: Eng. 2020, 198, 108167.

[103]

Zeng, J.; Ji, X. X.; Ma, Y. H.; Zhang, Z. X.; Wang, S. G.; Ren, Z. H.; Zhi, C. Y.; Yu, J. 3D graphene fibers grown by thermal chemical vapor deposition. Adv. Mater. 2018, 30, 1705380.

[104]

Wang, Z.; Gao, C. P.; Zhang, S. M.; Zhang, P. Y.; Zhang, Z. J. Magnetic field-induced alignment of nickel-coated copper nanowires in epoxy composites for highly thermal conductivity with low filler loading. Compos. Sci. Technol. 2022, 218, 109137.

[105]

Shi, W.; Huang, J.; Fang, R. C.; Liu, M. J. Imparting functionality to the hydrogel by magnetic-field-induced nano-assembly and macro-response. ACS Appl. Mater. Interfaces 2020, 12, 5177–5194.

[106]

Chung, J. Y.; Lee, J. G.; Baek, Y. K.; Shin, P. W.; Kim, Y. K. Magnetic field-induced enhancement of thermal conductivities in polymer composites by linear clustering of spherical particles. Compos. Part B: Eng. 2018, 136, 215–221.

[107]

Kim, Y.; Kim, J. Fabrication of Fe3O4 coated boron nitride nanoplatelets by liquid-phase exfoliation for thermally enhanced epoxy composites via magnetic alignment. Compos. Sci. Technol. 2020, 188, 107961.

[108]

Wu, K.; Wang, J. M.; Liu, D. Y.; Lei, C. X.; Liu, D.; Lei, W. W.; Fu, Q. Highly thermoconductive, thermostable, and super-flexible film by engineering 1D rigid rod-like aramid nanofiber/2D boron nitride nanosheets. Adv. Mater. 2020, 32, 1906939.

[109]

Wang, J. M.; Liu, D.; Li, Q. X.; Chen, C.; Chen, Z. Q.; Naebe, M.; Song, P. A.; Portehault, D.; Garvey, C. J.; Golbery, D. et al. Nacre-bionic nanocomposite membrane for efficient in-plane dissipation heat harvest under high temperature. J. Materiomics 2021, 7, 219–225.

[110]

Wang, W. Y.; Ma, X.; Shao, Y. W.; Qi, X. D.; Yang, J. H.; Wang, Y. Flexible, multifunctional, and thermally conductive nylon/graphene nanoplatelet composite papers with excellent EMI shielding performance, improved hydrophobicity and flame resistance. J. Mater. Chem. A 2021, 9, 5033–5044.

[111]

Liu, Y. C.; Lu, M. P.; Hu, Z. R.; Liang, L. Y.; Shi, J.; Huang, X. M.; Lu, M. G.; Wu, K. Casein phosphopeptide-biofunctionalized graphene oxide nanoplatelets based cellulose green nanocomposites with simultaneous high thermal conductivity and excellent flame retardancy. Chem. Eng. J. 2020, 382, 122733.

[112]

Jiao, D. J.; Song, N.; Ding, P.; Shi, L. Y. Enhanced thermal conductivity in oriented cellulose nanofibril/graphene composites via interfacial engineering. Compos. Commun. 2022, 31, 101101.

[113]

Ma, T. B.; Zhao, Y. S.; Ruan, K. P.; Liu, X. R.; Zhang, J. L.; Guo, Y. Q.; Yang, X. T.; Kong, J.; Gu, J. W. Highly thermal conductivities, excellent mechanical robustness and flexibility, and outstanding thermal stabilities of aramid nanofiber composite papers with nacre-mimetic layered structures. ACS Appl. Mater. Interfaces 2020, 12, 1677–1686.

[114]

An, L. L.; Gu, R.; Zhong, B.; Wang, J. L.; Zhang, J. Y.; Yu, Y. L. Quasi-isotropically thermal conductive, highly transparent, insulating and super-flexible polymer films achieved by cross linked 2D hexagonal boron nitride nanosheets. Small 2021, 17, 2101409.

[115]

Hu, Z. R.; Wang, S.; Chen, G. K.; Zhang, Q.; Wu, K.; Shi, J.; Liang, L. Y.; Lu, M. G. An aqueous-only, green route to exfoliate boron nitride for preparation of high thermal conductive boron nitride nanosheet/cellulose nanofiber flexible film. Compos. Sci. Technol. 2018, 168, 287–295.

[116]

Fu, C. J.; Li, Q.; Lu, J. B.; Mateti, S.; Cai, Q. R.; Zeng, X. L.; Du, G. P.; Sun, R.; Chen, Y.; Xu, J. B. et al. Improving thermal conductivity of polymer composites by reducing interfacial thermal resistance between boron nitride nanotubes. Compos. Sci. Technol. 2018, 165, 322–330.

[117]

Jin, X. X.; Wang, J. F.; Dai, L. Z.; Liu, X. Y.; Li, L.; Yang, Y. Y.; Cao, Y. X.; Wang, W. J.; Wu, H.; Guo, S. Y. Flame-retardant poly(vinyl alcohol)/MXene multilayered films with outstanding electromagnetic interference shielding and thermal conductive performances. Chem. Eng. J. 2020, 380, 122475.

[118]

Jiao, E. X.; Wu, K.; Liu, Y. C.; Lu, M. P.; Zhang, H. Z.; Zheng, H. T.; Xu, C. A.; Shi, J.; Lu, M. G. Robust bioinspired MXene-based flexible films with excellent thermal conductivity and photothermal properties. Compos. Part A: Appl. Sci. Manuf. 2021, 143, 106290.

[119]

Jiao, E. X.; Wu, K.; Liu, Y. C.; Lu, M. P.; Hu, Z. R.; Chen, B.; Shi, J.; Lu, M. G. Ultrarobust MXene-based laminated paper with excellent thermal conductivity and flame retardancy. Compos. Part A: Appl. Sci. Manuf. 2021, 146, 106417.

[120]

Huang, X. W.; Wu, P. Y. A small amount of delaminated Ti3C2 flakes to greatly enhance the thermal conductivity of boron nitride papers by assembling a well-designed interface. Mater. Chem. Front. 2020, 4, 292–301.

[121]

Shan, B.; Xiong, Y. Z.; Li, Y. H.; Yang, H.; Chen, Y. F. Sandwich structured RGO/CNF/RGO composite films for superior mechanical and thermally conductive properties. Cellulose 2020, 27, 5055–5069.

[122]

Nie, S. X.; Mo, J. L.; Zhang, Y. H.; Xiong, C. Y.; Wang, S. F. Ultra-high thermal-conductive, reduced graphene oxide welded cellulose nanofibrils network for efficient thermal management. Carbohydr. Polym. 2020, 250, 116971.

[123]

Mo, R.; Liu, Z. J.; Guo, W. Y.; Wu, X. F.; Xu, Q. J.; Min, Y. L.; Fan, J. C.; Yu, J. H. Interfacial crosslinking for highly thermally conductive and mechanically strong boron nitride/aramid nanofiber composite film. Compos. Commun. 2021, 28, 100962.

[124]

Zhao, L. H.; Wei, C. M.; Li, Z. H.; Wei, W. F.; Jia, L. C.; Huang, X. L.; Ning, W. J.; Wang, Z.; Ren, J. W. High-temperature dielectric paper with high thermal conductivity and mechanical strength by engineering the aramid nanofibers and boron nitride nanotubes. Mater. Des. 2021, 210, 110124.

[125]

Xie, K.; Liu, Y. H.; Tian, Y. X.; Wu, X. N.; Wu, L. Y.; Mo, Y. L.; Sui, G. P.; Du, R. N.; Fu, Q.; Chen, F. Improving the flexibility of graphene nanosheets films by using aramid nanofiber framework. Compos. Part A: Appl. Sci. Manuf. 2021, 142, 106265.

[126]

Han, Y. X.; Ruan, K. P.; Gu, J. W. Janus (BNNS/ANF)-(AgNWs/ANF) thermal conductivity composite films with superior electromagnetic interference shielding and Joule heating performances. Nano Res. 2022, 15, 4747–4755.

[127]

Xue, B.; Yang, S. D.; Sun, X.; Xie, L.; Qin, S. H.; Zheng, Q. From tanghulu-like to cattail-like SiC nanowire architectures: Interfacial design of nanocellulose composites toward high thermal conductivity. J. Mater. Chem. A 2020, 8, 14506–14518.

[128]

Wang, X. W.; Wu, P. Y. Highly thermally conductive fluorinated graphene films with superior electrical insulation and mechanical flexibility. ACS Appl. Mater. Interfaces 2019, 11, 21946–21954.

[129]

Yan, Q. W.; Dai, W.; Gao, J. Y.; Tan, X.; Lv, L.; Ying, J. F.; Lu, X. X.; Lu, J. B.; Yao, Y. G.; Wei, Q. P. et al. Ultrahigh-aspect-ratio boron nitride nanosheets leading to superhigh in-plane thermal conductivity of foldable heat spreader. ACS Nano 2021, 15, 6489–6498.

[130]

Zhan, Y. J.; Nan, B. F.; Liu, Y. C.; Jiao, E. X.; Shi, J.; Lu, M. G.; Wu, K. Multifunctional cellulose-based fireproof thermal conductive nanocomposite films assembled by in-situ grown SiO2 nanoparticle onto MXene. Chem. Eng. J. 2021, 421, 129733.

[131]

Chen, J.; Huang, X. Y.; Sun, B.; Jiang, P. K. Highly thermally conductive yet electrically insulating polymer/boron nitride nanosheets nanocomposite films for improved thermal management capability. ACS Nano 2019, 13, 337–345.

[132]

Zhang, Y. L.; Ruan, K. P.; Gu, J. W. Flexible sandwich-structured electromagnetic interference shielding nanocomposite films with excellent thermal conductivities. Small 2021, 17, 2101951.

[133]

Yang, G.; Zhang, X. D.; Shang, Y.; Xu, P. H.; Pan, D.; Su, F. M.; Ji, Y. X.; Feng, Y, Z.; Liu, Y. Z.; Liu, C. T. Highly thermally conductive polyvinyl alcohol/boron nitride nanocomposites with interconnection oriented boron nitride nanoplatelets. Compos. Sci. Technol. 2021, 201, 108521.

[134]

Wang, H.; Zhang, Y.; Niu, H. T.; Wu, L. Y.; He, X. H.; Xu, T.; Wang, N. Y.; Yao, Y. G. An electrospinning-electrospraying technique for connecting electrospun fibers to enhance the thermal conductivity of boron nitride/polymer composite films. Compos. Part B: Eng. 2022, 230, 109505.

[135]

Chen, J.; Wei, H.; Bao, H.; Jiang, P. K.; Huang, X. Y. Millefeuille-inspired thermally conductive polymer nanocomposites with overlapping BN nanosheets for thermal management applications. ACS Appl. Mater. Interfaces 2019, 11, 31402–31410.

[136]

Wei, B. J.; Zhang, L.; Yang, S. Q. Polymer composites with expanded graphite network with superior thermal conductivity and electromagnetic interference shielding performance. Chem. Eng. J. 2021, 404, 126437.

[137]

Liu, Y. H.; Zeng, J.; Han, D.; Wu, K.; Yu, B. W.; Chai, S. G.; Chen, F.; Fu, Q. Graphene enhanced flexible expanded graphite film with high electric, thermal conductivities and EMI shielding at low content. Carbon 2018, 133, 435–445.

[138]

Guo, H. C.; Zhao, H. Y.; Niu, H. Y.; Ren, Y. J.; Fang, H. M.; Fang, X. X.; Lv, R. C.; Maqbool, M.; Bai, S. L. Highly thermally conductive 3D printed graphene filled polymer composites for scalable thermal management applications. ACS Nano 2021, 15, 6917–6928.

[139]

Liu, J. C.; Li, W. W.; Guo, Y. F.; Zhang, H.; Zhang, Z. Improved thermal conductivity of thermoplastic polyurethane via aligned boron nitride platelets assisted by 3D printing. Compos. Part A: Appl Sci. Manuf. 2019, 120, 140–146.

[140]
WangJ. L.MubarakS.DhamodharanD.DivakaranN.WuL. X.ZhangX. Fabrication of thermoplastic functionally gradient composite parts with anisotropic thermal conductive properties based on multicomponent fused deposition modeling 3D printingCompos. Commun.20201914214610.1016/j.coco.2020.03.012

Wang, J. L.; Mubarak, S.; Dhamodharan, D.; Divakaran, N.; Wu, L. X.; Zhang, X. Fabrication of thermoplastic functionally gradient composite parts with anisotropic thermal conductive properties based on multicomponent fused deposition modeling 3D printing. Compos. Commun. 2020, 19, 142–146.

[141]

Jing, J. J.; Chen, Y. H.; Shi, S. H.; Yang, L.; Lambin, P. Facile and scalable fabrication of highly thermal conductive polyethylene/graphene nanocomposites by combining solid-state shear milling and FDM 3D-printing aligning methods. Chem. Eng. J. 2020, 402, 126218.

[142]

Huang, Y. F.; Wang, Z. G.; Yu, W. C.; Ren, Y.; Lei, J.; Xu, J. Z.; Li, Z. M. Achieving high thermal conductivity and mechanical reinforcement in ultrahigh molecular weight polyethylene bulk material. Polymer 2019, 180, 121760.

[143]

Yu, W. C.; Wang, T.; Zhang, G. Q.; Wang, Z. G.; Yin, H. M.; Yan, D. X.; Xu, J. Z.; Li, Z. M. Largely enhanced mechanical property of segregated carbon nanotube/poly(vinylidene fluoride) composites with high electromagnetic interference shielding performance. Compos. Sci. Technol. 2018, 167, 260–267.

[144]

Huang, Y. F.; Wang, Z. G.; Yin, H. M.; Xu, J. Z.; Chen, Y. W.; Lei, J.; Zhu, L.; Gong, F.; Li, Z. M. Highly anisotropic, thermally conductive, and mechanically strong polymer composites with nacre-like structure for thermal management applications. ACS Appl. Nano Mater. 2018, 1, 3312–3320.

[145]

Wang, Y. J.; Xia, S.; Xiao, G.; Di, J. T.; Wang, J. F. High-loading boron nitride-based bio-inspired paper with plastic-like ductility and metal-like thermal conductivity. ACS Appl. Mater. Interfaces 2020, 12, 13156–13164.

[146]

Xiao, G.; Di, J. T.; Li, H.; Wang, J. F. Highly thermally conductive, ductile biomimetic boron nitride/aramid nanofiber composite film. Compos. Sci. Technol. 2020, 189, 108021.

[147]

Vu, M. C.; Mani, D.; Jeong, T. H.; Kim, J. B.; Lim, C. S.; Kang, H.; Islam, A.; Lee, O. C.; Park, P. J.; Kim, S. R. Nacre-inspired nanocomposite papers of graphene fluoride integrated 3D aramid nanofibers towards heat-dissipating applications. Chem. Eng. J. 2022, 429, 132182.

[148]

Zeng, H. X.; Wu, J. Y.; Ma, Y. P.; Ye, Y. S.; Liu, J. W.; Li, X. W.; Wang, Y.; Liao, Y. G.; Luo, X. B.; Xie, X. L. et al. Scalable approach to construct self-assembled graphene-based films with an ordered structure for thermal management. ACS Appl. Mater. Interfaces 2018, 10, 41690–41698.

[149]

Zeng, H. X.; Wu, J. Y.; Pei, H. J.; Zhang, Y. K.; Ye, Y. S.; Liao, Y. G.; Xie, X. L. Highly thermally conductive yet mechanically robust composites with nacre-mimetic structure prepared by evaporation-induced self-assembly approach. Chem. Eng. J. 2021, 405, 126865.

[150]

Li, X. W.; Deng, N. X.; Qu, H.; Zeng, H. X.; Pei, H. J.; Ye, Y. S.; Xie, X. L. Nacre-inspired polymer nanocomposites with high-performance and multifunctional properties realized by a facile evaporation-induced self-assembly approach. ACS Sustainable Chem. Eng. 2019, 7, 19787–19798.

[151]

Zhuang, Y. F.; Zheng, K.; Cao, X. Y.; Fan, Q. R.; Ye, G.; Lu, J. X.; Zhang, J. N.; Ma, Y. M. Flexible graphene nanocomposites with simultaneous highly anisotropic thermal and electrical conductivities prepared by engineered graphene with flat morphology. ACS Nano 2020, 14, 11733–11742.

[152]

Gao, Y. Y.; Zhang, M. H.; Chen, X. R.; Zhu, Y. J.; Wang, H. Y.; Yuan, S. C.; Xu, F.; Cui, Y, X.; Bao, D.; Shen, X. S. et al. A high-performance thermal conductive and outstanding electrical insulating composite based on robust neuron-like microstructure. Chem. Eng. J. 2021, 426, 131280.

[153]

Wu, S.; Li, T. X.; Tong, Z.; Chao, J. W.; Zhai, T. Y.; Xu, J. X.; Yan, T. S.; Wu, M. Q.; Xu, Z. Y.; Bao, H. et al. High-performance thermally conductive phase change composites by large-size oriented graphite sheets for scalable thermal energy harvesting. Adv. Mater. 2019, 31, 1905099.

[154]

Zeng, X. L.; Ye, L.; Yu, S. H.; Li, H.; Sun, R.; Xu, J. B.; Wong, C. P. Artificial nacre-like papers based on noncovalent functionalized boron nitride nanosheets with excellent mechanical and thermally conductive properties. Nanoscale 2015, 7, 6774–6781.

[155]

Hu, D. C.; Ma, W. S.; Zhang, Z. L.; Ding, Y.; Wu, L. Dual bio-inspired design of highly thermally conductive and superhydrophobic nanocellulose composite films. ACS Appl. Mater. Interfaces 2020, 12, 11115–11125.

[156]

Yang, S. D.; Sun, X.; Shen, J. Q.; Li, Y.; Xie, L.; Qin, S. H.; Xue, B.; Zheng, Q. Interface engineering based on polydopamine-assisted metallization in highly thermal conductive cellulose/nanodiamonds composite paper. ACS Sustainable Chem. Eng. 2020, 8, 17639–17650.

[157]

Wang, Z. G.; Lv, J. C.; Zheng, Z. L.; Du, J. G.; Dai, K.; Lei, J.; Xu, L.; Xu, J. Z.; Li, Z. M. Highly thermally conductive graphene-based thermal interface materials with a bilayer structure for central processing unit cooling. ACS Appl. Mater. Interfaces 2021, 13, 25325–25333.

[158]

Ghaffari-Mosanenzadeh, S.; Tafreshi, O. A.; Dammen-Brower, E.; Rad, E.; Meysami, M.; Naguib, H. E. A review on high thermally conductive polymeric composites. Polym. Compos. 2022, 43, 692–711.

[159]

Zhou, T.; Zhao, Y. J.; Rao, Z. H. Fundamental and estimation of thermal contact resistance between polymer matrix composites: A review. Int. J. Heat Mass Transf. 2022, 189, 122701.

[160]

Yu, C. P.; Zhang, J.; Tian, W.; Fan, X. D.; Yao, Y. G. Polymer composites based on hexagonal boron nitride and their application in thermally conductive composites. RSC Adv. 2018, 8, 21948–21967.

[161]

He, X. X.; Ou, D.; Wu, S. Y.; Luo, Y.; Ma, Y.; Sun, J. Y. A mini review on factors affecting network in thermally enhanced polymer composites: Filler content, shape, size, and tailoring methods. Adv. Compos. Hybrid Mater. 2022, 5, 21–38.

[162]

Yu, G.; Shen, X.; Kim, J. K. Beyond homogeneous dispersion: Oriented conductive fillers for high κ nanocomposites. Mater. Horiz. 2021, 8, 3009–3042.

File
12274_2022_4824_MOESM1_ESM.pdf (277.6 KB)
Publication history
Copyright
Acknowledgements

Publication history

Received: 21 June 2022
Revised: 18 July 2022
Accepted: 26 July 2022
Published: 12 September 2022
Issue date: January 2023

Copyright

© Tsinghua University Press 2022

Acknowledgements

Acknowledgements

This work was financially supported by the National Natural Science Foundation of China (No. 21975185) and the Australian Research Council (Nos. DP190102992 and FT190100188), and the ARC Training Centre Project No. IC170100032.

Return