Journal Home > Volume 15 , Issue 10

Methicillin-resistant Staphylococcus aureus (MRSA) has become a rising clinical problem as its occurrence has increased due to the overuse and misuse of antibiotics. In this work, upconversion nanoparticles@AgBiS2 core–shell were produced with enhanced photothermal transformation efficiency and ability to produce reactive oxygen species for synergistic photodynamic photothermal and photodynamic antibacterial performance. The nanoparticles exhibit good antibacterial effects in vitro and satisfactory therapeutic performance on healing MRSA-infected wounds in vivo experiments. RNA-sequencing technique has been used to investigate and reveal that photothermal–photodynamic therapy using the nanoparticles can interfere with metabolic processes such as galactose metabolism in MRSA bacteria, destroy the transport system on the surface of MRSA, and affect quorum sensing to hinder the formation of biofilms to achieve effective antibacterial efficacy. It was demonstrated that this work presents an alternative near-infrared photoactive multimodal nanostructure for antibacterial applications.


menu
Abstract
Full text
Outline
Electronic supplementary material
About this article

Antibacterial mechanism and transcriptomic analysis of a near-infrared triggered upconversion nanoparticles@AgBiS2 for synergetic bacteria-infected therapy

Show Author's information Shi Chen1,§Zhaoyou Chu2,§Limian Cao1,§Lingling Xu2( )Qianqian Jin2Nian Liu1Benjin Chen2Ming Fang1Wanni Wang2Haisheng Qian2( )Min Shao1( )
Department of Critical Care Medicine, The First Affiliated Hospital of Anhui Medical University, Hefei 230032, China
School of Biomedical Engineering, Research and Engineering Center of Biomedical Materials, Anhui Provincial Institute of Translational Medicine, Anhui Medical University, Hefei 230032, China

§ Shi Chen, Zhaoyou Chu, and Limian Cao contributed equally to this work.

Abstract

Methicillin-resistant Staphylococcus aureus (MRSA) has become a rising clinical problem as its occurrence has increased due to the overuse and misuse of antibiotics. In this work, upconversion nanoparticles@AgBiS2 core–shell were produced with enhanced photothermal transformation efficiency and ability to produce reactive oxygen species for synergistic photodynamic photothermal and photodynamic antibacterial performance. The nanoparticles exhibit good antibacterial effects in vitro and satisfactory therapeutic performance on healing MRSA-infected wounds in vivo experiments. RNA-sequencing technique has been used to investigate and reveal that photothermal–photodynamic therapy using the nanoparticles can interfere with metabolic processes such as galactose metabolism in MRSA bacteria, destroy the transport system on the surface of MRSA, and affect quorum sensing to hinder the formation of biofilms to achieve effective antibacterial efficacy. It was demonstrated that this work presents an alternative near-infrared photoactive multimodal nanostructure for antibacterial applications.

Keywords: photodynamic therapy, photothermal therapy, anti-methicillin-resistant Staphylococcus aureus (MRSA), RNA-sequencing, transcriptomic analysis

References(60)

1

Grundmann, H.; Aires-de-Sousa, M.; Boyce, J.; Tiemersma, E. Emergence and resurgence of meticillin-resistant Staphylococcus aureus as a public-health threat. Lancet 2006, 368, 874–885.

2

Wang, W. S.; Li, B. L.; Yang, H. L.; Lin, Z. F.; Chen, L. L.; Li, Z.; Ge, J. Y.; Zhang, T.; Xia, H.; Li, L. H. et al. Efficient elimination of multidrug-resistant bacteria using copper sulfide nanozymes anchored to graphene oxide nanosheets. Nano Res. 2020, 13, 2156–2164.

3

Turner, N. A.; Sharma-Kuinkel, B. K.; Maskarinec, S. A.; Eichenberger, E. M.; Shah, P. P.; Carugati, M.; Holland, T. L.; Fowler, V. G. Methicillin-resistant Staphylococcus aureus: An overview of basic and clinical research. Nat. Rev. Microbiol. 2019, 17, 203–218.

4

Timsit, J. F.; Bassetti, M.; Cremer, O.; Daikos, G.; de Waele, J.; Kallil, A.; Kipnis, E.; Kollef, M.; Laupland, K.; Paiva, J. A. et al. Rationalizing antimicrobial therapy in the ICU: A narrative review. Intensive Care Med. 2019, 45, 172–189.

5

Kim, H. J.; Choi, Q.; Kwon, G. C.; Koo, S. H. Molecular epidemiology and virulence factors of methicillin-resistant Staphylococcus aureus isolated from patients with bacteremia. J. Clin. Lab. Anal. 2020, 34, e23077.

6

Sit, P. S.; Teh, C. S. J.; Idris, N.; Ponnampalavanar, S. Methicillin-resistant Staphylococcus aureus (MRSA) bacteremia: Correlations between clinical, phenotypic, genotypic characteristics and mortality in a tertiary teaching hospital in Malaysia. Infect. Genet. Evol. 2018, 59, 132–141.

7

Styers, D.; Sheehan, D. J.; Hogan, P.; Sahm, D. F. Laboratory-based surveillance of current antimicrobial resistance patterns and trends among Staphylococcus aureus: 2005 status in the United States. Ann. Clin. Microbiol. Antimicrob. 2006, 5, 2.

8

Chen, C. J.; Huang, Y. C. New epidemiology of Staphylococcus aureus infection in Asia. Clin. Microbiol. Infect. 2014, 20, 605–623.

9

Munthe, C.; Nijsingh, N. Cutting red tape to manage public health threats: An ethical dilemma of expediting antibiotic drug innovation. Bioethics 2019, 33, 785–791.

10

Brown, E. D.; Wright, G. D. Antibacterial drug discovery in the resistance era. Nature 2016, 529, 336–343.

11

Ding, Y. M.; Wang, Z., Zhang, Z. Y.; Zhao, Y. C.; Yang, S. Y.; Zhang, Y. L.; Yao, S. C.; Wang, S. B.; Huang, T.; Zhang, Y. et al. Oxygen vacancy-engineered BaTiO3 nanoparticles for synergistic cancer photothermal, photodynamic, and catalytic therapy. Nano Res. 2022, 15, 7304–7312.

12

Zhao, Y.; Chen, L.; Wang, Y. N.; Song, X. Y.; Li, K. Y., Yan, X. F.; Yu, L. M.; He, Z. Y. Nanomaterial-based strategies in antimicrobial applications: Progress and perspectives. Nano Res. 2021, 14, 4417–4441.

13

Xu, W. J.; Wang, J. X.; Jin, L. J.; Zhu, Y. Q.; Yang, X. Z. A tumor acidity-driven transformable polymeric nanoassembly with deep tumor penetration and membrane-anchoring capability for targeted photodynamic therapy. Biomaterials 2021, 276, 121024.

14

Fang, F. C. Antimicrobial reactive oxygen and nitrogen species: Concepts and controversies. Nat. Rev. Microbiol. 2004, 2, 820–832.

15

Ezraty, B.; Gennaris, A.; Barras, F.; Collet, J. F. Oxidative stress, protein damage and repair in bacteria. Nat. Rev. Microbiol. 2017, 15, 385–396.

16

Zhao, Y.; Guo, Q. Q.; Dai, X. M.; Wei, X. S.; Yu, Y. J.; Chen, X. L.; Li, C. X.; Cao, Z. Q.; Zhang, X. G. A biomimetic non-antibiotic approach to eradicate drug-resistant infections. Adv. Mater. 2019, 31, 1806024.

17

Huang, Y.; Gao, Q.; Li, X.; Gao, Y. F.; Han, H. J.; Jin, Q.; Yao, K.; Ji, J. Ofloxacin loaded MoS2 nanoflakes for synergistic mild-temperature photothermal/antibiotic therapy with reduced drug resistance of bacteria. Nano Res. 2020, 13, 2340–2350.

18

Chen, Q.; Hu, Q. Y.; Dukhovlinova, E.; Chen, G. J.; Ahn, S.; Wang, C.; Ogunnaike, E. A.; Ligler, F. S.; Dotti, G.; Gu, Z. Photothermal therapy promotes tumor infiltration and antitumor activity of CAR T cells. Adv. Mater. 2019, 31, 1900192.

19

Zhu, Y. L.; Wang, Z.; Zhao, R. X.; Zhou, Y. H.; Feng, L. L.; Cai, S. L.; Yang, P. P. Pt decorated Ti3C2Tx MXene with NIR-II light amplified nanozyme catalytic activity for efficient phototheranostics. ACS Nano 2022, 16, 3105–3118.

20

Wang, W. N.; Zhang, C. Y.; Zhang, M. F.; Pei, P.; Zhou, W.; Zha, Z. B.; Shao, M.; Qian, H. S. Precisely photothermal controlled releasing of antibacterial agent from Bi2S3 hollow microspheres triggered by NIR light for water sterilization. Chem. Eng. J. 2020, 381, 122630.

21

Wang, W. N.; Pei, P.; Chu, Z. Y.; Chen, B. J.; Qian, H. S.; Zha, Z. B.; Zhou, W.; Liu, T.; Shao, M.; Wang, H. Bi2S3 coated Au nanorods for enhanced photodynamic and photothermal antibacterial activities under NIR light. Chem. Eng. J. 2020, 397, 125488.

22

Huo, J. J.; Jia, Q. Y.; Huang, H.; Zhang, J.; Li, P.; Dong, X. C.; Huang, W. Emerging photothermal-derived multimodal synergistic therapy in combating bacterial infections. Chem. Soc. Rev. 2021, 50, 8762–8789.

23

Wang, Y. H.; Song, S. Y.; Zhang, S. T.; Zhang, H. J. Stimuli-responsive nanotheranostics based on lanthanide-doped upconversion nanoparticles for cancer imaging and therapy: Current advances and future challenges. Nano Today 2019, 25, 38–67.

24

Zhu, X. H.; Zhang, J.; Liu, J. L.; Zhang, Y. Recent progress of rare-earth doped upconversion nanoparticles: Synthesis, optimization, and applications. Adv. Sci. 2019, 6, 1901358.

25

Fan, Y.; Liu, L.; Zhang, F. Exploiting lanthanide-doped upconversion nanoparticles with core/shell structures. Nano Today 2019, 25, 68–84.

26

Tian, Q. Y.; Yao, W. J.; Wu, W.; Jiang, C. Z. NIR light-activated upconversion semiconductor photocatalysts. Nanoscale Horiz. 2019, 4, 10–25.

27

Jafari, M.; Rezvanpour, A. Upconversion nano-particles from synthesis to cancer treatment: A review. Adv. Powder Technol. 2019, 30, 1731–1753.

28

Wang, D. M.; Liu, B.; Quan, Z. W.; Li, C. X.; Hou, Z. Y.; Xing, B. G.; Lin, J. New advances on the marrying of UCNPs and photothermal agents for imaging-guided diagnosis and the therapy of tumors. J. Mater. Chem. B 2017, 5, 2209–2230.

29

Hou, Z. Y.; Zhang, Y. X.; Deng, K. R.; Chen, Y. Y.; Li, X. J.; Deng, X. R.; Cheng, Z. Y.; Lian, H. Z.; Li, C. C.; Lin, J. UV-emitting upconversion-based TiO2 photosensitizing nanoplatform: Near-infrared light mediated in vivo photodynamic therapy via mitochondria-involved apoptosis pathway. ACS Nano 2015, 9, 2599.

30

Hou, Z. Y.; Deng, K. R.; Li, C. X.; Deng, X. R.; Lian, H. Z.; Cheng, Z. Y.; Jin, D. Y.; Lin, J. 808 nm light-triggered and hyaluronic acid-targeted dual-photosensitizers nanoplatform by fully utilizing Nd3+-sensitized upconversion emission with enhanced anti-tumor efficacy. Biomaterials 2016, 101, 32–46.

31

Fu, L. H.; Wan, Y. L.; Qi, C.; He, J.; Li, C. Y.; Yang, C.; Xu, H.; Lin, J.; Huang, P. Nanocatalytic theranostics with glutathione depletion and enhanced reactive oxygen species generation for efficient cancer therapy. Adv. Mater. 2021, 33, 2006892.

32

Liu, Y. J.; Bhattarai, P.; Dai, Z. F.; Chen, X. Y. Photothermal therapy and photoacoustic imaging via nanotheranostics in fighting cancer. Chem. Soc. Rev. 2019, 48, 2053–2108.

33

Chen, T.; Su, L. C.; Lin, L. S.; Ge, X. G.; Bai, F. C.; Niu, M.; Wang, C. L.; Song, J. B.; Guo, S. L.; Yang, H. H. Mesoporous radiosensitized nanoprobe for enhanced NIR-II photoacoustic imaging-guided accurate radio-chemotherapy. Nano Res. 2022, 15, 4154–4163.

34

He, T.; Jiang, C.; He, J.; Zhang, Y. F.; He, G.; Wu, J. Y. Z.; Lin, J.; Zhou, X.; Huang, P. Manganese-dioxide-coating-instructed plasmonic modulation of gold nanorods for activatable duplex-imaging-guided NIR-II photothermal–chemodynamic therapy. Adv. Mater. 2021, 33, 2008540.

35

Cui, J. B.; Jiang, R.; Guo, C.; Bai, X. L.; Xu, S. Y.; Wang, L. Y. Fluorine grafted Cu7S4-Au heterodimers for multimodal imaging guided photothermal therapy with high penetration depth. J. Am. Chem. Soc. 2018, 140, 5890–5894.

36

Zhao, S.; Tian, R. R.; Shao, B. Q.; Feng, Y.; Yuan, S. W.; Dong, L. P.; Zhang, L.; Liu, K.; Wang, Z. X.; You, H. P. Designing of UCNPs@Bi@SiO2 hybrid theranostic nanoplatforms for simultaneous multimodal imaging and photothermal therapy. ACS Appl. Mater. Interfaces 2019, 11, 394–402.

37

Zhang, C. Y.; Li, D. D.; Pei, P.; Wang, W. N.; Chen, B. J.; Chu, Z. Y.; Zha, Z.; Yang, X. Z.; Wang, J. B.; Qian, H. S. Rod-based urchin-like hollow microspheres of Bi2S3: Facile synthesis, photo-controlled drug release for photoacoustic imaging and chemo–photothermal therapy of tumor ablation. Biomaterials 2020, 237, 119835.

38
ZhaoS.TianR. R.ShaoB. Q.FengY.YuanS. W.DongL. P.ZhangL.WangZ. X.YouH. P. UCNP-Bi2Se3 upconverting nanohybrid for upconversion luminescence and CT imaging and photothermal therapyChem. —Eur. J.2020261127113510.1002/chem.201904586

Zhao, S.; Tian, R. R.; Shao, B. Q.; Feng, Y.; Yuan, S. W.; Dong, L. P.; Zhang, L.; Wang, Z. X.; You, H. P. UCNP-Bi2Se3 upconverting nanohybrid for upconversion luminescence and CT imaging and photothermal therapy. Chem. —Eur. J. 2020, 26, 1127–1135.

39

Lei, P. P.; An, R.; Zheng, X. H.; Zhang, P.; Du, K. M.; Zhang, M. L.; Dong, L. L.; Gao, X.; Feng, J.; Zhang, H. J. Ultrafast synthesis of ultrasmall polyethylenimine-protected AgBiS2 nanodots by “rookie method” for in vivo dual-modal CT/PA imaging and simultaneous photothermal therapy. Nanoscale 2018, 10, 16765–16774.

40

Sun, M. D.; Yang, D.; Wang, C.; Bi, H. T.; Zhou, Y.; Wang, X. X.; Xu, J. T.; He, F.; Gai, S. L.; Yang, P. P. AgBiS2-TPP nanocomposite for mitochondrial targeting photodynamic therapy, photothermal therapy and bio-imaging under 808 nm NIR laser irradiation. Biomater. Sci. 2019, 7, 4769–4781.

41

Ouyang, R. Z.; Cao, P. H.; Jia, P. P.; Wang, H.; Zong, T. Y.; Dai, C. Y.; Yuan, J.; Li, Y. H.; Sun, D.; Guo, N. et al. Bistratal Au@Bi2S3 nanobones for excellent NIR-triggered/multimodal imaging-guided synergistic therapy for liver cancer. Bioact. Mater. 2021, 6, 386–403.

42

Chen, B. J.; Zhang, C. Y.; Wang, W. N.; Chu, Z. Y.; Zha, Z.; He, X. Y.; Zhou, W.; Liu, T.; Wang, H.; Qian, H. S. Ultrastable AgBiS2 hollow nanospheres with cancer cell-specific cytotoxicity for multimodal tumor therapy. ACS Nano 2020, 14, 14919–14928.

43

Stark, R.; Grzelak, M.; Hadfield, J. RNA sequencing: The teenage years. Nat. Rev. Genet. 2019, 20, 631–656.

44

Chu, Z. Y.; Tian, T.; Tao, Z. C., ; Yang, J.; Chen, B. J.; Chen, H.; Wang, W. N.; Yin, P. Q.; Xia, X. P.; Wang, H. et al. Upconversion nanoparticles@AgBiS2 core–shell nanoparticles with cancer-cell-specific cytotoxicity for combined photothermal and photodynamic therapy of cancers. Bioact. Mater. 2022, 17, 71–80.

45

Wang, Z. J.; Zhou, J. W.; Zhang, Y. H.; Zhu, W. Y.; Li, Y. Accessing highly efficient photothermal conversion with stable open-shell aromatic nitric acid radicals. Angew. Chem., Int. Ed. 2022, 61, e202113653.

46
Li, W.; Fan, Y. Z.; Lin, J.; Yu, P.; Wang, Z. G.; Ning, C. Y. Near-infrared light-activatable bismuth-based nanomaterials for antibacterial and antitumor treatment. Adv. Ther., in press, https://doi.org/10.1002/adtp.202200027.
47

Irwansyah, I.; Li, Y. Q.; Shi, W. X.; Qi, D. P.; Leow, W. R.; Tang, M. B. Y.; Li, S. Z.; Chen, X. D. Gram-positive antimicrobial activity of amino acid-based hydrogels. Adv. Mater. 2015, 27, 648–654.

48

Crowe, M.; O’Sullivan, M.; Cassetti, O.; O’Sullivan, A. Estimation and consumption pattern of free sugar intake in 3-year-old Irish preschool children. Eur. J. Nutr. 2020, 59, 2065–2074.

49

Holden, H. M.; Rayment, I.; Thoden, J. B. Structure and function of enzymes of the leloir pathway for galactose metabolism. J. Biol. Chem. 2003, 278, 43885–43888.

50

Althammer, M.; Regl, C.; Herburger, K.; Blöchl, C.; Voglas, E.; Huber, C. G.; Tenhaken, R. Overexpression of UDP-sugar pyrophosphorylase leads to higher sensitivity towards galactose, providing new insights into the mechanisms of galactose toxicity in plants. Plant J. 2022, 109, 1416–1426.

51

Boulanger, E. F.; Sabag-Daigle, A.; Thirugnanasambantham, P.; Gopalan, V.; Ahmer, B. M. M. Sugar-phosphate toxicities. Microbiol. Mol. Biol. Rev. 2021, 85, e0012321.

52

Ficicioglu, C.; Hussa, C.; Gallagher, P. R.; Thomas, N.; Yager, C. Monitoring of biochemical status in children with duarte galactosemia: Utility of galactose, galactitol, galactonate, and galactose 1-phosphate. Clin. Chem. 2010, 56, 1177–1182.

53

Holden, H. M.; Thoden, J. B.; Timson, D. J.; Reece, R. J. Galactokinase: Structure, function, and role in type II galactosemia. Cell. Mol. Life Sci. 2004, 61, 2471–2484.

54

Fath, M. J.; Kolter, R. ABC transporters: Bacterial exporters. Microbiol. Rev. 1993, 57, 995–1017.

55

Locher, K. P.; Lee, A. T.; Rees, D. C. The E. coli BtuCD structure:A framework for ABC transporter architecture and mechanism. Science 2002, 296, 1091–1098.

56

Huda, N.; Lee, E. W.; Chen, J.; Morita, Y.; Kuroda, T.; Mizushima, T.; Tsuchiya, T. Molecular cloning and characterization of an ABC multidrug efflux pump, VcaM, in Non-O1 Vibrio cholerae. Antimicrob. Agents Chemother. 2003, 47, 2413–2417.

57

Orelle, C.; Mathieu, K.; Jault, J. M. Multidrug ABC transporters in bacteria. Res. Microbiol. 2019, 170, 381–391.

58

Barbosa, T. M.; Levy, S. B. The impact of antibiotic use on resistance development and persistence. Drug Resist. Updat. 2000, 3, 303–311.

59

Høiby, N.; Bjarnsholt, T.; Givskov, M.; Molin, S.; Ciofu, O. Antibiotic resistance of bacterial biofilms. Int. J. Antimicrob. Agents 2010, 35, 322–332.

60

Waters, C. M.; Bassler, B. L. Quorum sensing: Cell-to-cell communication in bacteria. Annu. Rev. Cell Dev. Biol. 2005, 21, 319–346.

File
12274_2022_4815_MOESM1_ESM.pdf (9.1 MB)
Publication history
Copyright
Acknowledgements

Publication history

Received: 15 June 2022
Revised: 22 July 2022
Accepted: 25 July 2022
Published: 26 August 2022
Issue date: October 2022

Copyright

© Tsinghua University Press 2022

Acknowledgements

Acknowledgements

This work was financially supported by the National Natural Science Foundation of China (No. 52172276).

Return