Journal Home > Volume 15 , Issue 10

With the rapid development of the electronic industry and wireless communication technology, electromagnetic interference (EMI) or pollution has been increasingly serious. This not only severely endangers the normal operation of electronic equipment but also threatens human health. Therefore, it is urgent to develop high-performance EMI shielding materials. The advent of hydrogel-based materials has given EMI shields a novel option. Hydrogels combined with conductive functional materials have good mechanical flexibility, fatigue durability, and even high stretchability, which are beneficial for a wide range of applications, especially in EMI shielding and some flexible functional devices. Herein, the current progress of hydrogel-based EMI shields was reviewed, in the meanwhile, some novel studies about pore structure design that we believe will help advance the development of hydrogel-based EMI shielding materials were also included. In the outlook, we suggested some promising development directions for the hydrogel-based EMI shields, by which we hope to provide a reference for designing hydrogels with excellent EMI shielding performance and multifunctionalities.


menu
Abstract
Full text
Outline
About this article

Hydrogel-based composites beyond the porous architectures for electromagnetic interference shielding

Show Author's information Yunfei Yang1,§Mingrui Han1,§Wei Liu2,3Na Wu4( )Jiurong Liu1( )
Key Laboratory for Liquid-Solid Structural Evolution and Processing of Materials, School of Materials Science and Engineering, Shandong University, Jinan 250061, China
State Key Laboratory of Crystal Materials, Shandong University, Jinan 250100, China
Shenzhen research institute of Shandong University, Shenzhen 518052, China
Department of Chemistry and Applied Biosciences, ETH Zurich, Zurich CH-8093, Switzerland

§ Yunfei Yang and Mingrui Han contributed equally to this work.

Abstract

With the rapid development of the electronic industry and wireless communication technology, electromagnetic interference (EMI) or pollution has been increasingly serious. This not only severely endangers the normal operation of electronic equipment but also threatens human health. Therefore, it is urgent to develop high-performance EMI shielding materials. The advent of hydrogel-based materials has given EMI shields a novel option. Hydrogels combined with conductive functional materials have good mechanical flexibility, fatigue durability, and even high stretchability, which are beneficial for a wide range of applications, especially in EMI shielding and some flexible functional devices. Herein, the current progress of hydrogel-based EMI shields was reviewed, in the meanwhile, some novel studies about pore structure design that we believe will help advance the development of hydrogel-based EMI shielding materials were also included. In the outlook, we suggested some promising development directions for the hydrogel-based EMI shields, by which we hope to provide a reference for designing hydrogels with excellent EMI shielding performance and multifunctionalities.

Keywords: composites, structural design, hydrogels, porous, electromagnetic interference (EMI) shielding

References(122)

1

Thomassin, J. M.; Jérôme, C.; Pardoen, T.; Bailly, C.; Huynen, I.; Detrembleur, C. Polymer/carbon based composites as electromagnetic interference (EMI) shielding materials. Mater. Sci. Eng. R Rep. 2013, 74, 211–232.

2

Liu, J.; Zhang, H. B.; Sun, R. H.; Liu, Y. F.; Liu, Z. S.; Zhou, A. G.; Yu, Z. Z. Hydrophobic, flexible, and lightweight MXene foams for high-performance electromagnetic-interference shielding. Adv. Mater. 2017, 29, 1702367.

3

Cheng, Y.; Li, X. Y.; Qin, Y. X.; Fang, Y. T.; Liu, G. L.; Wang, Z. Y.; Matz, J.; Dong, P.; Shen, J. F.; Ye, M. X. Hierarchically porous polyimide/Ti3C2Tx film with stable electromagnetic interference shielding after resisting harsh conditions. Sci. Adv. 2021, 7, eabj1663.

4

Wu, N.; Zeng, Z. H.; Kummer, N.; Han, D. X.; Zenobi, R.; Nyström, G. Ultrafine cellulose nanofiber-assisted physical and chemical cross-linking of MXene sheets for electromagnetic interference shielding. Small Methods 2021, 5, 2100889.

5

Zeng, Z. H.; Wu, N.; Wei, J. J.; Yang, Y. F.; Wu, T. T.; Li, B.; Hauser, S. B.; Yang, W. D.; Liu, J. R.; Zhao, S. Y. Porous and ultra-flexible crosslinked MXene/polyimide composites for multifunctional electromagnetic interference shielding. Nano-Micro Lett. 2022, 14, 59.

6

Shi, S. W.; Qian, B. Q.; Wu, X. Y.; Sun, H. L.; Wang, H. Q.; Zhang, H. B.; Yu, Z. Z.; Russell, T. P. Self-assembly of MXene-surfactants at liquid–liquid interfaces: From structured liquids to 3D aerogels. Angew. Chem., Int. Ed. 2019, 58, 18171–18176.

7

Song, P.; Liang, C. B.; Wang, L.; Qiu, H.; Gu, H. B.; Kong, J.; Gu, J. W. Obviously improved electromagnetic interference shielding performances for epoxy composites via constructing honeycomb structural reduced graphene oxide. Compos. Sci. Technol. 2019, 181, 107698.

8

Chen, W.; Liu, L. X.; Zhang, H. B.; Yu, Z. Z. Kirigami-inspired highly stretchable, conductive, and hierarchical Ti3C2Tx MXene films for efficient electromagnetic interference shielding and pressure sensing. ACS Nano 2021, 15, 7668–7681.

9

Hu, P. Y.; Lyu, J.; Fu, C.; Gong, W. B.; Liao, J. H.; Lu, W. B.; Chen, Y. P.; Zhang, X. T. Multifunctional aramid nanofiber/carbon nanotube hybrid aerogel films. ACS Nano 2020, 14, 688–697.

10

Wei, Q. W.; Pei, S. F.; Qian, X. T.; Liu, H. P.; Liu, Z. B.; Zhang, W. M.; Zhou, T. Y.; Zhang, Z. C.; Zhang, X. F.; Cheng, H. M. et al. Superhigh electromagnetic interference shielding of ultrathin aligned pristine graphene nanosheets film. Adv. Mater. 2020, 32, 1907411.

11

Chen, Y. M.; Yang, Y.; Xiong, Y.; Zhang, L.; Xu, W. H.; Duan, G. G.; Mei, C. T.; Jiang, S. H.; Rui, Z. H.; Zhang, K. Porous aerogel and sponge composites: Assisted by novel nanomaterials for electromagnetic interference shielding. Nano Today 2021, 38, 101204.

12

Yang, R. L.; Gui, X. C.; Yao, L.; Hu, Q. M.; Yang, L. L.; Zhang, H.; Yao, Y. T.; Mei, H.; Tang, Z. K. Ultrathin, lightweight, and flexible CNT buckypaper enhanced using MXenes for electromagnetic interference shielding. Nano-Micro Lett. 2021, 13, 66.

13

Weng, G. M.; Li, J. Y.; Alhabeb, M.; Karpovich, C.; Wang, H.; Lipton, J.; Maleski, K.; Kong, J.; Shaulsky, E.; Elimelech, M. et al. Layer-by-Layer assembly of cross-functional semi-transparent MXene-carbon nanotubes composite films for next-generation electromagnetic interference shielding. Adv. Funct. Mater. 2018, 28, 1803360.

14

Kong, L.; Yin, X. W.; Xu, H. L.; Yuan, X. Y.; Wang, T.; Xu, Z. W.; Huang, J. F.; Yang, R.; Fan, H. Powerful absorbing and lightweight electromagnetic shielding CNTs/RGO composite. Carbon 2019, 145, 61–66.

15

Zhang, Y.; Huang, Y.; Zhang, T. F.; Chang, H. C.; Xiao, P. S.; Chen, H. H.; Huang, Z. Y.; Chen, Y. S. Broadband and tunable high-performance microwave absorption of an ultralight and highly compressible graphene foam. Adv. Mater. 2015, 27, 2049–2053.

16

Ma, T. B.; Ma, H.; Ruan, K. P.; Shi, X. T.; Qiu, H.; Gao, S. Y.; Gu, J. W. Thermally conductive poly(lactic acid) composites with superior electromagnetic shielding performances via 3D printing technology. Chin. J. Polym. Sci. 2022, 40, 248–255.

17

Zhang, Y. L.; Ma, Z. L.; Ruan, K. P.; Gu, J. W. Flexible Ti3C2Tx/(aramid nanofiber/PVA) composite films for superior electromagnetic interference shielding. Research 2022, 2022, 9780290.

18

Wang, L.; Ma, Z. L.; Zhang, Y. L.; Qiu, H.; Ruan, K. P.; Gu, J. W. Mechanically strong and folding-endurance Ti3C2Tx MXene/PBO nanofiber films for efficient electromagnetic interference shielding and thermal management. Carbon Energy 2022, 4, 200–210.

19

Zhang, Y. L.; Ruan, K. P.; Gu, J. W. Flexible sandwich-structured electromagnetic interference shielding nanocomposite films with excellent thermal conductivities. Small 2021, 17, 2101951.

20

Han, M. K.; Yin, X. W.; Hantanasirisakul, K.; Li, X. L.; Iqbal, A.; Hatter, C. B.; Anasori, B.; Koo, C. M.; Torita, T.; Soda, Y. et al. Anisotropic MXene aerogels with a mechanically tunable ratio of electromagnetic wave reflection to absorption. Adv. Opt. Mater. 2019, 7, 1900267.

21

Zeng, Z. H.; Wu, T. T.; Han, D. X.; Ren, Q.; Siqueira, G.; Nyströem, G. Ultralight, flexible, and biomimetic nanocellulose/silver nanowire aerogels for electromagnetic interference shielding. ACS Nano 2020, 14, 2927–2938.

22

Han, Y. X.; Ruan, K. P.; Gu, J. W. Janus (BNNS/ANF)-(AgNWs/ANF) thermal conductivity composite films with superior electromagnetic interference shielding and Joule heating performances. Nano Res. 2022, 15, 4747–4755.

23

Wang, L.; Ma, Z. L.; Zhang, Y. L.; Chen, L. X.; Cao, D. P.; Gu, J. W. Polymer-based EMI shielding composites with 3D conductive networks: A mini-review. SusMat 2021, 1, 413–431.

24
Zeng, Z. H.; Qiao, J.; Zhang, R. N.; Liu, J. R.; Nyström, G. Nanocellulose-assisted preparation of electromagnetic interference shielding materials with diversified microstructure. SmartMat, in press, https://doi.org/10.1002/smm2.1118.
25

Zhang, L. Q.; Yang, S. G.; Li, L.; Yang, B.; Huang, H. D.; Yan, D. X.; Zhong, G. J.; Xu, L.; Li, Z. M. Ultralight cellulose porous composites with manipulated porous structure and carbon nanotube distribution for promising electromagnetic interference shielding. ACS Appl. Mater. Interfaces 2018, 10, 40156–40167.

26

Chen, Y. W.; Zhang, H. Y.; Zeng, G. X. Tunable and high performance electromagnetic absorber based on ultralight 3D graphene foams with aligned structure. Carbon 2018, 140, 494–503.

27

Yang, Y. L.; Gupta, M. C.; Dudley, K. L.; Lawrence, R. W. Novel carbon nanotube-polystyrene foam composites for electromagnetic interference shielding. Nano Lett. 2005, 5, 2131–2134.

28

Chen, Y. A.; Pötschke, P.; Pionteck, J.; Voit, B.; Qi, H. S. Multifunctional cellulose/rGO/Fe3O4 composite aerogels for electromagnetic interference shielding. ACS Appl. Mater. Interfaces 2020, 12, 22088–22098.

29

Jaspers, M.; Rowan, A. E.; Kouwer, P. H. J. Tuning hydrogel mechanics using the hofmeister effect. Adv. Funct. Mater. 2015, 25, 6503–6510.

30

Sano, K.; Ishida, Y.; Aida, T. Synthesis of anisotropic hydrogels and their applications. Angew. Chem., Int. Ed. 2018, 57, 2532–2543.

31

Zhan, Z. Y.; Song, Q. C.; Zhou, Z. H.; Lu, C. H. Ultrastrong and conductive MXene/cellulose nanofiber films enhanced by hierarchical nano-architecture and interfacial interaction for flexible electromagnetic interference shielding. J. Mater. Chem. C 2019, 7, 9820–9829.

32

Zeng, Z. H.; Wang, C. X.; Wu, T. T.; Han, D. X.; Luković, M.; Pan, F.; Siqueira, G.; Nyström, G. Nanocellulose assisted preparation of ambient dried, large-scale and mechanically robust carbon nanotube foams for electromagnetic interference shielding. J. Mater. Chem. A 2020, 8, 17969–17979.

33

Hogg, D. C.; Guiraud, F. O. Microwave measurements of the absolute values of absorption by water vapour in the atmosphere. Nature 1979, 279, 408–409.

34

Buchner, R.; Barthel, J.; Stauber, J. The dielectric relaxation of water between 0 °C and 35 °C. Chem. Phys. Lett. 1999, 306, 57–63.

35

Garner, H. R.; Ohkawa, T.; Tuason, O.; Lee, R. L. Microwave absorption in substances that form hydration layers with water. Phys. Rev. A 1990, 42, 7264–7270.

36

Zhu, M.; Yan, X. X.; Xu, H. L.; Xu, Y. J.; Kong, L. Ultralight, compressible, and anisotropic MXene@wood nanocomposite aerogel with excellent electromagnetic wave shielding and absorbing properties at different directions. Carbon 2021, 182, 806–814.

37

Zeng, Z. H.; Jin, H.; Chen, M. J.; Li, W. W.; Zhou, L. C.; Zhang, Z. Lightweight and anisotropic porous MWCNT/WPU composites for ultrahigh performance electromagnetic interference shielding. Adv. Funct. Mater. 2016, 26, 303–310.

38

Song, P.; Qiu, H.; Wang, L.; Liu, X. Y.; Zhang, Y. L.; Zhang, J. L.; Kong, J.; Gu, J. W. Honeycomb structural rGO-MXene/epoxy nanocomposites for superior electromagnetic interference shielding performance. Sustain. Mater. Technol. 2020, 24, e00153.

39

Liu, X. M.; Liu, H. Q.; Xu, H. L.; Xie, W. J.; Li, M. H.; Liu, J. X.; Liu, G. Q.; Weidenkaff, A.; Riedel, R. Natural wood templated hierarchically cellular NbC/pyrolytic carbon foams as stiff, lightweight and high-performance electromagnetic shielding materials. J. Colloid Interf. Sci. 2022, 606, 1543–1553.

40

Zeng, Z. H.; Jin, H.; Chen, M. J.; Li, W. W.; Zhou, L. C.; Xue, X.; Zhang, Z. Microstructure design of lightweight, flexible, and high electromagnetic shielding porous multiwalled carbon nanotube/polymer composites. Small 2017, 13, 1701388.

41

Zhang, Y. S.; Khademhosseini, A. Advances in engineering hydrogels. Science 2017, 356, eaaf3627.

42

Seliktar, D. Designing cell-compatible hydrogels for biomedical applications. Science 2012, 336, 1124–1128.

43

Andryieuski, A.; Kuznetsova, S. M.; Zhukovsky, S. V.; Kivshar, Y. S.; Lavrinenko, A. V. Water: Promising opportunities for tunable all-dielectric electromagnetic metamaterials. Sci. Rep. 2015, 5, 13535.

44

King, G. W.; Hainer, R. M.; Cross, P. C. Expected microwave absorption coefficients of water and related molecules. Phys. Rev. 1947, 71, 433–443.

45

Ahmed, E. M. Hydrogel: Preparation, characterization, and applications: A review. J. Adv. Res. 2015, 6, 105–121.

46

Zainal, S. H.; Mohd, N. H.; Suhaili, N.; Anuar, F. H.; Lazim, A. M.; Othaman, R. Preparation of cellulose-based hydrogel: A review. J. Mater. Res. Technol. 2021, 10, 935–952.

47

Hamedi, H.; Moradi, S.; Hudson, S. M.; Tonelli, A. E. Chitosan based hydrogels and their applications for drug delivery in wound dressings: A review. Carbohydr. Polym. 2018, 199, 445–460.

48

Thoniyot, P.; Tan, M. J.; Karim, A. A.; Young, D. J.; Loh, X. J. Nanoparticle-hydrogel composites: Concept, design, and applications of these promising, multi-functional materials. Adv. Sci. 2015, 2, 1400010.

49

Wang, L. R.; Xu, T. L.; Zhang, X. J. Multifunctional conductive hydrogel-based flexible wearable sensors. TrAC-Trend. Anal. Chem. 2021, 134, 116130.

50

Distler, T.; Boccaccini, A. R. 3D printing of electrically conductive hydrogels for tissue engineering and biosensors—A review. Acta Biomater. 2020, 101, 1–13.

51

Timofejeva, A.; D’Este, M.; Loca, D. Calcium phosphate/polyvinyl alcohol composite hydrogels: A review on the freeze-thawing synthesis approach and applications in regenerative medicine. Eur. Polym. J. 2017, 95, 547–565.

52

Zhang, Y.; Cremer, P. S. Interactions between macromolecules and ions: The Hofmeister series. Curr. Opin. Chem. Biol. 2006, 10, 658–663.

53

Hao, M. M.; Wang, Y. F.; Li, L. H.; Lu, Q. F.; Sun, F. Q.; Li, L. L.; Yang, X. Q.; Li, Y.; Liu, M. Y.; Feng, S. J. et al. Stretchable multifunctional hydrogels for sensing electronics with effective EMI shielding properties. Soft Matter 2021, 17, 9057–9065.

54

Hu, W. K.; Wang, Z. J.; Xiao, Y.; Zhang, S. M.; Wang, J. L. Advances in crosslinking strategies of biomedical hydrogels. Biomater. Sci. 2019, 7, 843–855.

55

Lai, D. G.; Chen, X. X.; Wang, G.; Xu, X. H.; Wang, Y. Arbitrarily reshaping and instantaneously self-healing graphene composite hydrogel with molecule polarization-enhanced ultrahigh electromagnetic interference shielding performance. Carbon 2022, 188, 513–522.

56

Wan, S. J.; Li, X.; Wang, Y. L.; Chen, Y.; Xie, X.; Yang, R.; Tomsia, A. P.; Jiang, L.; Cheng, Q. F. Strong sequentially bridged MXene sheets. Proc. Natl. Acad. Sci. USA 2020, 117, 27154–27161.

57

Zhu, Y. Y.; Liu, J.; Guo, T.; Wang, J. J.; Tang, X. Z.; Nicolosi, V. Multifunctional Ti3C2Tx MXene composite hydrogels with strain sensitivity toward absorption-dominated electromagnetic-interference shielding. ACS Nano 2021, 15, 1465–1474.

58
Bai, Y.; Bi, S. H.; Wang, W. K.; Ding, N.; Lu, Y. Y.; Jiang, M. Y.; Ding, C. B.; Zhao, W. W.; Liu, N.; Bian, J. et al. Biocompatible, stretchable, and compressible cellulose/MXene hydrogel for strain sensor and electromagnetic interference shielding. Soft Mater., in press, https://doi.org/10.1080/1539445X.2022.2081580.
59

Udoetok, I. A.; Dimmick, R. M.; Wilson, L. D.; Headley, J. V. Adsorption properties of cross-linked cellulose-epichlorohydrin polymers in aqueous solution. Carbohydr. Polym. 2016, 136, 329–340.

60

Wu, S. Q.; Chen, D. M.; Han, W. B.; Xie, Y. S.; Zhao, G. D.; Dong, S.; Tan, M. Y.; Huang, H.; Xu, S. B.; Chen, G. Q. et al. Ultralight and hydrophobic MXene/chitosan-derived hybrid carbon aerogel with hierarchical pore structure for durable electromagnetic interference shielding and thermal insulation. Chem. Eng. J. 2022, 446, 137093.

61

Zhao, X.; Guo, D. M.; An, Q. D.; Bo, S. F.; Xiao, Z. Y.; Cai, W. J.; Wang, H. S.; Zhai, S. R.; Li, Z. C. Hierarchical nitrogen/cobalt co-doped carbonaceous materials with electromagnetic waves absorption promoting nanostructures. J. Alloys Compd. 2020, 822, 153666.

62

Xu, X. W.; Jerca, V. V.; Hoogenboom, R. Bioinspired double network hydrogels: From covalent double network hydrogels via hybrid double network hydrogels to physical double network hydrogels. Mater. Horiz. 2021, 8, 1173–1188.

63

Wu, S. W.; Hua, M. T.; Alsaid, Y.; Du, Y. J.; Ma, Y. F.; Zhao, Y. S.; Lo, C. Y.; Wang, C. R.; Wu, D.; Yao, B. W. et al. Poly(vinyl alcohol) hydrogels with broad-range tunable mechanical properties via the hofmeister effect. Adv. Mater. 2021, 33, 2007829.

64

Chen, J. W.; Wang, J. W.; Ji, K. Y.; Jiang, B.; Cui, X.; Sha, W.; Wang, B. J.; Dai, X. H.; Hua, Q. L.; Wan, L. Y. et al. Flexible, stretchable, and transparent InGaN/GaN multiple quantum wells/polyacrylamide hydrogel-based light emitting diodes. Nano Res. 2022, 15, 5492–5499.

65

Zou, J.; Wu, S. Q.; Chen, J.; Lei, X. J.; Li, Q. H.; Yu, H.; Tang, S.; Ye, D. D. Highly efficient and environmentally friendly fabrication of robust, programmable, and biocompatible anisotropic, all-cellulose, wrinkle-patterned hydrogels for cell alignment. Adv. Mater. 2019, 31, 1904762.

66

Zeng, Z. H.; Chen, M. J.; Pei, Y. M.; Shahabadi, S. I. S.; Che, B. Y.; Wang, P. Y.; Lu, X. H. Ultralight and flexible polyurethane/silver nanowire nanocomposites with unidirectional pores for highly effective electromagnetic shielding. ACS Appl. Mater. Interfaces 2017, 9, 32211–32219.

67

Zhou, Q. Y.; Lyu, J.; Wang, G.; Robertson, M.; Qiang, Z.; Sun, B.; Ye, C. H.; Zhu, M. F. Mechanically strong and multifunctional hybrid hydrogels with ultrahigh electrical conductivity. Adv. Funct. Mater. 2021, 31, 2104536.

68

Yang, W. X.; Shao, B. W.; Liu, T. Y.; Zhang, Y. Y.; Huang, R.; Chen, F.; Fu, Q. Robust and mechanically and electrically self-healing hydrogel for efficient electromagnetic interference shielding. ACS Appl. Mater. Interfaces 2018, 10, 8245–8257.

69

Zeng, Z. H.; Wang, C. X.; Siqueira, G.; Han, D. X.; Huch, A.; Abdolhosseinzadeh, S.; Heier, J.; Nüesch, F.; Zhang, C. F.; Nyström, G. Nanocellulose-MXene biomimetic aerogels with orientation-tunable electromagnetic interference shielding performance. Adv. Sci. 2020, 7, 2000979.

70
Wei, J. J.; Zhu, C. L.; Zeng, Z. H.; Pan, F.; Wan, F. Q.; Lei, L. W.; Nyström, G.; Fu, Z. Y. Bioinspired cellulose-integrated MXene-based hydrogels for multifunctional sensing and electromagnetic interference shielding. Interdiscip. Mater., in press, https://doi.org/10.1002/idm2.12026.
71

Yu, Y. H.; Yi, P.; Xu, W. B.; Sun, X.; Deng, G.; Liu, X. F.; Shui, J. L.; Yu, R. H. Environmentally tough and stretchable MXene organohydrogel with exceptionally enhanced electromagnetic interference shielding performances. Nano-Micro Lett. 2022, 14, 77.

72

Lu, B. Y.; Yuk, H.; Lin, S. T.; Jian, N. N.; Qu, K.; Xu, J. K.; Zhao, X. H. Pure PEDOT: PSS hydrogels. Nat. Commun. 2019, 10, 1043.

73

Sarkar, B.; Li, X. D.; Quenneville, E.; Carignan, L. P.; Wu, K.; Cicoira, F. Lightweight and flexible conducting polymer sponges and hydrogels for electromagnetic interference shielding. J. Mater. Chem. C 2021, 9, 16558–16565.

74

Feig, V. R.; Tran, H.; Lee, M.; Bao, Z. A. Mechanically tunable conductive interpenetrating network hydrogels that mimic the elastic moduli of biological tissue. Nat. Commun. 2018, 9, 2740.

75

Wang, J.; Li, Q.; Li, K. C.; Sun, X.; Wang, Y. Z.; Zhuang, T. T.; Yan, J. J.; Wang, H. Ultra-high electrical conductivity in filler-free polymeric hydrogels toward thermoelectrics and electromagnetic interference shielding. Adv. Mater. 2022, 34, e2109904.

76

Liu, J.; McKeon, L.; Garcia, J.; Pinilla, S.; Barwich, S.; Möbius, M.; Stamenov, P.; Coleman, J. N.; Nicolosi, V. Additive manufacturing of Ti3C2-MXene-functionalized conductive polymer hydrogels for electromagnetic-interference shielding. Adv. Mater. 2022, 34, 2106253.

77

Chen, Z.; Chen, Y. J.; Hedenqvist, M. S.; Chen, C.; Cai, C.; Li, H.; Liu, H. Z.; Fu, J. Multifunctional conductive hydrogels and their applications as smart wearable devices. J. Mater. Chem. B 2021, 9, 2561–2583.

78

Zhang, W.; Feng, P.; Chen, J.; Sun, Z. M.; Zhao, B. X. Electrically conductive hydrogels for flexible energy storage systems. Prog. Polym. Sci. 2019, 88, 220–240.

79

Huang, X.; Wang, L. B.; Shen, Z. H.; Ren, J. F.; Chen, G. X.; Li, Q. F.; Zhou, Z. Super-stretchable and self-healing hydrogel with a three-dimensional silver nanowires network structure for wearable sensor and electromagnetic interference shielding. Chem. Eng. J. 2022, 446, 137136.

80

Xiang, M.; Niu, H. W.; Qin, S.; Yang, R. M.; Lin, W.; Zhou, S. L.; Yang, Z.; Dong, S. Modification of graphene by polypyrrole and ionic liquids for dual-band electromagnetic interference shielding hydrogels. J. Mater. Sci. 2022, 57, 10983–10996.

81

Guo, Z. Y.; Li, Y. Y.; Jin, P.; Zhang, T. T.; Zhao, Y. B.; Ai, Y. Q.; Xiu, H.; Zhang, Q.; Fu, Q. Poly(vinyl alcohol)/MXene biomimetic aerogels with tunable mechanical properties and electromagnetic interference shielding performance controlled by pore structure. Polymer 2021, 230, 124101.

82

Wang, X. H.; Bao, S.; Hu, F. Y.; Shang, S. Y.; Chen, Y. Q.; Zhao, N.; Zhang, R.; Zhao, B.; Fan, B. B. The effect of honeycomb pore size on the electromagnetic interference shielding performance of multifunctional 3D honeycomb-like Ag/Ti3C2Tx hybrid structures. Ceram. Int. 2022, 48, 16892–16900.

83

Yang, X. T.; Fan, S. G.; Li, Y.; Guo, Y. Q.; Li, Y. G.; Ruan, K. P.; Zhang, S. M.; Zhang, J. L.; Kong, J.; Gu, J. W. Synchronously improved electromagnetic interference shielding and thermal conductivity for epoxy nanocomposites by constructing 3D copper nanowires/thermally annealed graphene aerogel framework. Compos. Part A Appl. Sci. Manuf. 2020, 128, 105670.

84

Liang, C. L.; Qiu, H.; Han, Y. Y.; Gu, H. B.; Song, P.; Wang, L.; Kong, J.; Cao, D. P.; Gu, J. W. Superior electromagnetic interference shielding 3D graphene nanoplatelets/reduced graphene oxide foam/epoxy nanocomposites with high thermal conductivity. J. Mater. Chem. C 2019, 7, 2725–2733.

85

Liang, C. B.; Qiu, H.; Song, P.; Shi, X. T.; Kong, J.; Gu, J. W. Ultra-light MXene aerogel/wood-derived porous carbon composites with wall-like “mortar/brick” structures for electromagnetic interference shielding. Sci. Bull. 2020, 65, 616–622.

86

Yu, Z.; Dai, T. W.; Yuan, S. W.; Zou, H. W.; Liu, P. B. Electromagnetic interference shielding performance of anisotropic polyimide/graphene composite aerogels. ACS Appl. Mater. Interfaces 2020, 12, 30990–31001.

87

Sambyal, P.; Iqbal, A.; Hong, J.; Kim, H.; Kim, M. K.; Hong, S. M.; Han, M. K.; Gogotsi, Y.; Koo, C. M. Ultralight and mechanically robust Ti3C2Tx hybrid aerogel reinforced by carbon nanotubes for electromagnetic interference shielding. ACS Appl. Mater. Interfaces 2019, 11, 38046–38054.

88

Fu, P. P.; Huan, X. H.; Luo, J. T.; Ren, S. J.; Jia, X. L.; Yang, X. P. Magnetically aligned Fe3O4 nanowires-reduced graphene oxide for gas barrier, microwave absorption, and EMI shielding. ACS Appl. Nano Mater. 2020, 3, 9340–9355.

89

Pan, D.; Yang, G.; Abo-Dief, H. M.; Dong, J. W.; Su, F. M.; Liu, C. T.; Li, Y. F.; Xu, B. B.; Murugadoss, V.; Naik, N. et al. Vertically aligned silicon carbide nanowires/boron nitride cellulose aerogel networks enhanced thermal conductivity and electromagnetic absorbing of epoxy composites. Nano-Micro Lett. 2022, 14, 118.

90

Zhang, Y.; Xu, M. K.; Wang, Z. G.; Zhao, T. Y.; Liu, L. X.; Zhang, H. B.; Yu, Z. Z. Strong and conductive reduced graphene oxide-MXene porous films for efficient electromagnetic interference shielding. Nano Res. 2022, 15, 4916–4924.

91

Li, X. H.; Liu, P. F.; Li, X. F.; An, F.; Min, P.; Liao, K. N.; Yu, Z. Z. Vertically aligned, ultralight and highly compressive all-graphitized graphene aerogels for highly thermally conductive polymer composites. Carbon 2018, 140, 624–633.

92

Li, M. M.; Han, F. Y.; Jiang, S.; Zhang, M. L.; Xu, Q. Y.; Zhu, J. H.; Ge, A. X.; Liu, L. F. Lightweight cellulose nanofibril/reduced graphene oxide aerogels with unidirectional pores for efficient electromagnetic interference shielding. Adv. Mater. Interfaces 2021, 8, 2101437.

93

Wu, X. Y.; Han, B. Y.; Zhang, H. B.; Xie, X.; Tu, T. X.; Zhang, Y.; Dai, Y.; Yang, R.; Yu, Z. Z. Compressible, durable and conductive polydimethylsiloxane-coated MXene foams for high-performance electromagnetic interference shielding. Chem. Eng. J. 2020, 381, 122622.

94

Chithra, A.; Wilson, P.; Vijayan, S.; Rajeev, R.; Prabhakaran, K. Carbon foams with low thermal conductivity and high EMI shielding effectiveness from sawdust. Ind. Crops. Prod. 2020, 145, 112076.

95

Li, M. Z.; Jia, L. C.; Zhang, X. P.; Yan, D. X.; Zhang, Q. C.; Li, Z. M. Robust carbon nanotube foam for efficient electromagnetic interference shielding and microwave absorption. J. Colloid Interf. Sci. 2018, 530, 113–119.

96

Munier, P.; Gordeyeva, K.; Bergström, L.; Fall, A. B. Directional freezing of nanocellulose dispersions aligns the rod-like particles and produces low-density and robust particle networks. Biomacromolecules 2016, 17, 1875–1881.

97

Zhang, H. F.; Hussain, I.; Brust, M.; Butler, M. F.; Rannard, S. P.; Cooper, A. I. Aligned two-and three-dimensional structures by directional freezing of polymers and nanoparticles. Nat. Mater. 2005, 4, 787–793.

98

Kuang, J.; Liu, L. Q.; Gao, Y.; Zhou, D.; Chen, Z.; Han, B. H.; Zhang, Z. A hierarchically structured graphene foam and its potential as a large-scale strain-gauge sensor. Nanoscale 2013, 5, 12171–12177.

99

Xu, Y. D.; Lin, Z. Q.; Yang, Y. Q.; Duan, H. J.; Zhao, G. Z.; Liu, Y. Q.; Hu, Y. G.; Sun, R.; Wong, C. P. Integration of efficient microwave absorption and shielding in a multistage composite foam with progressive conductivity modular design. Mater. Horiz. 2022, 9, 708–719.

100

Zhao, B.; Bai, P. W.; Wang, S.; Ji, H. Y.; Fan, B. B.; Zhang, R.; Che, R. C. High-performance joule heating and electromagnetic shielding properties of anisotropic carbon scaffolds. ACS Appl. Mater. Interfaces 2021, 13, 29101–29112.

101

Xiong, Z. C.; Zhu, Y. J.; Wang, Z. Y.; Chen, Y. Q.; Yu, H. P. Tree-inspired ultralong hydroxyapatite nanowires-based multifunctional aerogel with vertically aligned channels for continuous flow catalysis, water disinfection, and solar energy-driven water purification. Adv. Funct. Mater. 2022, 32, 2106978.

102

Zeng, Z. H.; Mavrona, E.; Sacré, D.; Kummer, N.; Cao, J. M.; Mueller, L. A. E.; Hack, E.; Zolliker, P.; Nyström, G. Terahertz birefringent biomimetic aerogels based on cellulose nanofibers and conductive nanomaterials. ACS Nano 2021, 15, 7451–7462.

103

Bian, R. J.; He, G. L.; Zhi, W. Q.; Xiang, S. L.; Wang, T. W.; Cai, D. Y. Ultralight MXene-based aerogels with high electromagnetic interference shielding performance. J. Mater. Chem. C 2019, 7, 474–478.

104

Chen, Y. M.; Zhang, L.; Mei, C. T.; Li, Y.; Duan, G. G.; Agarwal, S.; Greiner, A.; Ma, C. X.; Jiang, S. H. Wood-inspired anisotropic cellulose nanofibril composite sponges for multifunctional applications. ACS Appl. Mater. Interfaces 2020, 12, 35513–35522.

105

Jin, L. Y.; Wang, P.; Cao, W. J.; Song, N.; Ding, P. Isolated solid wall-assisted thermal conductive performance of three-dimensional anisotropic MXene/graphene polymeric composites. ACS Appl. Mater. Interfaces 2021, 14, 1747–1756.

106

Li, X. H.; Li, X. F.; Liao, K. N.; Min, P.; Liu, T.; Dasari, A.; Yu, Z. Z. Thermally annealed anisotropic graphene aerogels and their electrically conductive epoxy composites with excellent electromagnetic interference shielding efficiencies. ACS Appl. Mater. Interfaces 2016, 8, 33230–33239.

107

Tetik, H.; Orangi, J.; Yang, G.; Zhao, K. R.; Bin Mujib, S.; Singh, G.; Beidaghi, M.; Lin, D. 3D printed MXene aerogels with truly 3D macrostructure and highly engineered microstructure for enhanced electrical and electrochemical performance. Adv. Mater. 2022, 34, 2104980.

108

Song, J. W.; Chen, C. J.; Yang, Z.; Kuang, Y. D.; Li, T.; Li, Y. J.; Huang, H.; Kierzewski, I.; Liu, B. Y.; He, S. M. et al. Highly compressible, anisotropic aerogel with aligned cellulose nanofibers. ACS Nano 2018, 12, 140–147.

109

Yuan, Y.; Sun, X. X.; Yang, M. L.; Xu, F.; Lin, Z. S.; Zhao, X.; Ding, Y. J.; Li, J. J.; Yin, W. L.; Peng, Q. Y. et al. Stiff, thermally stable and highly anisotropic wood-derived carbon composite monoliths for electromagnetic interference shielding. ACS Appl. Mater. Interfaces 2017, 9, 21371–21381.

110

Zhao, S.; Zhang, H. B.; Luo, J. Q.; Wang, Q. W.; Xu, B.; Hong, S.; Yu, Z. Z. Highly electrically conductive three-dimensional Ti3C2Tx MXene/reduced graphene oxide hybrid aerogels with excellent electromagnetic interference shielding performances. ACS Nano 2018, 12, 11193–11202.

111

Huang, S.; Wang, L.; Li, Y. C.; Liang, C. B.; Zhang, J. L. Novel Ti3C2Tx MXene/epoxy intumescent fire-retardant coatings for ancient wooden architectures. J. Appl. Polym. Sci. 2021, 138, 50649.

112

Gao, W. W.; Zhao, N. F.; Yu, T.; Xi, J. B.; Mao, A. R.; Yuan, M. Q.; Bai, H.; Gao, C. High-efficiency electromagnetic interference shielding realized in nacre-mimetic graphene/polymer composite with extremely low graphene loading. Carbon 2020, 157, 570–577.

113

Song, P.; Ma, Z. L.; Qiu, H.; Ru, Y. F.; Gu, J. W. High-efficiency electromagnetic interference shielding of rGO@FeNi/epoxy composites with regular honeycomb structures. Nano-Micro Lett. 2022, 14, 51.

114
Liu, P. B.; Wang, Y.; Zhang, G. Z.; Huang, Y.; Zhang, R. X.; Liu, X. H.; Zhang, X. F.; Che, R. C. Hierarchical engineering of double-shelled nanotubes toward hetero-interfaces induced polarization and microscale magnetic interaction. Adv. Funct. Mater., in press, https://doi.org/10.1002/adfm.202202588.
115

Li, C.; Qi, X. S.; Gong, X.; Peng, Q.; Chen, Y. L.; Xie, R.; Zhong, W. Magnetic-dielectric synergy and interfacial engineering to design yolk–shell structured CoNi@void@C and CoNi@void@C@MoS2 nanocomposites with tunable and strong wideband microwave absorption. Nano Res. 2022, 15, 6761–6771.

116

Liu, P. B.; Gao, S.; Zhang, G. Z.; Huang, Y.; You, W. B.; Che, R. C. Hollow engineering to Co@N-doped carbon nanocages via synergistic protecting-etching strategy for ultrahigh microwave absorption. Adv. Funct. Mater. 2021, 31, 2102812.

117

Li, C.; Li, Z. H.; Qi, X. S.; Gong, X.; Chen, Y. L.; Peng, Q.; Deng, C. Y.; Jing, T.; Zhong, W. A generalizable strategy for constructing ultralight three-dimensional hierarchical network heterostructure as high-efficient microwave absorber. J. Colloid Interface Sci. 2022, 605, 13–22.

118

Zeng, Z. H.; Wang, C. X.; Zhang, Y. F.; Wang, P. Y.; Shahabadi, S. I. S.; Pei, Y. M.; Chen, M. J.; Lu, X. H. Ultralight and highly elastic graphene/lignin-derived carbon nanocomposite aerogels with ultrahigh electromagnetic interference shielding performance. ACS Appl. Mater. Interfaces 2018, 10, 8205–8213.

119

Fei, Y.; Liang, M.; Yan, L. W.; Chen, Y.; Zou, H. W. Co/C@cellulose nanofiber aerogel derived from metal-organic frameworks for highly efficient electromagnetic interference shielding. Chem. Eng. J. 2020, 392, 124815.

120

Wang, L.; Song, P.; Lin, C. T.; Kong, J.; Gu, J. W. 3D shapeable, superior electrically conductive cellulose nanofibers/Ti3C2Tx MXene aerogels/epoxy nanocomposites for promising EMI shielding. Research 2020, 2020, 4093732.

121

Xu, H. X.; Zhang, G. Z.; Wang, Y.; Ning, M. Q.; Ouyang, B.; Zhao, Y.; Huang, Y.; Liu, P. B. Size-dependent oxidation-induced phase engineering for MOFs derivatives via spatial confinement strategy toward enhanced microwave absorption. Nano-Micro Lett. 2022, 14, 102.

122

Zhang, J. J.; Qi, X. S.; Gong, X.; Peng, Q.; Chen, Y. L.; Xie, R.; Zhong, W. Microstructure optimization of core@shell structured MSe2/FeSe2@MoSe2 (M = Co, Ni) flower-like multicomponent nanocomposites towards high-efficiency microwave absorption. J. Mater. Sci. Technol. 2022, 128, 59–70.

Publication history
Copyright
Acknowledgements
Rights and permissions

Publication history

Received: 21 June 2022
Revised: 19 July 2022
Accepted: 24 July 2022
Published: 18 August 2022
Issue date: October 2022

Copyright

© The Author(s) 2022

Acknowledgements

Acknowledgements

This work was supported by the Provincial Key Research and Development Program of Shandong (Nos. 2019JZZY010312 and 2021ZLGX01), New 20 Funded Programs for Universities of Jinan (No. 2021GXRC036), and Shenzhen municipal special fund for guiding local scientific and technological development (No. China 2021Szvup071).

Rights and permissions

Open Access This article is licensed under a Creative Commons Attribution 4.0 International License, which permits use, sharing, adaptation, distribution and reproduction in any medium or format, as long as you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons licence, and indicate if changes were made.

The images or other third party material in this article are included in the article’s Creative Commons licence, unless indicated otherwise in a credit line to the material. If material is not included in the article’s Creative Commons licence and your intended use is not permitted by statutory regulation or exceeds the permitted use, you will need to obtain permission directly from the copyright holder.

To view a copy of this licence, visit http://creativecommons.org/licenses/by/4.0/.

Return