Journal Home > Volume 16 , Issue 1

Due to their unique properties and uninterrupted breakthrough in a myriad of clean energy-related applications, carbon-based materials have received great interest. However, the low selectivity and poor conductivity are two primary difficulties of traditional carbon-based materials (zero-dimensional (0D)/one-dimensional (1D)/two-dimensional (2D)), enerating inefficient hydrogen production and impeding the future commercialization of carbon-based materials. To improve hydrogen production, attempts are made to enlarge the surface area of porous three-dimensional (3D) carbon-based materials, achieve uniform interconnected porous channels, and enhance their stability, especially under extreme conditions. In this review, the structural advantages and performance improvements of porous carbon nanotubes (CNTs), g-C3N4, covalent organic frameworks (COFs), metal-organic frameworks (MOFs), MXenes, and biomass-derived carbon-based materials are firstly summarized, followed by discussing the mechanisms involved and assessing the performance of the main hydrogen production methods. These include, for example, photo/electrocatalytic hydrogen production, release from methanolysis of sodium borohydride, methane decomposition, and pyrolysis-gasification. The role that the active sites of porous carbon-based materials play in promoting charge transport, and enhancing electrical conductivity and stability, in a hydrogen production process is discussed. The current challenges and future directions are also discussed to provide guidelines for the development of next-generation high-efficiency hydrogen 3D porous carbon-based materials prospected.


menu
Abstract
Full text
Outline
About this article

Porous 3D carbon-based materials: An emerging platform for efficient hydrogen production

Show Author's information Fangyi Li1Jizhou Jiang1( )Jiamei Wang1Jing Zou1Wei Sun1( )Haitao Wang1Kun Xiang1Pingxiu Wu2Jyh-Ping Hsu3( )
School of Environmental Ecology and Biological Engineering, School of Chemistry and Environmental Engineering, Key Laboratory of Green Chemical Engineering Process of Ministry of Education, Engineering Research Center of Phosphorus Resources Development and Utilization of Ministry of Education, Wuhan Institute of Technology, Wuhan 430205, China
Semiconductor Electronic Special Gas of Hubei Engineering Research Center, Jingzhou 434000, China
Department of Chemical Engineering, “National Taiwan University”, Taipei 10617

Abstract

Due to their unique properties and uninterrupted breakthrough in a myriad of clean energy-related applications, carbon-based materials have received great interest. However, the low selectivity and poor conductivity are two primary difficulties of traditional carbon-based materials (zero-dimensional (0D)/one-dimensional (1D)/two-dimensional (2D)), enerating inefficient hydrogen production and impeding the future commercialization of carbon-based materials. To improve hydrogen production, attempts are made to enlarge the surface area of porous three-dimensional (3D) carbon-based materials, achieve uniform interconnected porous channels, and enhance their stability, especially under extreme conditions. In this review, the structural advantages and performance improvements of porous carbon nanotubes (CNTs), g-C3N4, covalent organic frameworks (COFs), metal-organic frameworks (MOFs), MXenes, and biomass-derived carbon-based materials are firstly summarized, followed by discussing the mechanisms involved and assessing the performance of the main hydrogen production methods. These include, for example, photo/electrocatalytic hydrogen production, release from methanolysis of sodium borohydride, methane decomposition, and pyrolysis-gasification. The role that the active sites of porous carbon-based materials play in promoting charge transport, and enhancing electrical conductivity and stability, in a hydrogen production process is discussed. The current challenges and future directions are also discussed to provide guidelines for the development of next-generation high-efficiency hydrogen 3D porous carbon-based materials prospected.

Keywords: hydrogen production, porous three-dimensional (3D) carbon-based materials, advanced synthesis

References(135)

[1]

Pang, J. B.; Mendes, R. G.; Bachmatiuk, A.; Zhao, L. A.; Ta, H. Q.; Gemming, T.; Liu, H.; Liu, Z. F.; Rummeli, M. H. Applications of 2D MXenes in energy conversion and storage systems. Chem. Soc. Rev. 2019, 48, 72–133.

[2]

Kong, F. T.; Qiao, Y.; Zhang, C. Q.; Fan, X. H.; Kong, A. G.; Shan, Y. K. Unadulterated carbon as robust multifunctional electrocatalyst for overall water splitting and oxygen transformation. Nano Res. 2020, 13, 401–411.

[3]

Salcedo-Abraira, P.; Vilela, S. M. F.; Babaryk, A. A.; Cabrero-Antonino, M.; Gregorio, P.; Salles, F.; Navalón, S.; García, H.; Horcajada, P. Nickel phosphonate MOF as efficient water splitting photocatalyst. Nano Res. 2021, 14, 450–457.

[4]

Zou, J.; Wu, J.; Wang, Y. Z.; Deng, F. X.; Jiang, J. Z.; Zhang, Y. Z.; Liu, S.; Li, N.; Zhang, H.; Yu, J. G. et al. Additive-mediated intercalation and surface modification of MXenes. Chem. Soc. Rev. 2022, 51, 2972–2990.

[5]

Jiang, J. Z.; Xiong, Z. G.; Wang, H. T.; Liao, G. D.; Bai, S. S.; Zou, J.; Wu, P. X.; Zhang, P.; Li, X. Sulfur-doped g-C3N4/g-C3N4 isotype step-scheme heterojunction for photocatalytic H2 evolution. J. Mater. Sci. Technol. 2022, 118, 15–24.

[6]

Jiang, J. Z.; Zou, Y. L.; Arramel; Li, F. Y.; Wang, J. M.; Zou, J.; Li, N. Intercalation engineering of MXenes towards highly efficient photo (electrocatalytic) hydrogen evolution reactions. J. Mater. Chem. A 2021, 9, 24195–24214.

[7]

Jiang, J. Z.; Bai, S. S.; Zou, J.; Liu, S.; Hsu, J. P.; Li, N.; Zhu, G. Y.; Zhuang, Z. C.; Kang, Q.; Zhang, Y. Z. Improving stability of MXenes. Nano Res. 2022, 15, 6551–6567.

[8]

Jiang, J. Z.; Zhu, L. H.; Zou, J.; Ouyang, L.; Zheng, A. M.; Tang, H. Q. Micro/nano-structured graphitic carbon nitride-Ag nanoparticle hybrids as surface-enhanced Raman scattering substrates with much improved long-term stability. Carbon 2015, 87, 193–205.

[9]

Jiang, J. Z.; Li, N.; Zou, J.; Zhou, X.; Eda, G.; Zhang, Q. F.; Zhang, H.; Li, L. J.; Zhai, T. Y.; Wee, A. T. S. Synergistic additive-mediated CVD growth and chemical modification of 2D materials. Chem. Soc. Rev. 2019, 48, 4639–4654.

[10]

Shi, X. W.; Dai, C.; Wang, X.; Hu, J. Y.; Zhang, J. Y.; Zheng, L. X.; Mao, L.; Zheng, H. J.; Zhu, M. S. Protruding Pt single-sites on hexagonal ZnIn2S4 to accelerate photocatalytic hydrogen evolution. Nat. Commun. 2022, 13, 1287.

[11]

Zhang, Y. M.; Zhao, J. H.; Wang, H.; Xiao, B.; Zhang, W.; Zhao, X. B.; Lv, T. P.; Thangamuthu, M.; Zhang, J.; Guo, Y. et al. Single-atom Cu anchored catalysts for photocatalytic renewable H2 production with a quantum efficiency of 56%. Nat. Commun. 2022, 13, 58.

[12]

Wang, Q. F.; Zou, R. Q.; Xia, W.; Ma, J.; Qiu, B.; Mahmood, A.; Zhao, R.; Yang, Y. Y. C.; Xia, D. G.; Xu, Q. Facile synthesis of ultrasmall CoS2 nanoparticles within thin N-doped porous carbon shell for high performance lithium-ion batteries. Small 2015, 11, 2511–2517.

[13]

Atinafu, D. G.; Dong, W. J.; Wang, C.; Wang, G. Synthesis of porous carbon from cotton using an Mg(OH)2 template for form-stabilized phase change materials with high encapsulation capacity, transition enthalpy and reliability. J. Mater. Chem. A 2018, 6, 8969–8977.

[14]

Mao, E. Y.; Wang, W. Y.; Wan, M. T.; Wang, L.; He, X. M.; Sun, Y. M. Confining ultrafine Li3P nanoclusters in porous carbon for high-performance lithium-ion battery anode. Nano Res. 2020, 13, 1122–1126.

[15]

He, X. M.; Bai, S. S.; Jiang, J. Z.; Ong, W. J.; Peng, J. H.; Xiong, Z. G.; Liao, G. D.; Zou, J.; Li, N. Oxygen vacancy mediated step-scheme heterojunction of WO2.9/g-C3N4 for efficient electrochemical sensing of 4-nitrophenol. Chem. Eng. J. Adv. 2021, 8, 100175.

[16]

Behabtu, N.; Young, C. C.; Tsentalovich, D. E.; Kleinerman, O.; Wang, X.; Ma, A. W. K.; Bengio, E. A.; Ter Waarbeek, R. F.; De Jong, J. J.; Hoogerwerf, R. E. et al. Strong, light, multifunctional fibers of carbon nanotubes with ultrahigh conductivity. Science 2013, 339, 182–186.

[17]

Balandin, A. A. Thermal properties of graphene and nanostructured carbon materials. Nat. Mater. 2011, 10, 569–581.

[18]

Zhang, S. J.; Zhang, Y. S.; Shao, G. S.; Zhang, P. Bio-inspired construction of electrocatalyst decorated hierarchical porous carbon nanoreactors with enhanced mass transfer ability towards rapid polysulfide redox reactions. Nano Res. 2021, 14, 3942–3951.

[19]

Liang, X. P.; Li, H. F.; Dou, J. X.; Wang, Q.; He, W. Y.; Wang, C. Y.; Li, D. H.; Lin, J. M.; Zhang, Y. Y. Stable and biocompatible carbon nanotube ink mediated by silk protein for printed electronics. Adv. Mater. 2020, 32, 2000165.

[20]

Yan, J. S.; Orecchioni, M.; Vitale, F.; Coco, J. A.; Duret, G.; Antonucci, S.; Pamulapati, S. S.; Taylor, L. W.; Dewey, O. S.; Di Sante, M. et al. Biocompatibility studies of macroscopic fibers made from carbon nanotubes: Implications for carbon nanotube macrostructures in biomedical applications. Carbon 2021, 173, 462–476.

[21]

Gilbert, M. T.; Knox, J. H.; Kaur, B. Porous glassy carbon, a new columns packing material for gas chromatography and high-performance liquid chromatography. Chromatographia 1982, 16, 138–146.

[22]

Rzepka, M.; Lamp, P.; de la Casa-Lillo, M. A. Physisorption of hydrogen on microporous carbon and carbon nanotubes. J. Phys. Chem. B 1998, 102, 10894–10898.

[23]

Cinke, M.; Li, J.; Chen, B.; Cassell, A.; Delzeit, L.; Han, J.; Meyyappan, M. Pore structure of raw and purified HiPco single-walled carbon nanotubes. Chem. Phys. Lett. 2002, 365, 69–74.

[24]

Tao, X. Y.; Zhang, X. B.; Zhang, L.; Cheng, J. P.; Liu, F.; Luo, J. H.; Luo, Z. Q.; Geise, H. J. Synthesis of multi-branched porous carbon nanofibers and their application in electrochemical double-layer capacitors. Carbon 2006, 44, 1425–1428.

[25]

Bhargava, B.; Reddy, N. K.; Karthikeyan, G.; Raju, R.; Mishra, S.; Singh, S.; Waksman, R.; Virmani, R.; Somaraju, B. A novel paclitaxel-eluting porous carbon-carbon nanoparticle coated, nonpolymeric cobalt-chromium stent: Evaluation in a porcine mode. Catheter. Cardiovasc. Interv. 2006, 67, 698–702.

[26]

Lu, Y. M.; Gong, Q. M.; Lu, F. P.; Liang, J.; Ji, L. J.; Nie, Q. D.; Zhang, X. M. Preparation of sulfonated porous carbon nanotubes/activated carbon composite beads and their adsorption of low density lipoprotein. J. Mater. Sci. Mater. Med. 2011, 22, 1855–1862.

[27]

Zheng, X. Y.; Lv, W.; Tao, Y.; Shao, J. J.; Zhang, C.; Liu, D. H.; Luo, J. Y.; Wang, D. W.; Yang, Q. H. Oriented and interlinked porous carbon nanosheets with an extraordinary capacitive performance. Chem. Mater. 2014, 26, 6896–6903.

[28]

Hou, Y.; Cui, S. M.; Wen, Z. H.; Guo, X. R.; Feng, X. L.; Chen, J. H. Strongly coupled 3D hybrids of N-doped porous carbon nanosheet/CoNi alloy-encapsulated carbon nanotubes for enhanced electrocatalysis. Small 2015, 11, 5940–5948.

[29]

Zhang, Z. Y.; Liu, K. C.; Feng, Z. Q.; Bao, Y. N.; Dong, B. Hierarchical sheet-on-sheet ZnIn2S4/g-C3N4 heterostructure with highly efficient photocatalytic H2 production based on photoinduced interfacial charge transfer. Sci. Rep. 2016, 6, 19221.

[30]

Li, Z. L.; Li, H.; Guan, X. Y.; Tang, J. J.; Yusran, Y.; Li, Z.; Xue, M.; Fang, Q. R.; Yan, Y. S.; Valtchev, V. et al. Three-dimensional ionic covalent organic frameworks for rapid, reversible, and selective ion exchange. J. Am. Chem. Soc. 2017, 139, 17771–17774.

[31]

Jin, J.; Zheng, Y.; Kong, L. B.; Srikanth, N.; Yan, Q. Y.; Zhou, K. Tuning ZnSe/CoSe in MOF-derived N-doped porous carbon/CNTs for high-performance lithium storage. J. Mater. Chem. A 2018, 6, 15710–15717.

[32]

Song, J. J.; Guo, X.; Zhang, J. Q.; Chen, Y.; Zhang, C. Y.; Luo, L. Q.; Wang, F. Y.; Wang, G. X. Rational design of free-standing 3D porous MXene/rGO hybrid aerogels as polysulfide reservoirs for high-energy lithium-sulfur batteries. J. Mater. Chem. A 2019, 7, 6507–6513.

[33]

Wang, L. B.; Liu, H.; Lv, X. L.; Cui, G. Z.; Gu, G. X. Facile synthesis 3D porous MXene Ti3C2Tx@RGO composite aerogel with excellent dielectric loss and electromagnetic wave absorption. J. Alloys Compd. 2020, 828, 154251.

[34]

Zhao, H. Q.; Cheng, Y.; Lv, H. L.; Ji, G. B.; Du, Y. W. A novel hierarchically porous magnetic carbon derived from biomass for strong lightweight microwave absorption. Carbon 2019, 142, 245–253.

[35]

Wang, C. J.; Yuan, X. Z.; Guo, G. L.; Liang, H. J.; Ma, Z. H.; Li, P. F. Salt template tuning morphology and porosity of biomass-derived N-doped porous carbon with high redox-activation for efficient energy storage. Colloids Surf. A Physicochem. Eng. Asp. 2022, 650, 129552.

[36]

Iijima, S. Helical microtubules of graphitic carbon. Nature 1991, 354, 56–58.

[37]

Wang, S. Y.; Zhang, L.; Li, X.; Li, C. L.; Zhang, R. J.; Zhang, Y. J.; Zhu, H. W. Sponge-like nickel phosphide-carbon nanotube hybrid electrodes for efficient hydrogen evolution over a wide pH range. Nano Res. 2017, 10, 415–425.

[38]

Gao, P. P.; Sun, M.; Wu, X. B.; Zhou, S. Z.; Deng, X. T.; Xie, Z. Y.; Xiao, L.; Jiang, L. H.; Huan, Q. Z. (B,N)-doped 3D porous graphene-CNTs synthesized by chemical vapor deposition as a bi-functional catalyst for ORR and HER. RSC Adv. 2018, 8, 26934–26937.

[39]

Kim, J. K.; Park, G. D.; Kim, J. H.; Park, S. K.; Kang, Y. C. Rational design and synthesis of extremely efficient macroporous CoSe2-CNT composite microspheres for hydrogen evolution reaction. Small 2017, 13, 1700068.

[40]

Zheng, Q. M.; Durkin, D. P.; Elenewski, J. E.; Sun, Y. X.; Banek, N. A.; Hua, L. K.; Chen, H. N.; Wagner, M. J.; Zhang, W.; Shuai, D. M. Visible-light-responsive graphitic carbon nitride: Rational design and photocatalytic applications for water treatment. Environ. Sci. Technol. 2016, 50, 12938–12948.

[41]

Sun, S. D.; Li, J.; Cui, J.; Gou, X. F.; Yang, Q.; Jiang, Y. H.; Liang, S. H.; Yang, Z. M. Simultaneously engineering K-doping and exfoliation into graphitic carbon nitride (g-C3N4) for enhanced photocatalytic hydrogen production. Int. J. Hydrogen Energy 2019, 44, 778–787.

[42]

Mamba, G.; Mishra, A. K. Graphitic carbon nitride (g-C3N4) nanocomposites: A new and exciting generation of visible light driven photocatalysts for environmental pollution remediation. Appl. Catal. B: Environ. 2016, 198, 347–377.

[43]

Ong, W. J.; Tan, L. L.; Ng, Y. H.; Yong, S. T.; Chai, S. P. Graphitic carbon nitride (g-C3N4)-based photocatalysts for artificial photosynthesis and environmental remediation: Are we a step closer to achieving sustainability? Chem. Rev. 2016, 116, 7159–7329.

[44]

Li, P. Y.; Liu, L.; An, W. J.; Wang, H.; Guo, H. X.; Liang, Y. H.; Cui, W. Q. Ultrathin porous g-C3N4 nanosheets modified with AuCu alloy nanoparticles and C–C coupling photothermal catalytic reduction of CO2 to ethanol. Appl. Catal. B: Environ. 2020, 266, 118618.

[45]

Mohamed, N. A.; Safaei, J.; Ismail, A. F.; Jailani, M. F. A. M.; Khalid, M. N.; Noh, M. F. M.; Aadenan, A.; Nasir, S. N. S.; Sagu, J. S.; Teridi, M. A. M. The influences of post-annealing temperatures on fabrication graphitic carbon nitride, (g-C3N4) thin film. Appl. Surf. Sci. 2019, 489, 92–100.

[46]

Sano, T.; Sato, H.; Hori, T.; Hirakawa, T.; Teramoto, Y.; Koike, K. Effects of polymeric- and electronic-structure of graphitic carbon nitride (g-C3N4) on oxidative photocatalysis. Mol. Catal. 2019, 474, 110451.

[47]

Katsumata, K. I.; Motoyoshi, R.; Matsushita, N.; Okada, K. Preparation of graphitic carbon nitride (g-C3N4)/WO3 composites and enhanced visible-light-driven photodegradation of acetaldehyde gas. J. Hazard. Mater. 2013, 260, 475–482.

[48]

Yu, X. A.; Ng, S. F.; Putri, L. K.; Tan, L. L.; Mohamed, A. R.; Ong, W. J. Point-defect engineering: Leveraging imperfections in graphitic carbon nitride (g-C3N4) photocatalysts toward artificial photosynthesis. Small 2021, 17, 2006851.

[49]

Li, K. X.; Zeng, Z. X.; Yan, L. S.; Luo, S. L.; Luo, X. B.; Huo, M. X.; Guo, Y. H. Fabrication of platinum-deposited carbon nitride nanotubes by a one-step solvothermal treatment strategy and their efficient visible-light photocatalytic activity. Appl. Catal. B: Environ. 2015, 165, 428–437.

[50]

Jeong, T.; Piao, H. Y.; Park, S.; Yang, J. H.; Choi, G.; Wu, Q. K.; Kang, H.; Woo, H. J.; Jung, S. J.; Kim, H. et al. Atomic and electronic structures of graphene-decorated graphitic carbon nitride (g-C3N4) as a metal-free photocatalyst under visible-light. Appl. Catal. B: Environ. 2019, 256, 117850.

[51]

Huang, Y. B.; Liu, J.; Zhao, C.; Jia, X. H.; Ma, M. M.; Qian, Y. Y.; Yang, C.; Liu, K.; Tan, F. R.; Wang, Z. J. et al. Facile synthesis of defect-modified thin-layered and porous g-C3N4 with synergetic improvement for photocatalytic H2 production. ACS Appl. Mater. Interfaces 2020, 12, 52603–52614.

[52]

Zhou, Y.; Lv, W. H.; Zhu, B. L.; Tong, F.; Pan, J. L.; Bai, J. R.; Zhou, Q. F.; Qin, H. F. Template-free one-step synthesis of g-C3N4 nanosheets with simultaneous porous network and S-doping for remarkable visible-light-driven hydrogen evolution. ACS Sustainable Chem. Eng. 2019, 7, 5801–5807.

[53]

Ai, M. H.; Zhang, J. W.; Gao, R. J.; Pan, L.; Zhang. X. W.; Zou, J. J. MnOx-decorated 3D porous C3N4 with internal donor-acceptor motifs for efficient photocatalytic hydrogen production. Appl. Catal. B: Environ. 2019, 256, 117805.

[54]

Li, H.; Li, L. B.; Lin, R. B.; Zhou, W.; Zhang, Z. J.; Xiang, S. C.; Chen, B. L. Porous metal-organic frameworks for gas storage and separation: Status and challenges. EnergyChem 2019, 1, 100006.

[55]

Tavakoli, E.; Kakekhani, A.; Kaviani, S.; Tan, P.; Ghaleni, M. M.; Zaeem, M. A.; Rappe, A. M.; Nejati, S. In situ bottom-up synthesis of porphyrin-based covalent organic frameworks. J. Am. Chem. Soc. 2019, 141, 19560–19564.

[56]

Wang, J. Y.; Si, L. P.; Wei, Q.; Hong, X. J.; Lin, L. G.; Li, X.; Chen, J. Y.; Wen, P. B.; Cai, Y. P. An imine-linked covalent organic framework as the host material for sulfur loading in lithium-sulfur batteries. J. Energy Chem. 2019, 28, 54–60.

[57]

Stock, N.; Biswas, S. Synthesis of metal-organic frameworks (MOFs): Routes to various MOF topologies, morphologies, and composites. Chem. Rev. 2012, 112, 933–969.

[58]

Li, J. R.; Kuppler, R. J.; Zhou, H. C. Selective gas adsorption and separation in metal-organic frameworks. Chem. Soc. Rev. 2009, 38, 1477–1504.

[59]

Jiao, L.; Wang, Y.; Jiang, H. L.; Xu, Q. Metal-organic frameworks as platforms for catalytic applications. Adv. Mater. 2018, 30, 1703663.

[60]

Wu, M. X.; Yang, Y. W. Applications of covalent organic frameworks (COFs): From gas storage and separation to drug delivery. Chin. Chem. Lett. 2017, 28, 1135–1143.

[61]

Haug, W. K.; Moscarello, E. M.; Wolfson, E. R.; McGrier, P. L. The luminescent and photophysical properties of covalent organic frameworks. Chem. Soc. Rev. 2020, 49, 839–864.

[62]

Gao, Z. Z.; Wang, Z. K.; Wei, L.; Yin, G. Q.; Tian, J.; Liu, C. Z.; Wang, H.; Zhang, D. W.; Zhang, Y. B.; Li, X. P. et al. Water-soluble 3D covalent organic framework that displays an enhanced enrichment effect of photosensitizers and catalysts for the reduction of protons to H2. ACS Appl. Mater. Interfaces 2020, 12, 1404–1411.

[63]

Song, F. Z.; Zhu, Q. L.; Yang, X. C.; Zhan, W. W.; Pachfule, P.; Tsumori, N.; Xu, Q. Metal-organic framework templated porous carbon-metal oxide/reduced graphene oxide as superior support of bimetallic nanoparticles for efficient hydrogen generation from formic acid. Adv. Energy Mater. 2017, 8, 1701416.

[64]

Li, H.; Sun, Y.; Yuan, Z. Y.; Zhu, Y. P.; Ma, T. Y. Titanium phosphonate based metal-organic frameworks with hierarchical porosity for enhanced photocatalytic hydrogen evolution. Angew. Chem., Int. Ed. 2018, 57, 3222–3227.

[65]

Iqbal, A.; Sambyal, P.; Koo, C. M. 2D MXenes for electromagnetic shielding: A review. Adv. Funct. Mater. 2020, 30, 2000883.

[66]

Meng, W. X.; Liu, X. J.; Song, H. Q.; Xie, Y.; Shi, X. L.; Dargusch, M.; Chen, Z. G.; Tang, Z. Y.; Lu, S. Y. Advances and challenges in 2D MXenes: From structures to energy storage and conversions. Nano Today 2021, 40, 101273.

[67]

Guo, Z. L.; Li, Y.; Sa, B. S.; Fang, Y.; Lin, J.; Huang, Y.; Tang, C. C.; Zhou, J.; Miao, N. H.; Sun, Z. M. M2C-type MXenes: Promising catalysts for CO2 capture and reduction. Appl. Surf. Sci. 2020, 521, 146436.

[68]

Yan, B. B.; Bao, X. M.; Liao, X. T.; Wang, P.; Zhou, M.; Yu, Y. Y.; Yuan, J. G.; Cui, L.; Wang, Q. Sensitive micro-breathing sensing and highly-effective photothermal antibacterial Cinnamomum camphora bark micro-structural cotton fabric via electrostatic self-assembly of MXene/HACC. ACS Appl. Mater. Interfaces 2022, 14, 2132–2145.

[69]

Bu, F. X.; Zagho, M. M.; Ibrahim, Y.; Ma, B.; Elzatahry, A.; Zhao, D. Y. Porous MXenes: Synthesis, structures, and applications. Nano Today 2020, 30, 100803.

[70]

Jiang, J. Z.; Bai, S. S.; Yang, M. Q.; Zou, J.; Li, N.; Peng, J. H.; Wang, H. T.; Xiang, K.; Liu, S.; Zhai, T. Y. Strategic design and fabrication of MXenes-Ti3CNCl2@CoS2 core–shell nanostructure for high-efficiency hydrogen evolution. Nano Res. 2022, 15, 5977–5986.

[71]

Shen, B. F.; Huang, H. J.; Jiang, Y.; Xue. Y.; He, H. Y. 3D interweaving MXene-graphene network-confined Ni-Fe layered double hydroxide nanosheets for enhanced hydrogen evolution. Electrochim. Acta 2022, 407, 139913.

[72]

Lv, Z. P.; Ma, W. S.; Wang, M.; Dang, J.; Jian, K. L.; Liu, D.; Huang, D. J. Co-constructing interfaces of multiheterostructure on MXene (Ti3C2Tx)-modified 3D self-supporting electrode for ultraefficient electrocatalytic HER in alkaline media. Adv. Funct. Mater. 2021, 31, 2102576.

[73]

Kong, A. Q.; Peng, M.; Gu, H. Z.; Zhao, S. C.; Lv, Y.; Liu, M. H.; Sun, Y. W.; Dai, S. D.; Fu, Y.; Zhang, J. L. et al. Synergetic control of Ru/MXene 3D electrode with superhydrophilicity and superaerophobicity for overall water splitting. Chem. Eng. J. 2021, 426, 131234.

[74]

Liu, X. G.; Zhang, S.; Wen, X.; Chen, X. C.; Wen, Y. L.; Shi, X. Z.; Mijowska, E. High yield conversion of biowaste coffee grounds into hierarchical porous carbon for superior capacitive energy storage. Sci. Rep. 2020, 10, 3518.

[75]

Lv, Y. K.; Gan, L. H.; Liu, M. X.; Xiong, W.; Xu, Z. J.; Zhu, D. Z.; Wright, D. S. A self-template synthesis of hierarchical porous carbon foams based on banana peel for supercapacitor electrodes. J. Power Sources 2012, 209, 152–157.

[76]

Sha, T. Z.; Liu, J. J.; Sun, M. M.; Li, L.; Bai, J.; Hu, Z. Q.; Zhou, M. Green and low-cost synthesis of nitrogen-doped graphene-like mesoporous nanosheets from the biomass waste of okara for the amperometric detection of vitamin C in real samples. Talanta 2019, 200, 300–306.

[77]

Guo, N. N.; Luo, W. X.; Guo, R. H.; Qiu, D. P.; Zhao, Z. B.; Wang, L. X.; Jia, D. Z.; Guo, J. X. Interconnected and hierarchical porous carbon derived from soybean root for ultrahigh rate supercapacitors. J. Alloys Compd. 2020, 834, 155115.

[78]

Sathiskumar, C.; Ramakrishnan, S.; Vinothkannan, M.; Kim, A. R.; Karthikeyan, S.; Yoo, D. J. Nitrogen-doped porous carbon derived from biomass used as trifunctional electrocatalyst toward oxygen reduction, oxygen evolution and hydrogen evolution reactions. Nanomaterials 2020, 10, 76.

[79]

Wang, N.; Bo, X. J.; Zhou, M. Laser conversion of biomass into porous carbon composite under ambient condition for pH-universal electrochemical hydrogen evolution reaction. J. Colloid Interface Sci. 2021, 604, 885–893.

[80]

Cao, X. P.; Li, Z.; Chen, H.; Zhang, C. C.; Zhang, Y. T.; Gu, C. L.; Xu, X. Y.; Li, Q. Synthesis of biomass porous carbon materials from bean sprouts for hydrogen evolution reaction electrocatalysis and supercapacitor electrode. Int. J. Hydrogen Energy 2021, 46, 18887–18897.

[81]

Zhu, S. S.; Wang, D. W. Photocatalysis: Basic principles, diverse forms of implementations and emerging scientific opportunities. Adv. Energy Mater. 2017, 7, 1700841.

[82]

Kumaravel, V.; Mathew, S.; Bartlett, J.; Pillai, S. C. Photocatalytic hydrogen production using metal doped TiO2: A review of recent advances. Appl. Catal. B: Environ. 2019, 244, 1021–1064.

[83]

Wang, C. L.; Liu, G. G.; Song, K.; Wang, X. Q.; Wang, H.; Zhao, N. Q.; He, F. Three-dimensional hierarchical porous carbon/graphitic carbon nitride composites for efficient photocatalytic hydrogen production. ChemCatChem 2019, 11, 6364–6371.

[84]

Zhang, Z.; Lu, L.; Lv, Z. Z.; Chen, Y.; Jin, H. Y.; Hou, S. E.; Qiu, L. X.; Duan, L. M.; Liu, J. H.; Dai, K. Porous carbon nitride with defect mediated interfacial oxidation for improving visible light photocatalytic hydrogen evolution. Appl. Catal. B: Environ. 2018, 232, 384–390.

[85]

Huang, X. D.; Zhao, Y. F.; Ao, Z. M.; Wang, G. X. Micelle-template synthesis of nitrogen-doped mesoporous graphene as an efficient metal-free electrocatalyst for hydrogen production. Sci. Rep. 2014, 4, 7557.

[86]

Wang, M.; Chen, L.; Sun, L. C. Recent progress in electrochemical hydrogen production with earth-abundant metal complexes as catalysts. Energy Environ. Sci. 2012, 5, 6763–6778.

[87]

Liang, H. W.; Brüller, S.; Dong, R. H.; Zhang, J.; Feng. X. L.; Müllen, K. Molecular metal-Nx centres in porous carbon for electrocatalytic hydrogen evolution. Nat. Commun. 2015, 6, 7992.

[88]

Han, A. L.; Jin, S.; Chen, H. L.; Ji, H. X.; Sun, Z. J.; Du, P. W. A robust hydrogen evolution catalyst based on crystalline nickel phosphide nanoflakes on three-dimensional graphene/nickel foam: High performance for electrocatalytic hydrogen production from pH 0–14. J. Mater. Chem. A 2015, 3, 1941–1946.

[89]

McAteer, D.; Gholamvand, Z.; McEvoy, N.; Harvey, A.; O’Malley, E.; Duesberg, G. S.; Coleman, J. N. Thickness dependence and percolation scaling of hydrogen production rate in MoS2 nanosheet and nanosheet-carbon nanotube composite catalytic electrodes. ACS Nano 2016, 10, 672–683.

[90]

Saka, C. Phosphorus and oxygen doped carbon-based on Spirulina microalgae as efficient metal-free catalysts to obtain H2 from methanolysis of NaBH4. Int. J. Hydrogen Energy 2021, 46, 3753–3762.

[91]

Brack, P.; Dann, S. E.; Wijayantha, K. G. U. Heterogeneous and homogenous catalysts for hydrogen generation by hydrolysis of aqueous sodium borohydride (NaBH4) solutions. Energy Sci. Eng. 2015, 3, 174–188.

[92]

Ngene, P.; van den Berg, R.; Verkuijlen, M. H. W.; de Jong, K. P.; de Jongh, P. E. Reversibility of the hydrogen desorption from NaBH4 by confinement in nanoporous carbon. Energy Environ. Sci. 2011, 4, 4108–4115.

[93]

Qi, J.; Benipal, N.; Liang, C. H.; Li, W. Z. PdAg/CNT catalyzed alcohol oxidation reaction for high-performance anion exchange membrane direct alcohol fuel cell (alcohol = methanol, ethanol, ethylene glycol and glycerol). Appl. Catal. B: Environ. 2016, 199, 494–503.

[94]

Demirci, S.; Yildiz, M.; Inger, E.; Sahiner, N. Porous carbon particles as metal-free superior catalyst for hydrogen release from methanolysis of sodium borohydride. Renewable Energy 2020, 147, 69–76.

[95]

Zhang, D. M.; Wang, G. L.; Cheng, K.; Huang, J. C.; Yan, P.; Cao, D. X. Enhancement of electrocatalytic performance of hydrogen storage alloys by multi-walled carbon nanotubes for sodium borohydride oxidation. J. Power Sources 2014, 245, 482–486.

[96]

Yang, J. Q.; Liu, B. H.; Wu, S. Carbon-supported Pd catalysts: Influences of nanostructure on their catalytic performances for borohydride electrochemical oxidation. J. Power Sources 2009, 194, 824–829.

[97]

Muradov, N.; Smith, F.; Huang, C. P.; T-Raissi, A. Autothermal catalytic pyrolysis of methane as a new route to hydrogen production with reduced CO2 emissions. Catal. Today 2006, 116, 281–288.

[98]

Zhang, J. B.; Jin, L. J.; Li, Y.; Si, H. H.; Qiu, B.; Hu, H. Q. Hierarchical porous carbon catalyst for simultaneous preparation of hydrogen and fibrous carbon by catalytic methane decomposition. Int. J. Hydrogen Energy 2013, 38, 8732–8740.

[99]

Shen, Y.; Lua, A. C. A trimodal porous carbon as an effective catalyst for hydrogen production by methane decomposition. J. Colloid Interface Sci. 2016, 462, 48–55.

[100]
Zhang, Y. R.; Li, J. F.; Li, B. L.; Li, Z. S.; He, Y.; Qin, Z. H.; Gao, R. Y. Preparation of Ni-La/Al2O3-CeO2-bamboo charcoal catalyst and its application in co-pyrolysis of straw and plastic for hydrogen production. BioEnergy Res., in press, https://doi.org/10.1007/s12155-021-10359-0.
[101]

Zhang, S. P.; Zhu, S. G.; Zhang, H. L.; Liu, X. Z.; Xiong, Y. Q. High quality H2-rich syngas production from pyrolysis-gasification of biomass and plastic wastes by Ni-Fe@nanofibers/porous carbon catalyst. Int. J. Hydrogen Energy 2019, 44, 26193–26203.

[102]

Widyawati, M.; Church, T. L.; Florin, N. H.; Harris, A. T. Hydrogen synthesis from biomass pyrolysis with in situ carbon dioxide capture using calcium oxide. Int. J. Hydrogen Energy 2011, 36, 4800–4813.

[103]

Yan, X. X.; Gu, M. Y.; Wang, Y.; Xu, L.; Tang, Y. W.; Wu, R. B. In-situ growth of Ni nanoparticle-encapsulated N-doped carbon nanotubes on carbon nanorods for efficient hydrogen evolution electrocatalysis. Nano Res. 2020, 13, 975–982.

[104]

Sun, J. W.; Yang, S. R.; Liang, Z. Q.; Liu, X.; Qiu, P. Y.; Cui, H. Z.; Tian, J. Two-dimensional/one-dimensional molybdenum sulfide (MoS2) nanoflake/graphitic carbon nitride (g-C3N4) hollow nanotube photocatalyst for enhanced photocatalytic hydrogen production activity. J. Colloid Interface Sci. 2020, 567, 300–307.

[105]

Liu, Y. L.; Eubank, J. F.; Cairns, A. J.; Eckert, J.; Kravtsov, V. C.; Luebke, R.; Eddaoudi, M. Assembly of metal-organic frameworks (MOFs) based on indium-trimer building blocks: A porous MOF with soc topology and high hydrogen storage. Angew. Chem. 2007, 119, 3342–3347.

[106]

Ariza-Tarazona, M. C.; Villarreal-Chiu, J. F.; Hernández-López, J. M.; De la Rosa, J. R.; Barbieri, V.; Siligardi, C.; Cedillo-González, E. I. Microplastic pollution reduction by a carbon and nitrogen-doped TiO2: Effect of pH and temperature in the photocatalytic degradation process. J. Hazard. Mater. 2020, 395, 122632.

[107]

Yao, L.; Yang, H.; Chen, Z. S.; Qiu, M. Q.; Hu, B. W.; Wang, X. X. Bismuth oxychloride-based materials for the removal of organic pollutants in wastewater. Chemosphere 2021, 273, 128576.

[108]

Zare, E. N.; Iftekhar, S.; Park, Y.; Joseph, J.; Srivastava, V.; Khan, M. A.; Makvandi, P.; Sillanpaa, M.; Varma, R. S. An overview on non-spherical semiconductors for heterogeneous photocatalytic degradation of organic water contaminants. Chemosphere 2021, 280, 130907.

[109]

Wang, Y. A.; Zheng, Y.; Han, C.; Chen, W. Surface charge transfer doping for two-dimensional semiconductor-based electronic and optoelectronic devices. Nano Res. 2021, 14, 1682–1697.

[110]

Yan, J. Q.; Kong, L. Q.; Ji, Y. J.; White, J.; Li, Y. Y.; Zhang, J.; An, P. F.; Liu, S. Z.; Lee, S. T.; Ma, T. Y. Single atom tungsten doped ultrathin α-Ni(OH)2 for enhanced electrocatalytic water oxidation. Nat. Commun. 2019, 10, 2149.

[111]

Han, A. L.; Zhou, X. F.; Wang, X. J.; Liu, S.; Xiong, Q. H.; Zhang, Q. H.; Gu, L.; Zhuang, Z. C.; Zhang, W. J.; Li, F. X. et al. One-step synthesis of single-site vanadium substitution in 1T-WS2 monolayers for enhanced hydrogen evolution catalysis. Nat. Commun. 2021, 12, 709.

[112]

Zhu, P.; Xiong, X.; Wang, D. S. Regulations of active moiety in single atom catalysts for electrochemical hydrogen evolution reaction. Nano Res. 2022, 15, 5792–5815.

[113]

Yang, J. R.; Li, W. H.; Tan, S. D.; Xu, K. N.; Wang, Y.; Wang, D. S.; Li, Y. D. The electronic metal–support interaction directing the design of single atomic site catalysts: Achieving high efficiency towards hydrogen evolution. Angew. Chem. 2021, 133, 19233–19239.

[114]

Li, R. Z.; Wang, D. S. Understanding the structure–performance relationship of active sites at atomic scale. Nano Res. 2022, 15, 6888–6923.

[115]

Wang, C. S.; Wang, H.; Wu, R. Q.; Ragan, R. Evaluating the stability of single-atom catalysts with high chemical activity. J. Phys. Chem. C 2018, 122, 21919–21926.

[116]

Jing, H. Y.; Zhu, P.; Zheng, X. B.; Zhang, Z. D.; Wang, D. S.; Li, Y. D. Theory-oriented screening and discovery of advanced energy transformation materials in electrocatalysis. Adv. Powder Mater. 2022, 1, 100013.

[117]

Xiao, F.; Xu, G. L.; Sun, C. J.; Xu, M. J.; Wen, W.; Wang, Q.; Gu, M.; Zhu, S. Q.; Li, Y. Y.; Wei, Z. D. et al. Nitrogen-coordinated single iron atom catalysts derived from metal organic frameworks for oxygen reduction reaction. Nano Energy 2019, 61, 60–68.

[118]

Li, J.; Huang, H. L.; Liu, P.; Song, X. H.; Mei, D. H.; Tang, Y. Z.; Wang, X.; Zhong, C. L. Metal-organic framework encapsulated single-atom Pt catalysts for efficient photocatalytic hydrogen evolution. J. Catal. 2019, 375, 351–360.

[119]

Lei, Y. P.; Wang, Y. C.; Liu, Y.; Song, C. Y.; Li, Q.; Wang, D. S.; Li, Y. D. Designing atomic active centers for hydrogen evolution electrocatalysts. Angew. Chem., Int. Ed. 2020, 59, 20794–20812.

[120]

Liu, Z. H.; Du, Y.; Zhang, P. F.; Zhuang, Z. C.; Wang, D. S. Bringing catalytic order out of chaos with nitrogen-doped ordered mesoporous carbon. Matter 2021, 4, 3161–3194.

[121]

Shi, R.; Tian, C. C.; Zhu, X.; Peng, C. Y.; Mei, B. B.; He, L.; Du, X. L.; Jiang, Z.; Chen, Y.; Dai, S. Achieving an exceptionally high loading of isolated cobalt single atoms on a porous carbon matrix for efficient visible-light-driven photocatalytic hydrogen production. Chem. Sci. 2019, 10, 2585–2591.

[122]

Cao, L. L.; Luo, Q. Q.; Liu, W.; Lin, Y.; Liu, X. K.; Cao, Y. J.; Zhang, W.; Wu, Y. E.; Yang, J. L.; Yao, T. et al. Identification of single-atom active sites in carbon-based cobalt catalysts during electrocatalytic hydrogen evolution. Nat. Catal. 2019, 2, 134–141.

[123]

Sun, T. T.; Zhao, S.; Chen, W. X.; Zhai, D.; Dong, J. C.; Wang, Y.; Zhang, S. L.; Han, A. J.; Gu, L.; Yu, R. et al. Single-atomic cobalt sites embedded in hierarchically ordered porous nitrogen-doped carbon as a superior bifunctional electrocatalyst. Proc. Natl. Acad. Sci. USA 2018, 115, 12692–12697.

[124]

Zbair, M.; Ahsaine, H. A.; Anfar, Z. Porous carbon by microwave assisted pyrolysis: An effective and low-cost adsorbent for sulfamethoxazole adsorption and optimization using response surface methodology. J. Clean. Prod. 2018, 202, 571–581.

[125]

Liu, Y.; Pan, L. K.; Chen, T. Q.; Xu, X. T.; Lu, T.; Sun. Z.; Chua, D. H. C. Porous carbon spheres via microwave-assisted synthesis for capacitive deionization. Electrochim. Acta 2015, 151, 489–496.

[126]

Seza, A.; Soleimani, F.; Naseri, N.; Soltaninejad, M.; Montazeri, S. M.; Sadrnezhaad, S. K.; Mohammadi, M. R.; Moghadam, H. A.; Forouzandeh, M.; Amin, M. H. Novel microwave-assisted synthesis of porous g-C3N4/SnO2 nanocomposite for solar water-splitting. Appl. Surf. Sci. 2018, 440, 153–161.

[127]

Sahoo, R. K.; Yun, J. M.; Kim, K. H. Bifunctional microwave-assisted molybdenum-complex carbon sponge production for supercapacitor and water-splitting applications. ACS Appl. Mater. Interfaces 2021, 13, 60966–60977.

[128]

Jung, D. S.; Hwang, T. H.; Lee, J. H.; Koo, H. Y.; Shakoor, R. A.; Kahraman, R.; Jo, Y. N.; Park, M. S.; Choi, J. W. Hierarchical porous carbon by ultrasonic spray pyrolysis yields stable cycling in lithium-sulfur battery. Nano Lett. 2014, 14, 4418–4425.

[129]

Skrabalak, S. E.; Suslick, K. S. Porous carbon powders prepared by ultrasonic spray pyrolysis. J. Am. Chem. Soc. 2006, 128, 12642–12643.

[130]

Ye, Z. F.; Yang, J.; Li, B.; Shi, L.; Ji, H. X.; Song, L.; Xu, H. X. Amorphous molybdenum sulfide/carbon nanotubes hybrid nanospheres prepared by ultrasonic spray pyrolysis for electrocatalytic hydrogen evolution. Small 2017, 13, 1700111.

[131]

Kim, J. K.; Park, S. K.; Kang, Y. C. Structure-optimized CoP-carbon nanotube composite microspheres synthesized by spray pyrolysis for hydrogen evolution reaction. J. Alloys Compd. 2018, 763, 652–661.

[132]

Wang, B.; Chen, Y. F.; Wang, X. Q.; Zhang, X. J.; Hu, Y.; Yu, B.; Yang, D. X.; Zhang, W. L. A microwave-assisted bubble bursting strategy to grow Co8FeS8/CoS heterostructure on rearranged carbon nanotubes as efficient electrocatalyst for oxygen evolution reaction. J. Power Sources 2020, 449, 227561.

[133]

Zheng, W.; Zhang, P. G.; Chen, J.; Tian, W. B.; Zhang, Y. M.; Sun, Z. M. Microwave-assisted synthesis of three-dimensional MXene derived metal oxide/carbon nanotube/iron hybrids for enhanced lithium-ions storage. J. Electroanal. Chem. 2019, 835, 205–211.

[134]

Li, W.; Wang, X.; Li, M.; He, S. A.; Ma, Q.; Wang, X. C. Construction of Z-scheme and p-n heterostructure: Three-dimensional porous g-C3N4/graphene oxide-Ag/AgBr composite for high-efficient hydrogen evolution. Appl. Catal. B: Environ. 2020, 268, 118384.

[135]

Cheng, W.; Di, H. F.; Shi, Z.; Zhang, D. Synthesis of ZnS/CoS/CoS2@N-doped carbon nanoparticles derived from metal-organic frameworks via spray pyrolysis as anode for lithium-ion battery. J. Alloys Compd. 2020, 831, 154607.

Publication history
Copyright
Acknowledgements

Publication history

Received: 06 June 2022
Revised: 18 July 2022
Accepted: 20 July 2022
Published: 12 September 2022
Issue date: January 2023

Copyright

© Tsinghua University Press 2022

Acknowledgements

Acknowledgements

This work was supported by the National Natural Science Foundation of China (No. 62004143), the Central Government Guided Local Science and Technology Development Special Fund Project (No. 2020ZYYD033), the Opening Fund of Key Laboratory for Green Chemical Process of Ministry of Education of Wuhan Institute of Technology (No. GCP202101), and the Natural Science Fund of Hubei Province (No. 2021CFB133).

Return