Journal Home > Volume 16 , Issue 1

Self-engineered small-molecule prodrug-nanoassemblies have emerged as promising nanomedicines for cancer treatment. Modular design of prodrug molecules is crucial to guarantee the favorable assembly stability, tumor-specific prodrug activation, and satisfactory antitumor effect. However, too much attention has been paid to the pharmacophores and chemical linkages in prodrug molecules while neglects the vital roles of nonpharmacological moieties. Herein, we found that iso-carbon fatty acids with different number, position, and cis-trans configuration of double bonds dramatically affect the nanoassembly feature and drug delivery fates of thioether-linked paclitaxel prodrug-nanoassemblies. Particularly, the number and cis-trans configuration of double bonds in fatty acid moieties not only dominate the self-assembly ability and colloidal stability of prodrugs, but also exert significant influences on the pharmacokinetics, prodrug activation, and antitumor activity of prodrug-nanoassemblies. Finally, oleic acid with one cis double bond stands out as the optimal nonpharmacological moiety for thioether-linked paclitaxel prodrug-nanoassemblies. This study elucidates the crucial roles of nonpharmacological moieties in prodrugs, and provides new insights into the modular design of prodrug-based nanomedicines for cancer therapy.


menu
Abstract
Full text
Outline
Electronic supplementary material
About this article

Modularly engineered prodrug-nanoassemblies for cancer therapy: Nonpharmacological moiety dominating delivery fates

Show Author's information Yuequan Wang1Qian Qiu1Rui Liao1Xinhui Wang1Ziran Zhou1Xuanbo Zhang1Haotian Zhang2Zhonggui He1Shenwu Zhang1( )Cong Luo1( )Jin Sun1( )
Department of Pharmaceutics, Wuya College of Innovation, Shenyang Pharmaceutical University, Shenyang 110016, China
School of Life Science and Biopharmaceutics, Shenyang Pharmaceutical University, Shenyang 110016, China

Abstract

Self-engineered small-molecule prodrug-nanoassemblies have emerged as promising nanomedicines for cancer treatment. Modular design of prodrug molecules is crucial to guarantee the favorable assembly stability, tumor-specific prodrug activation, and satisfactory antitumor effect. However, too much attention has been paid to the pharmacophores and chemical linkages in prodrug molecules while neglects the vital roles of nonpharmacological moieties. Herein, we found that iso-carbon fatty acids with different number, position, and cis-trans configuration of double bonds dramatically affect the nanoassembly feature and drug delivery fates of thioether-linked paclitaxel prodrug-nanoassemblies. Particularly, the number and cis-trans configuration of double bonds in fatty acid moieties not only dominate the self-assembly ability and colloidal stability of prodrugs, but also exert significant influences on the pharmacokinetics, prodrug activation, and antitumor activity of prodrug-nanoassemblies. Finally, oleic acid with one cis double bond stands out as the optimal nonpharmacological moiety for thioether-linked paclitaxel prodrug-nanoassemblies. This study elucidates the crucial roles of nonpharmacological moieties in prodrugs, and provides new insights into the modular design of prodrug-based nanomedicines for cancer therapy.

Keywords: paclitaxel, small-molecule prodrug, self-assembly ability, nonpharmacological moiety, modular engineering, delivery fate

References(47)

[1]

Jiang, W.; Wang, Y. F.; Wargo, J. A.; Lang, F. F.; Kim, B. Y. S. Considerations for designing preclinical cancer immune nanomedicine studies. Nat. Nanotechnol. 2021, 16, 6–15.

[2]

Yang, F. J.; Zhao, Z. Q.; Sun, B. J.; Chen, Q.; Sun, J.; He, Z. G.; Luo, C. Nanotherapeutics for antimetastatic treatment. Trends Cancer 2020, 6, 645–659.

[3]

Wang, J.; Li, Y. Y.; Nie, G. J. Multifunctional biomolecule nanostructures for cancer therapy. Nat. Rev. Mater. 2021, 6, 766–783.

[4]

Xue, Y. E.; Che, J. Y.; Ji, X. M.; Li, Y. N.; Xie, J. B.; Chen, X. Y. Recent advances in biomaterial-boosted adoptive cell therapy. Chem. Soc. Rev. 2022, 51, 1766–1794.

[5]

Zhou, Y.; Tong, F.; Gu, W. L.; He, S. Q.; Yang, X. T.; Li, J. M.; Gao, Y. D.; Gao, H. L. Co-delivery of photosensitizer and diclofenac through sequentially responsive bilirubin nanocarriers for combating hypoxic tumors. Acta Pharm. Sin. B 2022, 12, 1416–1431.

[6]

Jiang, X. Y.; Fitch, S.; Wang, C.; Wilson, C.; Li, J. F.; Grant, G. A.; Yang, F. Nanoparticle engineered TRAIL-overexpressing adipose-derived stem cells target and eradicate glioblastoma via intracranial delivery. Proc. Natl. Acad. Sci. USA 2016, 113, 13857–13862.

[7]

Siegel, R. L.; Miller, K. D.; Fuchs, H. E.; Jemal, A. Cancer statistics, 2021. CA Cancer J. Clin. 2021, 71, 7–33.

[8]

Wang, Y. Q.; Luo, C.; Zhou, S.; Wang, X. H.; Zhang, X. B.; Li, S. M.; Zhang, S. W.; Wang, S.; Sun, B. J.; He, Z. G. et al. Investigating the crucial roles of aliphatic tails in disulfide bond-linked docetaxel prodrug nanoassemblies. Asian J. Pharm. Sci. 2021, 16, 643–652.

[9]

Sofias, A. M.; Dunne, M.; Storm, G.; Allen, C. The battle of “nano” paclitaxel. Adv. Drug Deliv. Rev. 2017, 122, 20–30.

[10]

Khalifa, A. M.; Elsheikh, M. A.; Khalifa, A. M.; Elnaggar, Y. S. R. Current strategies for different paclitaxel-loaded nano-delivery systems towards therapeutic applications for ovarian carcinoma: A review article. J. Control. Release 2019, 311–312, 125–137.

[11]

Wang, Y. Q.; Li, S. M.; Wang, X. H.; Chen, Q.; He, Z. G.; Luo, C.; Sun, J. Smart transformable nanomedicines for cancer therapy. Biomaterials 2021, 271, 120737.

[12]

Qin, Y.; Guo, Q.; Wu, S. J.; Huang, C. L.; Zhang, Z. M.; Zhang, L.; Zhang, L. H.; Zhu, D. W. LHRH/TAT dual peptides-conjugated polymeric vesicles for PTT enhanced chemotherapy to overcome hepatocellular carcinoma. Chin. Chem. Lett. 2020, 31, 3121–3126.

[13]

Zhang, T.; Xiong, H. G.; Ma, X. B.; Gao, Y.; Xue, P.; Kang, Y. J.; Sun, Z. J.; Xu, Z. G. Supramolecular tadalafil nanovaccine for cancer immunotherapy by alleviating myeloid-derived suppressor cells and heightening immunogenicity. Small Methods 2021, 5, 2100115.

[14]

Stater, E. P.; Sonay, A. Y.; Hart, C.; Grimm, J. The ancillary effects of nanoparticles and their implications for nanomedicine. Nat. Nanotechnol. 2021, 16, 1180–1194.

[15]

Peng, S. J.; Xiao, F. F.; Chen, M. W.; Gao, H. L. Tumor-microenvironment-responsive nanomedicine for enhanced cancer immunotherapy. Adv. Sci. 2022, 9, 2103836.

[16]

Zhang, J.; Chen, C.; Li, A. N.; Jing, W. Q.; Sun, P.; Huang, X. Y.; Liu, Y. C.; Zhang, S. C.; Du, W.; Zhang, R. et al. Immunostimulant hydrogel for the inhibition of malignant glioma relapse post-resection. Nat. Nanotechnol. 2021, 16, 538–548.

[17]

Liu, J.; Chen, C.; Wei, T.; Gayet, O.; Loncle, C.; Borge, L.; Dusetti, N.; Ma, X. W.; Marson, D.; Laurini, E. et al. Dendrimeric nanosystem consistently circumvents heterogeneous drug response and resistance in pancreatic cancer. Exploration 2021, 1, 21–34.

[18]

Huang, H.; Dong, C. H.; Chang, M. Q.; Ding, L.; Chen, L.; Feng, W.; Chen, Y. Mitochondria-specific nanocatalysts for chemotherapy-augmented sequential chemoreactive tumor therapy. Exploration 2021, 1, 50–60.

[19]

Wang, J. Y.; Wang, H.; Cui, H. Y.; Sun, P.; Yang, X.; Chen, Q. X. Circumvent PEGylation dilemma by implementing matrix metalloproteinase-responsive chemistry for promoted tumor gene therapy. Chin. Chem. Lett. 2020, 31, 3143–3148.

[20]

Zhang, X. B.; Xiong, J. C.; Wang, K. Y.; Yu, H.; Sun, B. J.; Ye, H.; Zhao, Z. Q.; Wang, N.; Wang, Y. Q.; Zhang, S. W. et al. Erythrocyte membrane-camouflaged carrier-free nanoassembly of FRET photosensitizer pairs with high therapeutic efficiency and high security for programmed cancer synergistic phototherapy. Bioact. Mater. 2021, 6, 2291–2302.

[21]

Yang, K. K.; Yang, Z. Q.; Yu, G. C.; Nie, Z. H.; Wang, R. B.; Chen, X. Y. Polyprodrug nanomedicines: An emerging paradigm for cancer therapy. Adv. Mater. 2022, 34, 2107434.

[22]

Zhang, S. W.; Wang, Y. Q.; Kong, Z. Q.; Zhang, X. B.; Sun, B. J.; Yu, H.; Chen, Q.; Luo, C.; Sun, J.; He, Z. G. Pure photosensitizer-driven nanoassembly with core-matched PEGylation for imaging-guided photodynamic therapy. Acta Pharm. Sin. B 2021, 11, 3636–3647.

[23]

Zhang, S. W.; Wang, Z. Y.; Kong, Z. Q.; Wang, Y. Q.; Zhang, X. B.; Sun, B. J.; Zhang, H. T.; Kan, Q. M.; He, Z. G.; Luo, C. et al. Photosensitizer-driven nanoassemblies of homodimeric prodrug for self-enhancing activation and synergistic chemo-photodynamic therapy. Theranostics 2021, 11, 6019–6032.

[24]
Syeda, M. Z.; Hong, T.; Zhang, M.; Han, Y. F.; Zhu, X. L.; Ying, S. M.; Tang, L. G. A prodrug nanoplatform via esterification of STING agonist and IDO inhibitor for synergistic cancer immunotherapy. Nano Res., in press, https://doi.org/10.1007/s12274-022-4598-6.
[25]

Li, S. M.; Shan, X. Z.; Wang, Y. Q.; Chen, Q.; Sun, J.; He, Z. G.; Sun, B. J.; Luo, C. Dimeric prodrug-based nanomedicines for cancer therapy. J. Control. Release 2020, 326, 510–522.

[26]

Yang, L.; Xu, J. X.; Xie, Z.; Song, F. Q.; Wang, X.; Tang, R. P. Carrier-free prodrug nanoparticles based on dasatinib and cisplatin for efficient antitumor in vivo. Asian J. Pharm. Sci. 2021, 16, 762–771.

[27]

Luo, C.; Sun, J.; Liu, D.; Sun, B. J.; Miao, L.; Musetti, S.; Li, J.; Han, X. P.; Du, Y. Q.; Li, L. et al. Self-assembled redox dual-responsive prodrug-nanosystem formed by single thioether-bridged paclitaxel-fatty acid conjugate for cancer chemotherapy. Nano Lett. 2016, 16, 5401–5408.

[28]

Han, H. J.; Li, S.; Zhong, Y. Y.; Huang, Y.; Wang, K.; Jin, Q.; Ji, J.; Yao, K. Emerging pro-drug and nano-drug strategies for gemcitabine-based cancer therapy. Asian J. Pharm. Sci. 2022, 17, 35–52.

[29]

Pei, Q.; Hu, X. L.; Zheng, X. H.; Xia, R.; Liu, S.; Xie, Z. G.; Jing, X. B. Albumin-bound paclitaxel dimeric prodrug nanoparticles with tumor redox heterogeneity-triggered drug release for synergistic photothermal/chemotherapy. Nano Res. 2019, 12, 877–887.

[30]

Li, G. T.; Sun, B. J.; Li, Y. Q.; Luo, C.; He, Z. G.; Sun, J. Small-molecule prodrug nanoassemblies: An emerging nanoplatform for anticancer drug delivery. Small 2021, 17, 2101460.

[31]

Tian, C. T.; Guo, J. J.; Miao, Y. F.; Zheng, S. Z.; Sun, B. J.; Sun, M. C.; Ye, Q.; Liu, W. X.; Zhou, S.; Kamei, K. I. et al. Triglyceride-mimetic structure-gated prodrug nanoparticles for smart cancer therapy. J. Med. Chem. 2021, 64, 15936–15948.

[32]

Zhang, A. M.; Hai, L.; Wang, T. Z.; Cheng, H.; Li, M.; He, X. X.; Wang, K. M. NIR-triggered drug delivery system based on phospholipid coated ordered mesoporous carbon for synergistic chemo-photothermal therapy of cancer cells. Chin. Chem. Lett. 2020, 31, 3158–3162.

[33]

Hunter, C. A. Quantifying intermolecular interactions: Guidelines for the molecular recognition toolbox. Angew. Chem., Int. Ed. 2004, 43, 5310–5324.

[34]

Xiao, Y.; Zhang, T.; Ma, X. B.; Yang, Q. C.; Yang, L. L.; Yang, S. C.; Liang, M. Y.; Xu, Z. G.; Sun, Z. J. Microenvironment-responsive prodrug-induced pyroptosis boosts cancer immunotherapy. Adv. Sci. 2021, 8, 2101840.

[35]

Tu, L.; Liao, Z. H.; Luo, Z.; Wu, Y. L.; Herrmann, A.; Huo, S. D. Ultrasound-controlled drug release and drug activation for cancer therapy. Exploration 2021, 1, 20210023.

[36]

Luo, C.; Sun, B. J.; Wang, C.; Zhang, X. B.; Chen, Y.; Chen, Q.; Yu, H.; Zhao, H. Q.; Sun, M. C.; Li, Z. B. et al. Self-facilitated ROS-responsive nanoassembly of heterotypic dimer for synergistic chemo-photodynamic therapy. J. Control. Release 2019, 302, 79–89.

[37]

Li, Y. N.; Mei, T.; Han, S. P.; Han, T.; Sun, Y. B.; Zhang, H.; An, F. F. Cathepsin B-responsive nanodrug delivery systems for precise diagnosis and targeted therapy of malignant tumors. Chin. Chem. Lett. 2020, 31, 3027–3040.

[38]

Sun, B. J.; Luo, C.; Zhang, X. B.; Guo, M. R.; Sun, M. C.; Yu, H.; Chen, Q.; Yang, W. Q.; Wang, M. L.; Zuo, S. Y. et al. Probing the impact of sulfur/selenium/carbon linkages on prodrug nanoassemblies for cancer therapy. Nat. Commun. 2019, 10, 3211.

[39]

Yang, Y. X.; Sun, B. J.; Zuo, S. Y.; Li, X. M.; Zhou, S.; Li, L. X.; Luo, C.; Liu, H. Z.; Cheng, M. S.; Wang, Y. J. et al. Trisulfide bond-mediated doxorubicin dimeric prodrug nanoassemblies with high drug loading, high self-assembly stability, and high tumor selectivity. Sci. Adv. 2020, 6, eabc1725.

[40]

Sun, B. J.; Luo, C.; Yu, H.; Zhang, X. B.; Chen, Q.; Yang, W. Q.; Wang, M. L.; Kan, Q. M.; Zhang, H. T.; Wang, Y. J. et al. Disulfide bond-driven oxidation- and reduction-responsive prodrug nanoassemblies for cancer therapy. Nano Lett. 2018, 18, 3643–3650.

[41]

An, H. W.; Mamuti, M.; Wang, X. F.; Yao, H. D.; Wang, M. D.; Zhao, L. N.; Li, L. L. Rationally designed modular drug delivery platform based on intracellular peptide self-assembly. Exploration 2021, 1, 20210153.

[42]

Ding, J. X.; Chen, J. J.; Gao, L. Q.; Jiang, Z. Y.; Zhang, Y.; Li, M. Q.; Xiao, Q. C.; Lee, S. S.; Chen, X. S. Engineered nanomedicines with enhanced tumor penetration. Nano Today 2019, 29, 100800.

[43]

Mura, S.; Nicolas, J.; Couvreur, P. Stimuli-responsive nanocarriers for drug delivery. Nat. Mater. 2013, 12, 991–1003.

[44]

He, C. L.; Zhuang, X. L.; Tang, Z. H.; Tian, H. Y.; Chen, X. S. Stimuli-sensitive synthetic polypeptide-based materials for drug and gene delivery. Adv. Healthc. Mater. 2012, 1, 48–78.

[45]

Wang, H. X.; Xie, H. Y.; Wang, J. G.; Wu, J. P.; Ma, X. J.; Li, L. L.; Wei, X. Y.; Ling, Q.; Song, P. H.; Zhou, L. et al. Self-assembling prodrugs by precise programming of molecular structures that contribute distinct stability, pharmacokinetics, and antitumor efficacy. Adv. Funct. Mater. 2015, 25, 4956–4965.

[46]

Li, S. M.; Yang, F. J.; Sun, X. X.; Wang, Y. Q.; Zhang, X. B.; Zhang, S. W.; Zhang, H. T.; Kan, Q. M.; Sun, J.; He, Z. G. et al. Precisely engineering a carrier-free hybrid nanoassembly for multimodal DNA damage-augmented photodynamic therapy. Chem. Eng. J. 2021, 426, 130838.

[47]

Yang, F. J.; Ji, Q. Y.; Liao, R.; Li, S. M.; Wang, Y. Q.; Zhang, X. B.; Zhang, S. W.; Zhang, H. T.; Kan, Q. M.; Sun, J. et al. Precisely engineering a dual-drug cooperative nanoassembly for proteasome inhibition-potentiated photodynamic therapy. Chin. Chem. Lett. 2022, 33, 1927–1932.

File
12274_2022_4819_MOESM1_ESM.pdf (2.9 MB)
12274_2022_4819_MOESM2_ESM.pdf (6.5 MB)
Publication history
Copyright
Acknowledgements

Publication history

Received: 28 June 2022
Revised: 20 July 2022
Accepted: 25 July 2022
Published: 26 August 2022
Issue date: January 2023

Copyright

© Tsinghua University Press 2022

Acknowledgements

Acknowledgements

This work was financially supported by Shenyang Youth Science and Technology Innovation Talents Program (No. RC210452), the Liaoning Revitalization Talents Program (No. XLYC1907129), the Excellent Youth Science Foundation of Liaoning Province (No. 2020-YQ-06), and the China Postdoctoral Science Foundation (Nos. 2020M670794 and 2021MD703858).

Return