Journal Home > Volume 15 , Issue 10

We report a superatomic homoleptic alkynyl-protected Ag32L24 (L = 3,5-bis(trifluoromethylbenzene) acetylide, Ag32 for short) nanocluster with atomic precision, which possesses eight free electrons. Ag32 is formed by an Ag17 core with C3 symmetry and the remaining 15 Ag atoms bond to each other and coordinate with the 24 surface ligands. When applied as electrocatalyst for CO2 reduction reaction (CO2RR), Ag32 exhibited the highest Faradaic efficiency (FE) of CO up to 96.44% at −0.8 V with hydrogen evolution being significantly suppressed in a wide potential range, meanwhile it has a reaction rate constant of 0.242 min−1 at room temperature and an activation energy of 45.21 kJ·mol−1 in catalyzing the reduction of 4-nitrophenol, both markedly superior than the thiolate and phosphine ligand co-protected Ag32 nanocluster. Such strong ligand effect was further understood by density functional theory (DFT) calculations, as it revealed that, one single ligand stripping off from the intact cluster can create the undercoordinated Ag atom as the catalytically active site for both clusters, but alkynyl-protected Ag32 nanocluster possesses a smaller energy barrier for forming the key *COOH intermediate in CO2RR, and favors the adsorption of 4-nitrophenol. This study not only discovers a new member of homoleptic alkynyl-protected Ag nanocluster, but also highlights the great potentials of employing alkynyl-protected Ag nanoclusters as bifunctional catalysts toward various reactions.


menu
Abstract
Full text
Outline
Electronic supplementary material
About this article

Homoleptic alkynyl-protected Ag32 nanocluster with atomic precision: Probing the ligand effect toward CO2 electroreduction and 4-nitrophenol reduction

Show Author's information Leyi Chen1,§Fang Sun2,§Quanli Shen1Lubing Qin1Yonggang Liu1Liang Qiao3Qing Tang2( )Likai Wang4( )Zhenghua Tang1,5 ( )
New Energy Research Institute, School of Environment and Energy, South China University of Technology, Guangzhou Higher Education Mega Centre, Guangzhou 510006, China
School of Chemistry and Chemical Engineering, Chongqing Key Laboratory of Theoretical and Computational Chemistry, Chongqing University, Chongqing 401331, China
China Petrochemical Research Institute, PetroChina Company Limited, Beijing 102206, China
School of Chemistry and Chemical Engineering, Shandong University of Technology, Zibo 255049, China
Guangdong Provincial Key Laboratory of Functional Supramolecular Coordination Materials and Applications, Jinan University, Guangzhou 510632, China

§ Leyi Chen and Fang Sun contributed equally to this work.

Abstract

We report a superatomic homoleptic alkynyl-protected Ag32L24 (L = 3,5-bis(trifluoromethylbenzene) acetylide, Ag32 for short) nanocluster with atomic precision, which possesses eight free electrons. Ag32 is formed by an Ag17 core with C3 symmetry and the remaining 15 Ag atoms bond to each other and coordinate with the 24 surface ligands. When applied as electrocatalyst for CO2 reduction reaction (CO2RR), Ag32 exhibited the highest Faradaic efficiency (FE) of CO up to 96.44% at −0.8 V with hydrogen evolution being significantly suppressed in a wide potential range, meanwhile it has a reaction rate constant of 0.242 min−1 at room temperature and an activation energy of 45.21 kJ·mol−1 in catalyzing the reduction of 4-nitrophenol, both markedly superior than the thiolate and phosphine ligand co-protected Ag32 nanocluster. Such strong ligand effect was further understood by density functional theory (DFT) calculations, as it revealed that, one single ligand stripping off from the intact cluster can create the undercoordinated Ag atom as the catalytically active site for both clusters, but alkynyl-protected Ag32 nanocluster possesses a smaller energy barrier for forming the key *COOH intermediate in CO2RR, and favors the adsorption of 4-nitrophenol. This study not only discovers a new member of homoleptic alkynyl-protected Ag nanocluster, but also highlights the great potentials of employing alkynyl-protected Ag nanoclusters as bifunctional catalysts toward various reactions.

Keywords: 4-nitrophenol reduction, CO2 electroreduction, ligand effect, alkynyl ligand, Ag32 nanocluster

References(42)

1

Qian, H. F.; Zhu, M. Z.; Wu, Z. K.; Jin, R. C. Quantum sized gold nanoclusters with atomic precision. Acc. Chem. Res. 2012, 45, 1470–1479.

2

Kawawaki, T.; Negishi, Y.; Kawasaki, H. Photo/electrocatalysis and photosensitization using metal nanoclusters for green energy and medical applications. Nanoscale. Adv. 2020, 2, 17–36.

3

Kwak, K.; Lee, D. Electrochemistry of atomically precise metal nanoclusters. Acc. Chem. Res. 2019, 52, 12–22.

4

Song, X. R.; Goswami, N.; Yang, H. H.; Xie, J. P. Functionalization of metal nanoclusters for biomedical applications. Analyst 2016, 141, 3126–3140.

5

Jin, S.; Wang, S. X.; Song, Y. B.; Zhou, M.; Zhong, J.; Zhang, J.; Xia, A. D.; Pei, Y.; Chen, M.; Li, P. et al. Crystal structure and optical properties of the [Ag62S12(SBut)32]2+ nanocluster with a complete face-centered cubic kernel. J. Am. Chem. Soc. 2014, 136, 15559–15565.

6

Nan, Z. A.; Wang, Y.; Chen, Z. X.; Yuan, S. F.; Tian, Z. Q.; Wang, Q. M. Catalyzed assembly of hollow silver-sulfide cluster through self-releasable anion template. Commun. Chem. 2018, 1, 99.

7

Chen, S.; Xiong, L.; Wang, S. X.; Ma, Z. Y.; Jin, S.; Sheng, H. T.; Pei, Y.; Zhu, M. Z. Total structure determination of Au21(S-Adm)15 and geometrical/electronic structure evolution of thiolated gold nanoclusters. J. Am. Chem. Soc. 2016, 138, 10754–10757.

8

Das, A.; Li, T.; Nobusada, K.; Zeng, C. J.; Rosi, N. L.; Jin, R. C. Nonsuperatomic [Au23(SC6H11)16] nanocluster featuring bipyramidal Au15 kernel and trimeric Au3(SR)4 motif. J. Am. Chem. Soc. 2013, 135, 18264–18267.

9

Crasto, D.; Malola, S.; Brosofsky, G.; Dass, A.; Häkkinen, H. Single crystal XRD structure and theoretical analysis of the chiral Au30S(S-t-Bu)18 cluster. J. Am. Chem. Soc. 2014, 136, 5000–5005.

10

Bootharaju, M. S.; Joshi, C. P.; Parida, M. R.; Mohammed, O. F.; Bakr, O. M. Templated atom-precise galvanic synthesis and structure elucidation of a [Ag24Au(SR)18] nanocluster. Angew. Chem., Int. Ed. 2016, 55, 922–926.

11

Lin, X. Z.; Ma, W. G.; Sun, K. J.; Sun, B.; Fu, X. M.; Ren, X. Q.; Liu, C.; Huang, J. H. [AuAg26(SR)18S] nanocluster:Open shell structure and high Faradaic efficiency in electrochemical reduction of CO2 to CO. J. Phys. Chem. Lett. 2021, 12, 552–557.

12

Yan, J. Z.; Su, H. F.; Yang, H. Y.; Malola, S.; Lin, S. C.; Häkkinen, H.; Zheng, N. F. Total structure and electronic structure analysis of doped thiolated silver [MAg24(SR)18]2− (M = Pd, Pt) clusters. J. Am. Chem. Soc. 2015, 137, 11880–11883.

13

Wang, S. X.; Song, Y. B.; Jin, S.; Liu, X.; Zhang, J.; Pei, Y.; Meng, X. M.; Chen, M.; Li, P.; Zhu, M. Z. Metal exchange method using Au25 nanoclusters as templates for alloy nanoclusters with atomic precision. J. Am. Chem. Soc. 2015, 137, 4018–4021.

14

Lei, Z.; Wan, X. K.; Yuan, S. F.; Guan, Z. J.; Wang, Q. M. Alkynyl approach toward the protection of metal nanoclusters. Acc. Chem. Res. 2018, 51, 2465–2474.

15

Lei, Z.; Wan, X. K.; Yuan, S. F.; Wang, J. Q.; Wang, Q. M. Alkynyl-protected gold and gold-silver nanoclusters. Dalton. Trans. 2017, 46, 3427–3434.

16

Ma, X. S.; Tang, Y.; Ma, G. Y.; Qin, L. B.; Tang, Z. H. Controllable synthesis and formation mechanism study of homoleptic alkynyl-protected Au nanoclusters: Recent advances, grand challenges, and great opportunities. Nanoscale 2021, 13, 602–614.

17

Wan, X. K.; Wang, J. Q.; Nan, Z. A.; Wang, Q. M. Ligand effects in catalysis by atomically precise gold nanoclusters. Sci. Adv. 2017, 3, e1701823.

18

Li, X.; Takano, S.; Tsukuda, T. Ligand effects on the hydrogen evolution reaction catalyzed by Au13 and Pt@Au12: Alkynyl vs. thiolate. J. Phys. Chem. C. 2021, 125, 23226–23230.

19

Qin, L. B.; Sun, F.; Ma, X. S.; Ma, G. Y.; Tang, Y.; Wang, L. K.; Tang, Q.; Jin, R. C.; Tang, Z. H. Homoleptic alkynyl-protected Ag15 nanocluster with atomic precision: Structural analysis and electrocatalytic performance toward CO2 reduction. Angew. Chem., Int. Ed. 2021, 60, 26136–26141.

20

Ito, S.; Takano, S.; Tsukuda, T. Alkynyl-protected Au22(C≡CR)18 clusters featuring new interfacial motifs and R-dependent photoluminescence. J. Phys. Chem. Lett. 2019, 10, 6892–6896.

21

Guan, Z. J.; Hu, F.; Li, J. J.; Wen, Z. R.; Lin, Y. M.; Wang, Q. M. Isomerization in alkynyl-protected gold nanoclusters. J. Am. Chem. Soc. 2020, 142, 2995–3001.

22

Li, J. J.; Guan, Z. J.; Lei, Z.; Hu, F.; Wang, Q. M. Same magic number but different arrangement: Alkynyl-protected Au25 with D3 symmetry. Angew. Chem., Int. Ed. 2019, 58, 1083–1087.

23

Ma, X. S.; Ma, G. Y.; Qin, L. B.; Chen, G. X.; Chen, S. W.; Tang, Z. H. A synchronous nucleation and passivation strategy for controllable synthesis of Au36(PA)24: Unveiling the formation process and the role of Au22(PA)18 intermediate. Sci. China Chem. 2020, 63, 1777–1784.

24

Wan, X. K.; Guan, Z. J.; Wang, Q. M. Homoleptic alkynyl-protected gold nanoclusters: Au44(PhC≡C)28 and Au36(PhC≡C)24. Angew. Chem., Int. Ed. 2017, 56, 11494–11497.

25

Guan, Z. J.; Hu, F.; Li, J. J.; Liu, Z. R.; Wang, Q. M. Homoleptic alkynyl-protected gold nanoclusters with unusual compositions and structures. Nanoscale 2020, 12, 13346–13350.

26

Li, J. J.; Liu, Z. K.; Guan, Z. J.; Han, X. S.; Shi, W. Q.; Wang, Q. M. A 59-electron non-magic-number gold nanocluster Au99(C≡CR)40 showing unexpectedly high stability. J. Am. Chem. Soc. 2022, 144, 690–694.

27

Wang, J. Q.; Shi, S.; He, R. L.; Yuan, S. F.; Yang, G. Y.; Liang, G. J.; Wang, Q. M. Total structure determination of the largest alkynyl-protected fcc gold nanocluster Au110 and the study on its ultrafast excited-state dynamics. J. Am. Chem. Soc. 2020, 142, 18086–18092.

28

Ma, X. S.; Tang, Z. H.; Qin, L. B.; Peng, J.; Li, L. G.; Chen, S. W. Unravelling the formation mechanism of alkynyl protected gold clusters: A case study of phenylacetylene stabilized Au144 molecules. Nanoscale 2020, 12, 2980–2986.

29

Qu, M.; Li, H.; Xie, L. H.; Yan, S. T.; Li, J. R.; Wang, J. H.; Wei, C. Y.; Wu, Y. W.; Zhang, X. M. Bidentate phosphine-assisted synthesis of an all-alkynyl-protected Ag74 nanocluster. J. Am. Chem. Soc. 2017, 139, 12346–12349.

30

Duan, G. X.; Tian, L.; Wen, J. B.; Li, L. Y.; Xie, Y. P.; Lu, X. An atomically precise all-tert-butylethynide-protected Ag51 superatom nanocluster with color tunability. Nanoscale 2018, 10, 18915–18919.

31

Zhang, M. M.; Dong, X. Y.; Wang, Z. Y.; Luo, X. M.; Huang, J. H.; Zang, S. Q.; Mak, T. C. W. Alkynyl-stabilized superatomic silver clusters showing circularly polarized luminescence. J. Am. Chem. Soc. 2021, 143, 6048–6053.

32

Liu, W. D.; Wang, J. Q.; Yuan, S. F.; Chen, X.; Wang, Q. M. Chiral superatomic nanoclusters Ag47 induced by the ligation of amino acids. Angew. Chem., Int. Ed. 2021, 60, 11430–11435.

33

Yang, H. Y.; Yan, J. Z.; Wang, Y.; Deng, G. C.; Su, H. F.; Zhao, X. J.; Xu, C. F.; Teo, B. K.; Zheng, N. F. From racemic metal nanoparticles to optically pure enantiomers in one pot. J. Am. Chem. Soc. 2017, 139, 16113–16116.

34

Huang, J. H.; Wang, Z. Y.; Zang, S. Q.; Mak, T. C. W. Spontaneous resolution of chiral multi-thiolate-protected Ag30 nanoclusters. ACS Cent. Sci. 2020, 6, 1971–1976.

35

Liu, C.; Li, T.; Abroshan, H.; Li, Z. M.; Zhang, C.; Kim, H. J.; Li, G.; Jin, R. C. Chiral Ag23 nanocluster with open shell electronic structure and helical face-centered cubic framework. Nat. Commun. 2018, 9, 744.

36

Hu, F.; Li, J. J.; Guan, Z. J.; Yuan, S. F.; Wang, Q. M. Formation of an alkynyl-protected Ag112 silver nanocluster as promoted by chloride released in situ from CH2Cl2. Angew. Chem., Int. Ed. 2020, 59, 5312–5315.

37

Wu, X. H.; Guo, Y. N.; Sun, Z. S.; Xie, F. H.; Guan, D. Q.; Dai, J.; Yu, F. J.; Hu, Z. W.; Huang, Y. C.; Pao, C. W. et al. Fast operando spectroscopy tracking in situ generation of rich defects in silver nanocrystals for highly selective electrochemical CO2 reduction. Nat. Commun. 2021, 12, 660.

38

Yang, H. Y.; Wang, Y.; Zheng, N. F. Stabilizing subnanometer Ag(0) nanoclusters by thiolate and diphosphine ligands and their crystal structures. Nanoscale 2013, 5, 2674–2677.

39

Li, Y.; Tang, Z. H.; Prasad, P. N.; Knecht, M. R.; Swihart, M. T. Peptide-mediated synthesis of gold nanoparticles: Effects of peptide sequence and nature of binding on physicochemical properties. Nanoscale 2014, 6, 3165–3172.

40

Guan, Z. J.; He, R. L.; Yuan, S. F.; Li, J. J.; Hu, F.; Liu, C. Y.; Wang, Q. M. Ligand engineering toward the trade-off between stability and activity in cluster catalysis. Angew. Chem., Int. Ed. 2022, 61, e202116965.

41

Fenger, R.; Fertitta, E.; Kirmse, H.; Thünemann, A. F.; Rademann, K. Size dependent catalysis with CTAB-stabilized gold nanoparticles. Phys. Chem. Chem. Phys. 2012, 14, 9343–9349.

42

Liang, M.; Su, R. X.; Huang, R. L.; Qi, W.; Yu, Y. J.; Wang, L. B.; He, Z. M. Facile in situ synthesis of silver nanoparticles on procyanidin-grafted eggshell membrane and their catalytic properties. ACS Appl. Mater. Interfaces 2014, 6, 4638–4649.

File
12274_2022_4812_MOESM1_ESM.pdf (2.2 MB)
Publication history
Copyright
Acknowledgements

Publication history

Received: 12 June 2022
Revised: 24 July 2022
Accepted: 25 July 2022
Published: 20 August 2022
Issue date: October 2022

Copyright

© Tsinghua University Press 2022

Acknowledgements

Acknowledgements

This study was supported by the Open Fund of Guangdong Provincial Key Laboratory of Functional Supramolecular Coordination Materials and Applications (No. 2021A07). Z. H. T. acknowledges the financial support from Guangdong Natural Science Funds (No. 2022A1515011840). L. K. W. acknowledges the funding from the National Natural Science Foundation of China (No. 21805170). Q. T. thanks the grants from the National Natural Science Foundation of China (No. 21903008) and the Chongqing Science and Technology Commission (No. cstc2020jcyj-msxmX0382).

Return