Journal Home > Volume 16 , Issue 1

Single-atom catalysts (SACs) have recently emerged as stars in boosting the synthesis of NH3 from N2, as the catalytic performance of the supported single atoms can be modulated by their coordination environment. In this work, we propose a new strategy, based on comprehensive density functional theory calculations, whereby the coordination environment of a single Mo atom can be tuned by a central heteroatom (X = Fe, Co, Ni, Cu, Zn, Ga, Ge, and As) in the Kegging-type polyoxometalate (POM, (XW12O40)n) substrate to catalyze the electrochemical nitrogen reduction reactions (NRR). Firstly, we demonstrate that the single Mo atom binds strongly to the POM surface oxygen hollow sites without aggregation. Secondly, the adsorption of *N2 on the POM-supported Mo atom is investigated and the reactivity is assessed by calculating the thermodynamics of the NRR. The results show that the POM (X = Co and As) supported Mo atom has high NRR activity with low limiting potentials. Finally, we reveal the origin of the NRR activity by analyzing the electronic structure. The results show that the charge on the O atoms of oxygen hollow sites is affected by the central heteroatom. Due to such effect, it can be found that more d electrons are transferred from Mo supported by POM (X = Co and As) to *N2, thus the N≡N triple bond is activated. This strategy of coordination environment tuning proposed in this work provides a useful guide for the design of efficient catalysts for electrocatalysis.


menu
Abstract
Full text
Outline
Electronic supplementary material
About this article

The role of central heteroatom in electrochemical nitrogen reduction catalyzed by polyoxometalate-supported single-atom catalyst

Show Author's information Linghui Lin1Fenfei Wei1Rong Jiang2( )Yucheng Huang3( )Sen Lin1,4( )
State Key Laboratory of Photocatalysis on Energy and Environment, College of Chemistry, Fuzhou University, Fuzhou 350002, China
Institute of Advanced Energy Materials, Fuzhou University, Fuzhou 350002, China
College of Chemistry and Material Science, Anhui Normal University, Wuhu 241000, China
Fujian Provincial Key Laboratory of Theoretical and Computational Chemistry, Xiamen 361005, China

Abstract

Single-atom catalysts (SACs) have recently emerged as stars in boosting the synthesis of NH3 from N2, as the catalytic performance of the supported single atoms can be modulated by their coordination environment. In this work, we propose a new strategy, based on comprehensive density functional theory calculations, whereby the coordination environment of a single Mo atom can be tuned by a central heteroatom (X = Fe, Co, Ni, Cu, Zn, Ga, Ge, and As) in the Kegging-type polyoxometalate (POM, (XW12O40)n) substrate to catalyze the electrochemical nitrogen reduction reactions (NRR). Firstly, we demonstrate that the single Mo atom binds strongly to the POM surface oxygen hollow sites without aggregation. Secondly, the adsorption of *N2 on the POM-supported Mo atom is investigated and the reactivity is assessed by calculating the thermodynamics of the NRR. The results show that the POM (X = Co and As) supported Mo atom has high NRR activity with low limiting potentials. Finally, we reveal the origin of the NRR activity by analyzing the electronic structure. The results show that the charge on the O atoms of oxygen hollow sites is affected by the central heteroatom. Due to such effect, it can be found that more d electrons are transferred from Mo supported by POM (X = Co and As) to *N2, thus the N≡N triple bond is activated. This strategy of coordination environment tuning proposed in this work provides a useful guide for the design of efficient catalysts for electrocatalysis.

Keywords: density functional theory, single-atom catalyst, polyoxometalate, electrochemical nitrogen reduction, central heteroatom

References(58)

[1]

Giddey, S.; Badwal, S. P. S.; Munnings, C.; Dolan, M. Ammonia as a renewable energy transportation media. ACS Sustainable Chem. Eng. 2017, 5, 10231–10239.

[2]

Qing, G.; Ghazfar, R.; Jackowski, S. T.; Habibzadeh, F.; Ashtiani, M. M.; Chen, C. P.; Smith, M. R.; Hamann, T. W. Recent advances and challenges of electrocatalytic N2 reduction to ammonia. Chem. Rev. 2020, 120, 5437–5516.

[3]

Rosca, V.; Duca, M.; De Groot, M. T.; Koper, M. T. M. Nitrogen cycle electrocatalysis. Chem. Rev. 2009, 109, 2209–2244.

[4]

Zhang, L.; Ji, X. Q.; Ren, X.; Ma, Y. J.; Shi, X. F.; Tian, Z. Q.; Asiri, A. M.; Chen, L.; Tang, B.; Sun, X. P. Electrochemical ammonia synthesis via nitrogen reduction reaction on a MoS2 catalyst: Theoretical and experimental studies. Adv. Mater. 2018, 30, 1800191.

[5]

Tan, H.; Ji, Q. Q.; Wang, C.; Duan, H. L.; Kong, Y.; Wang, Y.; Feng, S. H.; Lv, L. Y.; Hu, F. C.; Zhang, W. H. et al. Asymmetrical π back-donation of hetero-dicationic Mo4+−Mo6+ pairs for enhanced electrochemical nitrogen reduction. Nano Res. 2022, 15, 3010–3016.

[6]

Van Der Ham, C. J. M.; Koper, M. T. M.; Hetterscheid, D. G. H. Challenges in reduction of dinitrogen by proton and electron transfer. Chem. Soc. Rev. 2014, 43, 5183–5191.

[7]

Wang, Z. X.; Yu, Z. G.; Zhao, J. X. Computational screening of a single transition metal atom supported on the C2N monolayer for electrochemical ammonia synthesis. Phys. Chem. Chem. Phys. 2018, 20, 12835–12844.

[8]

Huang, C. X.; Lv, S. Y.; Li, C.; Peng, B.; Li, G. L.; Yang, L. M. Single-atom catalysts based on two-dimensional metalloporphyrin monolayers for ammonia synthesis under ambient conditions. Nano Res. 2022, 15, 4039–4047.

[9]

Qi, J. M.; Zhou, S. L.; Xie, K.; Lin, S. Catalytic role of assembled Ce Lewis acid sites over ceria for electrocatalytic conversion of dinitrogen to ammonia. J. Energy Chem. 2021, 60, 249–258.

[10]

Liang, X. Y.; Deng, X. X.; Guo, C.; Wu, C. M. L. Activity origin and design principles for atomic vanadium anchoring on phosphorene monolayer for nitrogen reduction reaction. Nano Res. 2020, 13, 2925–2932.

[11]

Cui, C. N.; Zhang, H. C.; Luo, Z. X. Nitrogen reduction reaction on small iron clusters supported by N-doped graphene: A theoretical study of the atomically precise active-site mechanism. Nano Res. 2020, 13, 2280–2288.

[12]

Liu, Y. M.; Su, Y.; Quan, X.; Fan, X. F.; Chen, S.; Yu, H. T.; Zhao, H. M.; Zhang, Y. B.; Zhao, J. J. Facile ammonia synthesis from electrocatalytic N2 reduction under ambient conditions on N-doped porous carbon. ACS Catal. 2018, 8, 1186–1191.

[13]

Jing, H. Y.; Zhu, P.; Zheng, X. B.; Zhang, Z. D.; Wang, D. S.; Li, Y. D. Theory-oriented screening and discovery of advanced energy transformation materials in electrocatalysis. Adv. Powder Mater. 2022, 1, 100013.

[14]

Zhao, X. H.; Zhang, X.; Xue, Z. M.; Chen, W. J.; Zhou, Z.; Mu, T. C. Fe nanodot-decorated MoS2 nanosheets on carbon cloth: An efficient and flexible electrode for ambient ammonia synthesis. J. Mater. Chem. A 2019, 7, 27417–27422.

[15]

Xie, K.; Wang, F. T.; Wei, F. F.; Zhao, J.; Lin, S. Revealing the origin of nitrogen electroreduction activity of molybdenum disulfide supported iron atoms. J. Phys. Chem. C 2022, 126, 5180–5188.

[16]

Zhao, J. X.; Chen, Z. F. Single Mo atom supported on defective boron nitride monolayer as an efficient electrocatalyst for nitrogen fixation: A computational study. J. Am. Chem. Soc. 2017, 139, 12480–12487.

[17]

Cheng, Y. W.; Dai, J. H.; Song, Y.; Zhang, Y. M. Single molybdenum atom anchored on 2D Ti2NO2 MXene as a promising electrocatalyst for N2 fixation. Nanoscale 2019, 11, 18132–18141.

[18]

Jiang, M. H.; Tao, A. Y.; Hu, Y.; Wang, L.; Zhang, K. Q.; Song, X. M.; Yan, W.; Tie, Z.; Jin, Z. Crystalline modulation engineering of Ru nanoclusters for boosting ammonia electrosynthesis from dinitrogen or nitrate. ACS Appl. Mater. Interfaces 2022, 14, 17470–17478.

[19]

Wu, T. W.; Melander, M. M.; Honkala, K. Coadsorption of NRR and HER intermediates determines the performance of Ru-N4 toward electrocatalytic N2 reduction. ACS Catal. 2022, 12, 2505–2512.

[20]

Lin, L. H.; Chen, Z.; Chen, W. X. Single atom catalysts by atomic diffusion strategy. Nano Res. 2021, 14, 4398–4416.

[21]

Zhang, Q. Q.; Guan, J. Q. Single-atom catalysts for electrocatalytic applications. Adv. Funct. Mater. 2020, 30, 2000768.

[22]

Liu, Y. W.; Wang, B. X.; Fu, Q.; Liu, W.; Wang, Y.; Gu, L.; Wang, D. S.; Li, Y. D. Polyoxometalate-based metal-organic framework as molecular sieve for highly selective semi-hydrogenation of acetylene on isolated single Pd atom sites. Angew. Chem., Int. Ed. 2021, 60, 22522–22528.

[23]

Li, J. J.; Banis, M. N.; Ren, Z. H.; Adair, K. R.; Doyle-Davis, K.; Meira, D. M.; Finfrock, Y. Z.; Zhang, L.; Kong, F. P.; Sham, T. K. et al. Unveiling the nature of pt single-atom catalyst during electrocatalytic hydrogen evolution and oxygen reduction reactions. Small 2021, 17, 2007245.

[24]

Zafari, M.; Umer, M.; Nissimagoudar, A. S.; Anand, R.; Ha, M. R.; Umer, S.; Lee, G.; Kim, K. S. Unveiling the role of charge transfer in enhanced electrochemical nitrogen fixation at single-atom catalysts on BX sheets (X = As, P, Sb). J. Phys. Chem. Lett. 2022, 13, 4530–4537.

[25]

Cao, H.; Zhang, Z. S.; Chen, J. W.; Wang, Y. G. Potential-dependent free energy relationship in interpreting the electrochemical performance of CO2 reduction on single atom catalysts. ACS Catal. 2022, 12, 6606–6617.

[26]

Wang, Y.; Liu, T. Y.; Li, Y. F. Why heterogeneous single-atom catalysts preferentially produce CO in the electrochemical CO2 reduction reaction. Chem. Sci. 2022, 13, 6366–6372.

[27]

Ma, Y.; Ren, Y. J.; Zhou, Y. N.; Liu, W.; Baaziz, W.; Ersen, O.; Pham-Huu, C.; Greiner, M.; Chu, W.; Wang, A. Q. et al. High-density and thermally stable palladium single-atom catalysts for chemoselective hydrogenations. Angew. Chem., Int. Ed. 2020, 59, 21613–21619.

[28]

Zhang, Z. D.; Zhou, M.; Chen, Y. J.; Liu, S. J.; Wang, H. F.; Zhang, J.; Ji, S. F.; Wang, D. S.; Li, Y. D. Pd single-atom monolithic catalyst: Functional 3D structure and unique chemical selectivity in hydrogenation reaction. Sci. China Mater. 2021, 64, 1919–1929.

[29]

Meng, X. Y.; Ma, C.; Jiang, L. Z.; Si, R.; Meng, X. G.; Tu, Y. C.; Yu, L.; Bao, X. H.; Deng, D. H. Distance synergy of MoS2-confined rhodium atoms for highly efficient hydrogen evolution. Angew. Chem., Int. Ed. 2020, 59, 10502–10507.

[30]

Wei, Y. S.; Zhang, M.; Zou, R. Q.; Xu, Q. Metal-organic framework-based catalysts with single metal sites. Chem. Rev. 2020, 120, 12089–12174.

[31]

Zhao, D.; Chen, Z.; Yang, W. J.; Liu, S. J.; Zhang, X.; Yu, Y.; Cheong, W. C.; Zheng, L. R.; Ren, F. Q.; Ying, G. B. et al. MXene (Ti3C2) vacancy-confined single-atom catalyst for efficient functionalization of CO2. J. Am. Chem. Soc. 2019, 141, 4086–4093.

[32]

Gawish, M. A.; Drmosh, Q. A.; Onaizi, S. A. Single atom catalysts: An overview of the coordination and interactions with metallic supports. Chem. Rec. 2022, e202100328.

[33]

Zhang, X. R.; Xu, X. M.; Yao, S. X.; Hao, C.; Pan, C.; Xiang, X.; Tian, Z. Q.; Shen, P. K.; Shao, Z. P.; Jiang, S. P. Boosting electrocatalytic activity of single atom catalysts supported on nitrogen-doped carbon through N coordination environment engineering. Small 2022, 18, 2105329.

[34]

Yu, M. A.; Feng, Y. X.; Gao, L. Y.; Lin, S. Phosphomolybdic acid supported single-metal-atom catalysis in CO oxidation: First-principles calculations. Phys. Chem. Chem. Phys. 2018, 20, 20661–20668.

[35]

Cherevan, A. S.; Nandan, S. P.; Roger, I.; Liu, R. J.; Streb, C.; Eder, D. Polyoxometalates on functional substrates: Concepts, synergies, and future perspectives. Adv. Sci. 2020, 7, 1903511.

[36]
Hülsey, M. J.; Baskaran, S.; Ding, S. P.; Wang, S. K.; Asakura, H.; Furukawa, S.; Xi, S. B.; Yu, Q.; Xu, C. Q.; Li, J. et al. Identifying key descriptors for the single-atom catalyzed CO oxidation. CCS Chem. in press, http://doi.org/10.31635/ccschem.022.202201914.
[37]

Talib, S. H.; Lu, Z. S.; Yu, X. H.; Ahmad, K.; Bashir, B.; Yang, Z. Y.; Li, J. Theoretical inspection of M1/PMA single-atom electrocatalyst: Ultra-high performance for water splitting (HER/OER) and oxygen reduction reactions (OER). ACS Catal. 2021, 11, 8929–8941.

[38]

Gao, L. Y.; Wang, F. T.; Yu, M. A.; Wei, F. F.; Qi, J. M.; Lin, S.; Xie, D. Q. A novel phosphotungstic acid-supported single metal atom catalyst with high activity and selectivity for the synthesis of NH3 from electrochemical N2 reduction: A DFT prediction. J. Mater. Chem. A 2019, 7, 19838–19845.

[39]

Liao, W. R.; Qi, L.; Wang, Y. L.; Qin, J. Y.; Liu, G. Y.; Liang, S. J.; He, H. Y.; Jiang, L. L. Interfacial engineering promoting electrosynthesis of ammonia over Mo/phosphotungstic acid with high performance. Adv. Funct. Mater. 2021, 31, 2009151.

[40]

López, X.; Carbó, J. J.; Bo, C.; Poblet, J. M. Structure, properties and reactivity of polyoxometalates: A theoretical perspective. Chem. Soc. Rev. 2012, 41, 7537–7571.

[41]

López, X.; Maestre, J. M.; Bo, C.; Poblet, J. M. Electronic properties of polyoxometalates: A DFT study of α/β-[XM12O40]n relative stability (M = W, Mo and X a main group element). J. Am. Chem. Soc. 2001, 123, 9571–9576.

[42]

Zhang, F. Q.; Zhang, X. M.; Wu, H. S.; Jiao, H. J. Structural and electronic properties of hetero-transition-metal keggin anions: A DFT study of α/β-[XW12O40]n (X = CrVI, VV, TiIV, FeIII, CoIII, NiIII, CoII, and ZnII) relative stability. J. Phys. Chem. A 2007, 111, 159–166.

[43]
López, X. Effect of protonation, composition and isomerism on the redox properties and electron (de)localization of classical polyoxometalates. Phys. Sci. Rev., in press, https://doi.org/10.1515/psr-2017-0137.
[44]

Lin, L. H.; Gao, L. Y.; Xie, K.; Jiang, R.; Lin, S. Rupolyoxometalate as a single-atom electrocatalyst for N2 reduction to NH3 with high selectivity at applied voltage: A perspective from DFT studies. Phys. Chem. Chem. Phys. 2020, 22, 7234–7240.

[45]

Kresse, G.; Furthmüller, J. Efficient iterative schemes for ab initio total-energy calculations using a plane-wave basis set. Phys. Rev. B 1996, 54, 11169–11186.

[46]

Kresse, G.; Furthmüller, J. Efficiency of ab-initio total energy calculations for metals and semiconductors using a plane-wave basis set. Comput. Mater. Sci. 1996, 6, 15–50.

[47]

Kresse, G.; Hafner, J. Ab initio molecular dynamics for liquid metals. Phys. Rev. B 1993, 47, 558–561.

[48]

Grimme, S.; Antony, J.; Ehrlich, S.; Krieg, H. A consistent and accurate ab initio parametrization of density functional dispersion correction (DFT-D) for the 94 elements H-Pu. J. Chem. Phys. 2010, 132, 154104.

[49]

Wang, S. J.; Feng, Y. X.; Lin, S.; Guo, H. Phosphomolybdic acid supported atomically dispersed transition metal atoms (M = Fe, Co, Ni, Cu, Ru, Rh, Pd, Ag, Os, Ir, Pt, and Au): Stable single atom catalysts studied by density functional theory. RSC Adv. 2017, 7, 24925–24932.

[50]

Zhang, B.; Asakura, H.; Zhang, J.; Zhang, J. G.; De, S.; Yan, N. Stabilizing a platinum1 single-atom catalyst on supported phosphomolybdic acid without compromising hydrogenation activity. Angew. Chem., Int. Ed. 2016, 55, 8319–8323.

[51]

Nørskov, J. K.; Rossmeisl, J.; Logadottir, A.; Lindqvist, L.; Kitchin, J. R.; Bligaard, T.; Jónsson, H. Origin of the overpotential for oxygen reduction at a fuel-cell cathode. J. Phys. Chem. B 2004, 108, 17886–17892.

[52]

Peterson, A. A.; Abild-Pedersen, F.; Studt, F.; Rossmeisl, J.; Nørskov, J. K. How copper catalyzes the electroreduction of carbon dioxide into hydrocarbon fuels. Energy Environ. Sci. 2010, 3, 1311–1315.

[53]

Rod, T. H.; Logadottir, A.; Nørskov, J. K. Ammonia synthesis at low temperatures. J. Chem. Phys. 2000, 112, 5343–5347.

[54]

Zhao, W. H.; Zhang, L. F.; Luo, Q. Q.; Hu, Z. P.; Zhang, W. H.; Smith, S.; Yang, J. L. Single Mo1(Cr1) atom on nitrogen-doped graphene enables highly selective electroreduction of nitrogen into ammonia. ACS Catal. 2019, 9, 3419–3425.

[55]

Choi, C.; Back, S.; Kim, N. Y.; Lim, J.; Kim, Y. H.; Jung, Y. Suppression of hydrogen evolution reaction in electrochemical N2 reduction using single-atom catalysts: A computational guideline. ACS Catal. 2018, 8, 7517–7525.

[56]

Luo, Y. R.; Chen, G. F.; Ding, L.; Chen, X. Z.; Ding, L. X.; Wang, H. H. Efficient electrocatalytic N2 fixation with mxene under ambient conditions. Joule 2019, 3, 279–289.

[57]

Clayborne, A.; Chun, H. J.; Rankin, R. B.; Greeley, J. Elucidation of pathways for NO electroreduction on Pt(111) from first principles. Angew. Chem., Int. Ed. 2015, 54, 8255–8258.

[58]

Qi, J. M.; Gao, L. Y.; Wei, F. F.; Wan, Q.; Lin, S. Design of a high-performance electrocatalyst for N2 conversion to NH3 by trapping single metal atoms on stepped CeO2. ACS Appl. Mater. Interfaces 2019, 11, 47525–47534.

File
12274_2022_4800_MOESM1_ESM.pdf (552 KB)
Publication history
Copyright
Acknowledgements

Publication history

Received: 05 July 2022
Revised: 19 July 2022
Accepted: 20 July 2022
Published: 17 August 2022
Issue date: January 2023

Copyright

© Tsinghua University Press 2022

Acknowledgements

Acknowledgements

We thank the National Natural Science Foundation of China (No. 21973013), the National Natural Science Foundation of Fujian Province, China (No. 2020J02025), and the “Chuying Program” for the Top Young Talents of Fujian Province. The numerical calculations in this paper have been done on Hefei advanced computing center and Supercomputing Center of Fujian.

Return