Journal Home > Volume 16 , Issue 1

The recurrence of head and neck squamous cell carcinoma (HNSCC) after surgical resection continues to pose a major challenge to cancer treatment. Advanced HNSCC exhibits a low response rate to immune checkpoint blockade (ICB), while photothermal therapy (PTT) can increase the infiltration of immune cells to make tumors more susceptible to cancer immunotherapy. In this regard, we designed and constructed a novel multifunctional nanocomposite comprised of oxidized bacterial cellulose (OBC), thrombin (TB), and gold nanocages (AuNCs) containing anti-programmed death 1 (PD-1) antibody (αPD-1@AuNCs), which allows the combination of therapies with remarkable postoperative antitumor immunity to control local tumor recurrence. The αPD-1@AuNCs displayed high light-to-heat conversion efficiency and induced pyroptosis under near infrared (NIR) irradiation, which activated a potent antitumor immune response. More importantly, the therapeutic system could induce tumor pyroptosis and enhance antitumor immune response by increasing T-cell infiltration and reducing the immune suppressive cells, when combined with local ICB therapy, which effectively avoided the tumor recurrence in a HNSCC postoperative mice model. Overall, the newly developed multifunctional nanocomposites could be a promising candidate for the treatment of postoperative HNSCC.


menu
Abstract
Full text
Outline
Electronic supplementary material
About this article

Implantable versatile oxidized bacterial cellulose membrane for postoperative HNSCC treatment via photothermal-boosted immunotherapy

Show Author's information Jun-Jie Zhou1,§Xiao-Hong Li4,§Peng-Yu He4Fu-Yu Qi4Muhammad Wajid Ullah5Shu-Jin Li1Yuan-Tong Liu1Lin-Lin Bu1,2,3( )Guang Yang4( )Zhi-Jun Sun1,2 ( )
The State Key Laboratory Breeding Base of Basic Science of Stomatology (Hubei-MOST) & Key Laboratory of Oral Biomedicine Ministry of Education, School & Hospital of Stomatology, Wuhan University, Wuhan 430079, China
Department of Oral Maxillofacial Head Neck Oncology, School & Hospital of Stomatology, Wuhan University, Wuhan 430079, China
Key Laboratory of Artificial Micro- and Nano-Structures of Ministry of Education School of Physics and Technology, Wuhan University, Wuhan 430079, China
Department of Biomedical Engineering, College of Life Science and Technology, Huazhong University of Science and Technology, Wuhan 430074, China
Biofuels Institute, School of the Environment and Safety Engineering, Jiangsu University, Zhenjiang 212013, China

§ Jun-Jie Zhou and Xiao-Hong Li contributed equally to this work.

Abstract

The recurrence of head and neck squamous cell carcinoma (HNSCC) after surgical resection continues to pose a major challenge to cancer treatment. Advanced HNSCC exhibits a low response rate to immune checkpoint blockade (ICB), while photothermal therapy (PTT) can increase the infiltration of immune cells to make tumors more susceptible to cancer immunotherapy. In this regard, we designed and constructed a novel multifunctional nanocomposite comprised of oxidized bacterial cellulose (OBC), thrombin (TB), and gold nanocages (AuNCs) containing anti-programmed death 1 (PD-1) antibody (αPD-1@AuNCs), which allows the combination of therapies with remarkable postoperative antitumor immunity to control local tumor recurrence. The αPD-1@AuNCs displayed high light-to-heat conversion efficiency and induced pyroptosis under near infrared (NIR) irradiation, which activated a potent antitumor immune response. More importantly, the therapeutic system could induce tumor pyroptosis and enhance antitumor immune response by increasing T-cell infiltration and reducing the immune suppressive cells, when combined with local ICB therapy, which effectively avoided the tumor recurrence in a HNSCC postoperative mice model. Overall, the newly developed multifunctional nanocomposites could be a promising candidate for the treatment of postoperative HNSCC.

Keywords: immunotherapy, pyroptosis, head and neck squamous cell carcinoma (HNSCC), oxidized bacterial cellulose, postoperative treatment

References(57)

[1]

Mody, M. D.; Rocco, J. W.; Yom, S. S.; Haddad, R. I.; Saba, N. F. Head and neck cancer. Lancet 2021, 398, 2289–2299.

[2]

Chow, L. Q. M. Head and neck cancer. N. Engl. J. Med. 2020, 382, 60–72.

[3]

Siegel, R. L.; Miller, K. D.; Fuchs, H. E.; Jemal, A. Cancer statistics, 2022. CA Cancer J. Clin. 2022, 72, 7–33.

[4]

Cramer, J. D.; Burtness, B.; Le, Q. T.; Ferris, R. L. The changing therapeutic landscape of head and neck cancer. Nat. Rev. Clin. Oncol. 2019, 16, 669–683.

[5]

Hamoir, M.; Schmitz, S.; Suarez, C.; Strojan, P.; Hutcheson, K. A.; Rodrigo, J. P.; Mendenhall, W. M.; Simo, R.; Saba, N. F.; D’Cruz, A. K. et al. The current role of salvage surgery in recurrent head and neck squamous cell carcinoma. Cancers (Basel) 2018, 10, 267.

[6]

Mahvi, D. A.; Liu, R.; Grinstaff, M. W.; Colson, Y. L.; Raut, C. P. Local cancer recurrence: The realities, challenges, and opportunities for new therapies. CA Cancer J. Clin. 2018, 68, 488–505.

[7]

Petit, C.; Lacas, B.; Pignon, J. P.; Le, Q. T.; Grégoire, V.; Grau, C.; Hackshaw, A.; Zackrisson, B.; Parmar, M. K. B.; Lee, J. W. et al. Chemotherapy and radiotherapy in locally advanced head and neck cancer: An individual patient data network meta-analysis. Lancet Oncol. 2021, 22, 727–736.

[8]

Bu, L. L.; Yan, J. J.; Wang, Z. J.; Ruan, H. T.; Chen, Q.; Gunadhi, V.; Bell, R. B.; Gu, Z. Advances in drug delivery for post-surgical cancer treatment. Biomaterials 2019, 219, 119182.

[9]

Dolladille, C.; Ederhy, S.; Sassier, M.; Cautela, J.; Thuny, F.; Cohen, A. A.; Fedrizzi, S.; Chrétien, B.; Da-Silva, A.; Plane, A. F. et al. Immune checkpoint inhibitor rechallenge after immune-related adverse events in patients with cancer. JAMA Oncol. 2020, 6, 865–871.

[10]

Ruan, H. T.; Bu, L. L.; Hu, Q. Y.; Cheng, H.; Lu, W. Y.; Gu, Z. Strategies of combination drug delivery for immune checkpoint blockades. Adv. Healthc. Mater. 2019, 8, e1801099.

[11]

Schnell, A.; Bod, L.; Madi, A.; Kuchroo, V. K. The yin and yang of co-inhibitory receptors: Toward anti-tumor immunity without autoimmunity. Cell Res. 2020, 30, 285–299.

[12]

Kurtulus, S.; Madi, A.; Escobar, G.; Klapholz, M.; Nyman, J.; Christian, E.; Pawlak, M.; Dionne, D.; Xia, J. R.; Rozenblatt-Rosen, O. et al. Checkpoint blockade immunotherapy induces dynamic changes in PD-1CD8+ tumor-infiltrating T cells. Immunity 2019, 50, 181–194.e6.

[13]

Zhou, X. X.; Yao, Z. R.; Bai, H.; Duan, J. C.; Wang, Z. J.; Wang, X.; Zhang, X.; Xu, J. C.; Fei, K. L.; Zhang, Z. et al. Treatment-related adverse events of PD-1 and PD-L1 inhibitor-based combination therapies in clinical trials: A systematic review and meta-analysis. Lancet Oncol. 2021, 22, 1265–1274.

[14]

Morad, G.; Helmink, B. A.; Sharma, P.; Wargo, J. A. Hallmarks of response, resistance, and toxicity to immune checkpoint blockade. Cell 2021, 184, 5309–5337.

[15]

Das, S.; Johnson, D. B. Immune-related adverse events and anti-tumor efficacy of immune checkpoint inhibitors. J. Immunother. Cancer 2019, 7, 306.

[16]

Kennedy, L. B.; Salama, A. K. S. A review of cancer immunotherapy toxicity. CA Cancer J. Clin. 2020, 70, 86–104.

[17]

Chen, Q.; Chen, M. C.; Liu, Z. Local biomaterials-assisted cancer immunotherapy to trigger systemic antitumor responses. Chem. Soc. Rev. 2019, 48, 5506–5526.

[18]

Sagiv-Barfi, I.; Czerwinski, D. K.; Levy, S.; Alam, I. S.; Mayer, A. T.; Gambhir, S. S.; Levy, R. Eradication of spontaneous malignancy by local immunotherapy. Sci. Transl. Med. 2018, 10, eaan4488.

[19]

Chao, Y.; Liang, C.; Tao, H. Q.; Du, Y. R.; Wu, D.; Dong, Z. L.; Jin, Q. T.; Chen, G. B.; Xu, J.; Xiao, Z. S. et al. Localized cocktail chemoimmunotherapy after in situ gelation to trigger robust systemic antitumor immune responses. Sci. Adv. 2020, 6, eaaz4204.

[20]

Li, X. S.; Lovell, J. F.; Yoon, J.; Chen, X. Y. Clinical development and potential of photothermal and photodynamic therapies for cancer. Nat. Rev. Clin. Oncol. 2020, 17, 657–674.

[21]

Yu, Y. J.; Tang, D. S.; Liu, C. Y.; Zhang, Q.; Tang, L.; Lu, Y. F.; Xiao, H. H. Biodegradable polymer with effective near-infrared-II absorption as a photothermal agent for deep tumor therapy. Adv. Mater. 2022, 34, e2105976.

[22]

Lin, G.; Zhang, Y.; Zhu, C. Q.; Chu, C. C.; Shi, Y. S.; Pang, X.; Ren, E.; Wu, Y. Y.; Mi, P.; Xia, H. P. et al. Photo-excitable hybrid nanocomposites for image-guided photo/TRAIL synergistic cancer therapy. Biomaterials 2018, 176, 60–70.

[23]

Sun, Y. J.; Feng, X. R.; Wan, C.; Lovell, J. F.; Jin, H. L.; Ding, J. X. Role of nanoparticle-mediated immunogenic cell death in cancer immunotherapy. Asian J. Pharm. Sci. 2021, 16, 129–132.

[24]

Tang, H. L.; Xu, X. J.; Chen, Y. X.; Xin, H. H.; Wan, T.; Li, B. W.; Pan, H. M.; Li, D.; Ping, Y. Reprogramming the tumor microenvironment through second-near-infrared-window photothermal genome editing of PD-L1 mediated by supramolecular gold nanorods for enhanced cancer immunotherapy. Adv. Mater. 2021, 33, 2006003.

[25]

Zheng, P.; Ding, B. B.; Jiang, Z. Y.; Xu, W. G.; Li, G.; Ding, J. X.; Chen, X. S. Ultrasound-augmented mitochondrial calcium ion overload by calcium nanomodulator to induce immunogenic cell death. Nano Lett. 2021, 21, 2088–2093.

[26]
Niu, X.; Chen, L. J.; Li, Y.; Hu, Z. J.; He, F. Ferroptosis, necroptosis, and pyroptosis in the tumor microenvironment: Perspectives for immunotherapy of SCLC. Semin. Cancer Biol., in press, https://doi.org/10.1016/j.semcancer.2022.03.009.
[27]

Tan, Y. X.; Chen, Q. Z.; Li, X. L.; Zeng, Z. Y.; Xiong, W.; Li, G. Y.; Li, X. Y.; Yang, J. B.; Xiang, B.; Yi, M. Pyroptosis: A new paradigm of cell death for fighting against cancer. J. Exp. Clin. Cancer Res. 2021, 40, 153.

[28]

Hu, J. J.; Cheng, Y. J.; Zhang, X. Z. Recent advances in nanomaterials for enhanced photothermal therapy of tumors. Nanoscale 2018, 10, 22657–22672.

[29]

Zhao, P. F.; Wang, M.; Chen, M.; Chen, Z.; Peng, X.; Zhou, F. F.; Song, J.; Qu, J. L. Programming cell pyroptosis with biomimetic nanoparticles for solid tumor immunotherapy. Biomaterials 2020, 254, 120142.

[30]

Wang, C.; Wang, Y. L.; Zhang, L. L.; Miron, R. J.; Liang, J. F.; Shi, M. S.; Mo, W. T.; Zheng, S. H.; Zhao, Y. B.; Zhang, Y. F. Pretreated macrophage-membrane-coated gold nanocages for precise drug delivery for treatment of bacterial infections. Adv. Mater. 2018, 30, 1804023.

[31]

Xie, Y. Z.; Zheng, W. F.; Jiang, X. Y. Near-infrared light-activated phototherapy by gold nanoclusters for dispersing biofilms. ACS Appl. Mater. Interfaces 2020, 12, 9041–9049.

[32]

Liang, R. J.; Liu, L. L.; He, H. M.; Chen, Z. K.; Han, Z. Q.; Luo, Z. Y.; Wu, Z. H.; Zheng, M. B.; Ma, Y. F.; Cai, L. T. Oxygen-boosted immunogenic photodynamic therapy with gold nanocages@manganese dioxide to inhibit tumor growth and metastases. Biomaterials 2018, 177, 149–160.

[33]

Dykman, L.; Khlebtsov, N. Gold nanoparticles in biomedical applications: Recent advances and perspectives. Chem. Soc. Rev. 2012, 41, 2256–2282.

[34]

Hu, Y. N.; Huang, S. C.; Zhao, X. J.; Chang, L. N.; Ren, X. L.; Mei, X. F.; Chen, Z. H. Preparation of photothermal responsive and ROS generative gold nanocages for cancer therapy. Chem. Eng. J. 2021, 421, 129744.

[35]

Liu, X. L.; Xu, Y. X.; Guo, C. Y.; Zhang, C. H.; Liu, S. C.; Gao, J. L.; Lin, G. M.; Yang, H. B.; Xia, W. S. Effect of chitosan grafting oxidized bacterial cellulose on dispersion stability and modulability of biodegradable films. Int. J. Biol. Macromol. 2022, 204, 510–519.

[36]

Qiao, H.; Guo, T. F.; Zheng, Y. D.; Zhao, L.; Sun, Y.; Liu, Y.; Xie, Y. J. A novel microporous oxidized bacterial cellulose/arginine composite and its effect on behavior of fibroblast/endothelial cell. Carbohydr. Polym. 2018, 184, 323–332.

[37]

Pei, X. J.; Wang, J. T.; Cong, Y.; Fu, J. Recent progress in polymer hydrogel bioadhesives. J. Polym. Sci. 2021, 59, 1312–1337.

[38]

Chen, Q.; Wang, C.; Zhang, X. D.; Chen, G. J.; Hu, Q. Y.; Li, H. J.; Wang, J. Q.; Wen, D.; Zhang, Y. Q.; Lu, Y. F. et al. In situ sprayed bioresponsive immunotherapeutic gel for post-surgical cancer treatment. Nat. Nanotechnol. 2019, 14, 89–97.

[39]

Wu, C. N.; Fuh, S. C.; Lin, S. P.; Lin, Y. Y.; Chen, H. Y.; Liu, J. M.; Cheng, K. C. TEMPO-oxidized bacterial cellulose pellicle with silver nanoparticles for wound dressing. Biomacromolecules 2018, 19, 544–554.

[40]

Skrabalak, S. E.; Au, L.; Li, X. D.; Xia, Y. N. Facile synthesis of Ag nanocubes and Au nanocages. Nat. Protoc. 2007, 2, 2182–2190.

[41]

Zhou, J. J.; Ma, X. B.; Li, H.; Chen, D. R.; Mao, L.; Yang, L. L.; Zhang, T.; Qiu, W.; Xu, Z. G.; Sun, Z. J. Inspired heat shock protein alleviating prodrug enforces immunogenic photodynamic therapy by eliciting pyroptosis. Nano Res. 2022, 15, 3398–3408.

[42]

Bu, L. L.; Yu, G. T.; Deng, W. W.; Mao, L.; Liu, J. F.; Ma, S. R.; Fan, T. F.; Hall, B.; Kulkarni, A. B.; Zhang, W. F. et al. Targeting STAT3 signaling reduces immunosuppressive myeloid cells in head and neck squamous cell carcinoma. Oncoimmunology 2016, 5, e1130206.

[43]

Bu, L. L.; Yu, G. T.; Wu, L.; Mao, L.; Deng, W. W.; Liu, J. F.; Kulkarni, A. B.; Zhang, W. F.; Zhang, L.; Sun, Z. J. STAT3 induces immunosuppression by upregulating PD-1/PD-L1 in HNSCC. J. Dent. Res. 2017, 96, 1027–1034.

[44]

Wang, S.; Jiang, F.; Xu, X.; Kuang, Y. D.; Fu, K.; Hitz, E.; Hu, L. B. Super-strong, super-stiff macrofibers with aligned, long bacterial cellulose nanofibers. Adv. Mater. 2017, 29, 1702498.

[45]

Chen, Y.; Chen, S. Y.; Wang, B. X.; Yao, J. J.; Wang, H. P. TEMPO-oxidized bacterial cellulose nanofibers-supported gold nanoparticles with superior catalytic properties. Carbohydr. Polym. 2017, 160, 34–42.

[46]

Lal, S. S.; Mhaske, S. T. AgBr and AgCl nanoparticle doped TEMPO-oxidized microfiber cellulose as a starting material for antimicrobial filter. Carbohydr. Polym. 2018, 191, 266–279.

[47]

Daemi, S.; Ashkarran, A. A.; Bahari, A.; Ghasemi, S. Gold nanocages decorated biocompatible amine functionalized graphene as an efficient dopamine sensor platform. J. Colloid Interface Sci. 2017, 494, 290–299.

[48]

Wu, D.; Wang, S.; Yu, G. C.; Chen, X. Y. Cell death mediated by the pyroptosis pathway with the aid of nanotechnology: Prospects for cancer therapy. Angew. Chem., Int. Ed. 2021, 60, 8018–8034.

[49]

Ding, B. B.; Sheng, J. Y.; Zheng, P.; Li, C. X.; Li, D.; Cheng, Z. Y.; Ma, P.; Lin, J. Biodegradable upconversion nanoparticles induce pyroptosis for cancer immunotherapy. Nano Lett. 2021, 21, 8281–8289.

[50]

Liu, Y.; Zhen, W. Y.; Wang, Y. H.; Song, S. Y.; Zhang, H. J. Na2S2O8 nanoparticles trigger antitumor immunotherapy through reactive oxygen species storm and surge of tumor osmolarity. J. Am. Chem. Soc. 2020, 142, 21751–21757.

[51]

Li, J. J.; Anraku, Y.; Kataoka, K. Self-boosting catalytic nanoreactors integrated with triggerable crosslinking membrane networks for initiation of immunogenic cell death by pyroptosis. Angew. Chem., Int. Ed. 2020, 59, 13526–13530.

[52]

Nadeem, S.; Yang, C.; Du, Y.; Li, F. Y.; Chen, Z.; Zhou, Y.; Lee, J. Y.; Ding, Q.; Ling, D. S. A virus-spike tumor-activatable pyroptotic agent. Small 2021, 17, e2006599.

[53]

Zhang, Z. B.; Zhang, Y.; Xia, S. Y.; Kong, Q.; Li, S. Y.; Liu, X.; Junqueira, C.; Meza-Sosa, K. F.; Mok, T. M. Y.; Ansara, J. et al. Gasdermin E suppresses tumour growth by activating anti-tumour immunity. Nature 2020, 579, 415–420.

[54]

Yang, X. R.; Chen, G. D.; Yu, K. N.; Yang, M. M.; Peng, S. J.; Ma, J.; Qin, F.; Cao, W.; Cui, S. J.; Nie, L. L. et al. Cold atmospheric plasma induces GSDME-dependent pyroptotic signaling pathway via ROS generation in tumor cells. Cell Death Dis. 2020, 11, 295.

[55]

Shi, J. J.; Zhao, Y.; Wang, K.; Shi, X. Y.; Wang, Y.; Huang, H. W.; Zhuang, Y. H.; Cai, T.; Wang, F. C.; Shao, F. Cleavage of GSDMD by inflammatory caspases determines pyroptotic cell death. Nature 2015, 526, 660–665.

[56]

Xia, X. J.; Wang, X.; Cheng, Z.; Qin, W. H.; Lei, L. C.; Jiang, J. Q.; Hu, J. H. The role of pyroptosis in cancer: Pro-cancer or pro-“host”? Cell Death Dis. 2019, 10, 650.

[57]

Tang, R.; Xu, J.; Zhang, B.; Liu, J.; Liang, C.; Hua, J.; Meng, Q. C.; Yu, X. J.; Shi, S. Ferroptosis, necroptosis, and pyroptosis in anticancer immunity. J. Hematol. Oncol. 2020, 13, 110.

File
12274_2022_4811_MOESM1_ESM.pdf (1.1 MB)
Publication history
Copyright
Acknowledgements

Publication history

Received: 25 May 2022
Revised: 24 July 2022
Accepted: 25 July 2022
Published: 12 September 2022
Issue date: January 2023

Copyright

© Tsinghua University Press 2022

Acknowledgements

Acknowledgements

This work was supported by the National Natural Science Foundation of China (Nos. 82072996 (Z. J. S.), 81874131 (Z. J. S.), 81702730 (L. L. B.), and 51973076 (G. Y.)), the Fundamental Research Funds for the Central Universities (No. 2042021kf0216) to Z. J. S., China Postdoctoral Science Foundation (Nos. 2018M630883 and 2019T120688) to L. L. B., and Wuhan Young Medical Talents Training Project to L. L. B.

Return