Journal Home > Volume 16 , Issue 1

Photoelectric synaptic devices have been considered as one of the key components in artificial neuromorphic systems due to their excellent capability to emulate the functions of visual neurons, such as light perception and image processing. Herein, we demonstrate an optically-stimulated artificial synapse with a clear photoresponse from ultraviolet to visible light, which is established on a novel heterostructure consisting of monocrystalline Cs2AgBiBr6 perovskite and indium–gallium–zinc oxide (IGZO) thin film. As compared with pure IGZO, the heterostructure significantly enhances the photoresponse and corresponding synaptic plasticity of the devices, which originate from the superior visible absorption of single-crystal Cs2AgBiBr6 and effective interfacial charge transfer from Cs2AgBiBr6 to IGZO. A variety of synaptic behaviors are realized on the fabricated thin-film transistors, including excitatory postsynaptic current, paired pulse facilitation, short-term, and long-term plasticity. Furthermore, an artificial neural network is simulated based on the photonic potentiation and electrical depression effects of synaptic devices, and an accuracy rate up to 83.8% ± 1.2% for pattern recognition is achieved. This finding promises a simple and efficient way to construct photoelectric synaptic devices with tunable spectrum for future neuromorphic applications.


menu
Abstract
Full text
Outline
Electronic supplementary material
About this article

Visible-light stimulated synaptic plasticity in amorphous indium−gallium−zinc oxide enabled by monocrystalline double perovskite for high-performance neuromorphic applications

Show Author's information Fu Huang1Feier Fang1Yue Zheng1Qi You1Henan Li2Shaofan Fang1Xiangna Cong1Ke Jiang1Ye Wang3Cheng Han1( )Wei Chen4,5,6Yumeng Shi2( )
International Collaborative Laboratory of 2D Materials for Optoelectronics Science and Technology of Ministry of Education, Institute of Microscale Optoelectronics, Shenzhen University, Shenzhen 518060, China
College of Electronics and Information Engineering, Shenzhen University, Shenzhen 518060, China
Key Laboratory of Material Physics, Ministry of Education, School of Physics and Microelectronics, Zhengzhou University, Zhengzhou 450052, China
Department of Physics, National University of Singapore, Singapore 117542, Singapore
Department of Chemistry, National University of Singapore, Singapore 117543, Singapore
Joint School of National University of Singapore and Tianjin University, International Campus of Tianjin University, Binhai New City, Fuzhou 350207, China

Abstract

Photoelectric synaptic devices have been considered as one of the key components in artificial neuromorphic systems due to their excellent capability to emulate the functions of visual neurons, such as light perception and image processing. Herein, we demonstrate an optically-stimulated artificial synapse with a clear photoresponse from ultraviolet to visible light, which is established on a novel heterostructure consisting of monocrystalline Cs2AgBiBr6 perovskite and indium–gallium–zinc oxide (IGZO) thin film. As compared with pure IGZO, the heterostructure significantly enhances the photoresponse and corresponding synaptic plasticity of the devices, which originate from the superior visible absorption of single-crystal Cs2AgBiBr6 and effective interfacial charge transfer from Cs2AgBiBr6 to IGZO. A variety of synaptic behaviors are realized on the fabricated thin-film transistors, including excitatory postsynaptic current, paired pulse facilitation, short-term, and long-term plasticity. Furthermore, an artificial neural network is simulated based on the photonic potentiation and electrical depression effects of synaptic devices, and an accuracy rate up to 83.8% ± 1.2% for pattern recognition is achieved. This finding promises a simple and efficient way to construct photoelectric synaptic devices with tunable spectrum for future neuromorphic applications.

Keywords: neuromorphic computing, thin-film transistors, artificial optoelectronic synapse, monocrystalline Cs2AgBiBr6, ultraviolet-to-visible

References(69)

[1]

Ohno, T.; Hasegawa, T.; Tsuruoka, T.; Terabe, K.; Gimzewski, J. K.; Aono, M. Short-term plasticity and long-term potentiation mimicked in single inorganic synapses. Nat. Mater. 2011, 10, 591–595.

[2]

Li, S. Z.; Zeng, F.; Chen, C.; Liu, H. Y.; Tang, G. S.; Gao, S.; Song, C.; Lin, Y. S.; Pan, F.; Guo, D. Synaptic plasticity and learning behaviours mimicked through Ag interface movement in an Ag/conducting polymer/Ta memristive system. J. Mater. Chem. C 2013, 1, 5292–5298.

[3]

Kim, S.; Choi, B.; Lim, M.; Yoon, J.; Lee, J.; Kim, H. D.; Choi, S. J. Pattern recognition using carbon nanotube synaptic transistors with an adjustable weight update protocol. ACS Nano 2017, 11, 2814–2822.

[4]

Wang, Y.; Lv, Z. Y.; Chen, J. R.; Wang, Z. P.; Zhou, Y.; Zhou, L.; Chen, X. L.; Han, S. T. Photonic synapses based on inorganic perovskite quantum dots for neuromorphic computing. Adv. Mater. 2018, 30, 1802883.

[5]

Yu, J. J.; Liang, L. Y.; Hu, L. X.; Duan, H. X.; Wu, W. H.; Zhang, H. L.; Gao, J. H.; Zhuge, F.; Chang, T. C.; Cao, H. T. Optoelectronic neuromorphic thin-film transistors capable of selective attention and with ultra-low power dissipation. Nano Energy 2019, 62, 772–780.

[6]

Kim, J.; Kim, Y.; Kwon, O.; Kim, T.; Oh, S.; Jin, S.; Park, W.; Kwon, J. D.; Hong, S. W.; Lee, C. S. et al. Modulation of synaptic plasticity mimicked in Al nanoparticle-embedded IGZO synaptic transistor. Adv. Electron. Mater. 2020, 6, 1901072.

[7]

Zhou, Y. C.; Zhang, A. G. Improved integrate-and-fire neuron models for inference acceleration of spiking neural networks. Appl. Intell. 2021, 51, 2393–2405.

[8]

Wang, D. P.; Wang, L. L.; Ran, W. H.; Zhao, S. F.; Yin, R. Y.; Yan, Y. X.; Jiang, K.; Lou, Z.; Shen, G. Z. Threshold switching synaptic device with tactile memory function. Nano Energy 2020, 76, 105109.

[9]

Ahn, C. H.; Kim, Y. K.; Kang, W. J.; Kim, K. S.; Cho, H. K. High photosensitivity and wide operation voltage in two-dimensional CdS nano-crystal layer embedded a-InGaZnO hybrid phototransistors. J. Alloys Compd. 2017, 725, 891–898.

[10]

Zhu, L. Q.; Wan, C. J.; Guo, L. Q.; Shi, Y.; Wan, Q. Artificial synapse network on inorganic proton conductor for neuromorphic systems. Nat. Commun. 2014, 5, 3158.

[11]

Jin, T. Y.; Zheng, Y.; Gao, J.; Wang, Y. N.; Li, E. L.; Chen, H. P.; Pan, X.; Lin, M.; Chen, W. Controlling native oxidation of HfS2 for 2D materials based flash memory and artificial synapse. ACS Appl. Mater. Interfaces 2021, 13, 10639–10649.

[12]

Sun, L. F.; Zhang, Y. S.; Hwang, G.; Jiang, J. B.; Kim, D.; Eshete, Y. A.; Zhao, R.; Yang, H. Synaptic computation enabled by joule heating of single-layered semiconductors for sound localization. Nano Lett. 2018, 18, 3229–3234.

[13]

Wen, J. M.; Hu, H.; Wen, G. H.; Wang, S. H.; Sun, Z. H.; Ye, S. Thin film transistors integrating CsPbBr3 quantum dots for optoelectronic memory application. J. Phys. D Appl. Phys. 2021, 54, 114002.

[14]

Subramanian Periyal, S.; Jagadeeswararao, M.; Ng, S. E.; John, R. A.; Mathews, N. Halide perovskite quantum dots photosensitized-amorphous oxide transistors for multimodal synapses. Adv. Mater. Technol. 2020, 5, 2000514.

[15]

Kim, M. K.; Lee, J. S. Synergistic improvement of long-term plasticity in photonic synapses using ferroelectric polarization in hafnia-based oxide-semiconductor transistors. Adv. Mater. 2020, 32, 1907826.

[16]

Ma, F. M.; Zhu, Y. B.; Xu, Z. W.; Liu, Y.; Zheng, X. J.; Ju, S. M.; Li, Q. Q.; Ni, Z. Q.; Hu, H. L.; Chai, Y. et al. Optoelectronic perovskite synapses for neuromorphic computing. Adv. Funct. Mater. 2020, 30, 1908901.

[17]

Qin, S. C.; Wang, F. Q.; Liu, Y. J.; Wan, Q.; Wang, X. R.; Xu, Y. B.; Shi, Y.; Wang, X. M.; Zhang, R. A light-stimulated synaptic device based on graphene hybrid phototransistor. 2D Mater. 2017, 4, 035022.

[18]

Wu, Q. T.; Wang, J. W.; Cao, J. C.; Lu, C. Y.; Yang, G. H.; Shi, X. W.; Chuai, X.; Gong, Y. X.; Su, Y.; Zhao, Y. et al. Photoelectric plasticity in oxide thin film transistors with tunable synaptic functions. Adv. Electron. Mater. 2018, 4, 1800556.

[19]

Tan, H.; Ni, Z. Y.; Peng, W. B.; Du, S. C.; Liu, X. K.; Zhao, S. Y.; Li, W.; Ye, Z.; Xu, M. S.; Xu, Y. et al. Broadband optoelectronic synaptic devices based on silicon nanocrystals for neuromorphic computing. Nano Energy 2018, 52, 422–430.

[20]

Wu, D.; Zhao, Z. H.; Lu, W.; Rogée, L.; Zeng, L. H.; Lin, P.; Shi, Z. F.; Tian, Y. T.; Li, X. J.; Tsang, Y. H. Highly sensitive solar-blind deep ultraviolet photodetector based on graphene/PtSe2/β-Ga2O3 2D/3D Schottky junction with ultrafast speed. Nano Res. 2021, 14, 1973–1979.

[21]

Zeng, L. H.; Wu, D.; Jie, J. S.; Ren, X. Y.; Hu, X.; Lau, S. P.; Chai, Y.; Tsang, Y. H. Van der Waals epitaxial growth of mosaic-like 2D platinum ditelluride layers for room-temperature mid-infrared photodetection up to 10.6 µm. Adv. Mater. 2020, 32, 2004412.

[22]

Zeng, L. H.; Wu, D.; Lin, S. H.; Xie, C.; Yuan, H. Y.; Lu, W.; Lau, S. P.; Chai, Y.; Luo, L. B.; Li, Z. J. et al. Controlled synthesis of 2D palladium diselenide for sensitive photodetector applications. Adv. Funct. Mater. 2019, 29, 1806878.

[23]

Wu, D.; Guo, J. W.; Du, J.; Xia, C. X.; Zeng, L. H.; Tian, Y. Z.; Shi, Z. F.; Tian, Y. T.; Li, X. J.; Tsang, Y. H. et al. Highly polarization-sensitive, broadband, self-powered photodetector based on graphene/PdSe2/germanium heterojunction. ACS Nano 2019, 13, 9907–9917.

[24]

Xiao, P.; Mao, J.; Ding, K.; Luo, W. J.; Hu, W. D.; Zhang, X. J.; Zhang, X. H.; Jie, J. S. Solution-processed 3D RGO-MoS2/pyramid Si heterojunction for ultrahigh detectivity and ultra-broadband photodetection. Adv. Mater. 2018, 30, 1801729.

[25]

Wang, R. Z.; Chen, P. Y.; Hao, D. D.; Zhang, J. Y.; Shi, Q. Q.; Liu, D. P.; Li, L.; Xiong, L. Z.; Zhou, J. H.; Huang, J. Artificial synapses based on lead-free perovskite floating-gate organic field-effect transistors for supervised and unsupervised learning. ACS Appl. Mater. Interfaces 2021, 13, 43144–43154.

[26]

Liu, Z.; Dai, S. L.; Wang, Y.; Yang, B.; Hao, D. D.; Liu, D. P.; Zhao, Y. W.; Fang, L.; Ou, Q. Q.; Jin, S. et al. Photoresponsive transistors based on lead-free perovskite and carbon nanotubes. Adv. Funct. Mater. 2020, 30, 1906335.

[27]

Pan, S.; Liu, Q. W.; Zhao, J. Q.; Li, G. H. Ultrahigh detectivity and wide dynamic range ultraviolet photodetectors based on BixSn1-xO2 intermediate band semiconductor. ACS Appl. Mater. Interfaces 2017, 9, 28737–28742.

[28]

Zhang, Y.; Zhao, X.; Chen, J. X.; Li, S. Y.; Yang, W.; Fang, X. S. Self-polarized BaTiO3 for greatly enhanced performance of ZnO UV photodetector by regulating the distribution of electron concentration. Adv. Funct. Mater. 2020, 30, 1907650.

[29]

Yoon, J.; Bae, G. Y.; Yoo, S.; Yoo, J. I.; You, N. H.; Hong, W. K.; Ko, H. C. Deep-ultraviolet sensing characteristics of transparent and flexible IGZO thin film transistors. J. Alloys Compd. 2020, 817, 152788.

[30]

Praveen, S.; Veeralingam, S.; Badhulika, S. A flexible self-powered UV photodetector and optical UV filter based on β-Bi2O3/SnO2 quantum dots Schottky heterojunction. Adv. Mater. Interfaces 2021, 8, 2100373.

[31]

Yang, J.; Kwak, H.; Lee, Y.; Kang, Y. S.; Cho, M. H.; Cho, J. H.; Kim, Y. H.; Jeong, S. J.; Park, S.; Lee, H. J. MoS2-InGaZnO heterojunction phototransistors with broad spectral responsivity. ACS Appl. Mater. Interfaces 2016, 8, 8576–8582.

[32]

Kumar, M.; Abbas, S.; Kim, J. All-oxide-based highly transparent photonic synapse for neuromorphic computing. ACS Appl. Mater. Interfaces 2018, 10, 34370–34376.

[33]

Yan, X. B.; Zhou, Z. Y.; Zhao, J. H.; Liu, Q.; Wang, H.; Yuan, G. L.; Chen, J. S. Flexible memristors as electronic synapses for neuro-inspired computation based on scotch tape-exfoliated mica substrates. Nano Res. 2018, 11, 1183–1192.

[34]

Nathan, A.; Ahnood, A.; Cole, M. T.; Lee, S.; Suzuki, Y.; Hiralal, P.; Bonaccorso, F.; Hasan, T.; Garcia-Gancedo, L.; Dyadyusha, A. et al. Flexible electronics: The next ubiquitous platform. Proc. IEEE 2012, 100, 1486–1517.

[35]

Dai, C. Q.; Chen, P. Q.; Qi, S. C.; Hu, Y. B.; Song, Z. T.; Dai, M. Z. Ultrathin flexible InGaZnO transistor for implementing multiple functions with a very small circuit footprint. Nano Res. 2020, 14, 232–238.

[36]

Tak, Y. J.; Kim, D. J.; Kim, W. G.; Lee, J. H.; Kim, S. J.; Kim, J. H.; Kim, H. J. Boosting visible light absorption of metal-oxide-based phototransistors via heterogeneous In-Ga-Zn-O and CH3NH3PbI3 films. ACS Appl. Mater. Interfaces 2018, 10, 12854–12861.

[37]

Yoo, S.; Kim, D. S.; Hong, W. K.; Yoo, J. I.; Huang, F.; Ko, H. C.; Park, J. H.; Yoon, J. Enhanced ultraviolet photoresponse characteristics of indium gallium zinc oxide photo-thin-film transistors enabled by surface functionalization of biomaterials for real-time ultraviolet monitoring. ACS Appl. Mater. Interfaces 2021, 13, 47784–47792.

[38]

Huang, F.; Kim, S. Y.; Rao, Z. L.; Lee, S. J.; Yoon, J.; Park, J. H.; Hong, W. K. Protein biophotosensitizer-based IGZO photo-thin film transistors for monitoring harmful ultraviolet light. ACS Appl. Bio Mater. 2019, 2, 3030–3037.

[39]

Lee, I. K.; Lee, K. H.; Lee, S.; Cho, W. J. Microwave annealing effect for highly reliable biosensor: Dual-gate ion-sensitive field-effect transistor using amorphous InGaZnO thin-film transistor. ACS Appl. Mater. Interfaces 2014, 6, 22680–22686.

[40]

Duan, H. X.; Liang, L. Y.; Wu, Z. D.; Zhang, H. B.; Huang, L.; Cao, H. T. IGZO/CsPbBr3-nanoparticles/IGZO neuromorphic phototransistors and their optoelectronic coupling applications. ACS Appl. Mater. Interfaces 2021, 13, 30165–30173.

[41]

Hwang, D. K.; Lee, Y. T.; Lee, H. S.; Lee, Y. J.; Shokouh, S. H.; Kyhm, J. H.; Lee, J.; Kim, H. H.; Yoo, T. H.; Nam, S. H. et al. Ultrasensitive PbS quantum-dot-sensitized InGaZnO hybrid photoinverter for near-infrared detection and imaging with high photogain. NPG Asia Mater. 2016, 8, e233.

[42]

Liu, X. Q.; Jiang, L.; Zou, X. M.; Xiao, X. H.; Guo, S. S.; Jiang, C. Z.; Liu, X.; Fan, Z. Y.; Hu, W. D.; Chen, X. S. et al. Scalable integration of indium zinc oxide/photosensitive-nanowire composite thin-film transistors for transparent multicolor photodetectors array. Adv. Mater. 2014, 26, 2919–2924.

[43]

Vallés-Pelarda, M.; Gualdrón-Reyes, A. F.; Felip-León, C.; Angulo-Pachón, C. A.; Agouram, S.; Muñoz-Sanjosé, V.; Miravet, J. F.; Galindo, F.; Mora-Seró, I. High optical performance of cyan-emissive CsPbBr3 perovskite quantum dots embedded in molecular organogels. Adv. Opt. Mater. 2021, 9, 2001786.

[44]

Fang, F. E.; Li, H. N.; Fang, S. F.; Zhou, B.; Huang, F.; Ma, C.; Wan, Y.; Jiang, S. C.; Wang, Y.; Tian, B. B. et al. 2D Cs2AgBiBr6 with boosted light-matter interaction for high-performance photodetectors. Adv. Opt. Mater. 2021, 9, 2001930.

[45]

Fan, Q. Q.; Biesold-McGee, G. V.; Ma, J. Z.; Xu, Q. N.; Pan, S.; Peng, J.; Lin, Z. Q. Lead-free halide perovskite nanocrystals: Crystal structures, synthesis, stabilities, and optical properties. Angew. Chem., Int. Ed. 2020, 59, 1030–1046.

[46]

Igbari, F.; Wang, Z. K.; Liao, L. S. Progress of lead-free halide double perovskites. Adv. Energy Mater. 2019, 9, 1803150.

[47]

Lei, L. Z.; Shi, Z. F.; Li, Y.; Ma, Z. Z.; Zhang, F.; Xu, T. T.; Tian, Y. T.; Wu, D.; Li, X. J.; Du, G. T. High-efficiency and air-stable photodetectors based on lead-free double perovskite Cs2AgBiBr6 thin films. J. Mater. Chem. C 2018, 6, 7982–7988.

[48]

Zhang, Z.; Yang, G.; Zhou, C. Z.; Chung, C. C.; Hany, I. Optical and electrical properties of all-inorganic Cs2AgBiBr6 double perovskite single crystals. RSC Adv. 2019, 9, 23459–23464.

[49]

Pan, W. C.; Wu, H. D.; Luo, J. J.; Deng, Z. Z.; Ge, C.; Chen, C.; Jiang, X. W.; Yin, W. J.; Niu, G. D.; Zhu, L. J. et al. Cs2AgBiBr6 single-crystal X-ray detectors with a low detection limit. Nat. Photonics 2017, 11, 726–732.

[50]

Li, Z. W.; Senanayak, S. P.; Dai, L. J.; Kusch, G.; Shivanna, R.; Zhang, Y. C.; Pradhan, D.; Ye, J. Z.; Huang, Y. T.; Sirringhaus, H. et al. Understanding the role of grain boundaries on charge-carrier and ion transport in Cs2AgBiBr6 thin films. Adv. Funct. Mater. 2021, 31, 2104981.

[51]

Su, J.; Huang, Y. Q.; Chen, H.; Huang, J. Solution growth and performance study of Cs2AgBiBr6 single crystal. Cryst. Res. Technol. 2020, 55, 1900222.

[52]

Zelewski, S. J.; Urban, J. M.; Surrente, A.; Maude, D. K.; Kuc, A.; Schade, L.; Johnson, R. D.; Dollmann, M.; Nayak, P. K.; Snaith, H. J. et al. Revealing the nature of photoluminescence emission in the metal-halide double perovskite Cs2AgBiBr6. J. Mater. Chem. C 2019, 7, 8350–8356.

[53]

Ning, W. H.; Zhao, X. G.; Klarbring, J.; Bai, S.; Ji, F. X.; Wang, F.; Simak, S. I.; Tao, Y. T.; Ren, X. M.; Zhang, L. J. et al. Thermochromic lead-free halide double perovskites. Adv. Funct. Mater. 2019, 29, 1807375.

[54]

Liu, C. S.; Yan, X.; Wang, J. L.; Ding, S. J.; Zhou, P.; Zhang, D. W. Eliminating overerase behavior by designing energy band in high-speed charge-trap memory based on WSe2. Small 2017, 13, 1604128.

[55]

Ning, W. H.; Wang, F.; Wu, B.; Lu, J.; Yan, Z. B.; Liu, X. J.; Tao, Y. T.; Liu, J. M.; Huang, W.; Fahlman, M. et al. Long electron-hole diffusion length in high-quality lead-free double perovskite films. Adv. Mater. 2018, 30, 1706246.

[56]

Longo, G.; Mahesh, S.; Buizza, L. R. V.; Wright, A. D.; Ramadan, A. J.; Abdi-Jalebi, M.; Nayak, P. K.; Herz, L. M.; Snaith, H. J. Understanding the performance-limiting factors of Cs2AgBiBr6 double-perovskite solar cells. ACS Energy Lett. 2020, 5, 2200–2207.

[57]

Igbari, F.; Wang, R.; Wang, Z. K.; Ma, X. J.; Wang, Q.; Wang, K. L.; Zhang, Y.; Liao, L. S.; Yang, Y. Composition stoichiometry of Cs2AgBiBr6 films for highly efficient lead-free perovskite solar cells. Nano Lett. 2019, 19, 2066–2073.

[58]

Rim, Y. S.; Yang, Y.; Bae, S. H.; Chen, H. J.; Li, C.; Goorsky, M. S.; Yang, Y. Ultrahigh and broad spectral photodetectivity of an organic-inorganic hybrid phototransistor for flexible electronics. Adv. Mater. 2015, 27, 6885–6891.

[59]

Jeon, S.; Ahn, S. E.; Song, I.; Kim, C. J.; Chung, U. I.; Lee, E. Yoo, I.; Nathan, A.; Lee, S.; Ghaffarzadeh, K. et al. Gated three-terminal device architecture to eliminate persistent photoconductivity in oxide semiconductor photosensor arrays. Nat. Mater. 2012, 11, 301–305.

[60]

Xia, Q. F.; Yang, J. J. Memristive crossbar arrays for brain-inspired computing. Nat. Mater. 2019, 18, 309–323.

[61]

Kim, S. G.; Han, J. S.; Kim, H.; Kim, S. Y.; Jang, H. W. Recent advances in memristive materials for artificial synapses. Adv. Mater. Technol. 2018, 3, 1800457.

[62]

John, R. A.; Ko, J.; Kulkarni, M. R.; Tiwari, N.; Chien, N. A.; Ing, N. G.; Leong, W. L.; Mathews, N. Flexible ionic-electronic hybrid oxide synaptic TFTs with programmable dynamic plasticity for brain-inspired neuromorphic computing. Small 2017, 13, 1701193.

[63]

Atkinson, R. C.; Shiffrin, R. M. Human memory: A proposed system and its control processes. Psychol. Learn. Motiv 1968, 2, 89–195.

[64]

Lee, M.; Nam, S.; Cho, B.; Kwon, O.; Lee, H. U.; Hahm, M. G.; Kim, U. J.; Son, H. Accelerated learning in wide-band-gap AlN artificial photonic synaptic devices: Impact on suppressed shallow trap level. Nano Lett. 2021, 21, 7879–7886.

[65]

McGaugh, J. L. Memory-a century of consolidation. Science 2000, 287, 248–251.

[66]

Bi, G. Q.; Poo, M. M. Synaptic modifications in cultured hippocampal neurons: Dependence on spike timing, synaptic strength, and postsynaptic cell type. J. Neurosci. 1998, 18, 10464–10472.

[67]

Lv, Z. Y.; Chen, M.; Qian, F. S.; Roy, V. A. L.; Ye, W. B.; She, D. H.; Wang, Y.; Xu, Z. X.; Zhou, Y.; Han, S. T. Mimicking neuroplasticity in a hybrid biopolymer transistor by dual modes modulation. Adv. Funct. Mater. 2019, 29, 1902374.

[68]

Li, H. L.; Jiang, X. T.; Ye, W. B.; Zhang, H.; Zhou, L.; Zhang, F.; She, D. H.; Zhou, Y.; Han, S. T. Fully photon modulated heterostructure for neuromorphic computing. Nano Energy 2019, 65, 104000.

[69]

Zhai, Y. B.; Zhou, Y.; Yang, X. Q.; Wang, F.; Ye, W. B.; Zhu, X. J.; She, D. H.; Lu, W. D.; Han, S. T. Near infrared neuromorphic computing via upconversion-mediated optogenetics. Nano Energy 2020, 67, 104262.

File
12274_2022_4806_MOESM1_ESM.pdf (3 MB)
Publication history
Copyright
Acknowledgements

Publication history

Received: 20 April 2022
Revised: 20 July 2022
Accepted: 25 July 2022
Published: 17 September 2022
Issue date: January 2023

Copyright

© Tsinghua University Press 2022

Acknowledgements

Acknowledgements

Shi Y. M. and Han C. acknowledge the support from the National Natural Science Foundation of China (Nos. 61874074 and 62004128), the Fundamental Research Foundation of Shenzhen (Nos. JCYJ20170817101100705 and JCYJ20190808152607389) and the Key Project of Department of Education of Guangdong Province (No. 2016KZDXM008). Li H. N. acknowledges the support from the Natural Science Foundation of SZU (No. 2017011) and the Science and Technology Project of Shenzhen (No. JCYJ20170817100111548). This research is supported by Singapore Ministry of Education under its AcRF Tier 2 (No. MOE-T2EP50220-0001), the Shenzhen Peacock Plan (No. KQTD2016053112042971), and the postgraduate innovation development fund project of Shenzhen University (No. 315-0000470527).

Return