Journal Home > Volume 16 , Issue 1

Graphene nanoribbons (GNRs) are regarded as an ideal candidate for beyond-silicon electronics. However, synthesis of aligned GNR arrays on insulating substrates with high efficiency is challenging. In this work, we develop a facile strategy, involving KOH pre-treatment and high-temperature annealing, to construct parallel steps on the two-fold symmetry a-plane sapphire substrate. Horizontal GNRs as narrow as 15.1 nm with global alignment across a region of 20 mm2 are then grown on the step edge-enriched substrate through plasma enhanced chemical vapor deposition (PECVD) method. GNRs align well along the atomic steps on sapphire ([ 11¯00] direction) with their widths and densities swiftly adjustable by step morphology modification on substrate surface. A step-edge confined growth mechanism is proposed, attributing the constraint on the nanoribbon broadening to a relatively low growth temperature in PECVD, which restrains the activation energy to suppress GNRs across step edges on sapphire and prevents detrimental nanoribbon widening. The results provide a new perspective for scalable synthesizing well aligned nanoribbons of other two-dimensional materials.


menu
Abstract
Full text
Outline
Electronic supplementary material
About this article

Direct growth of globally aligned graphene nanoribbons on reconstructed sapphire substrate using PECVD

Show Author's information Mingzhi Zou1,§Weiming Liu1,§Yue Yu1Shanshan Wang2Bo Xu1Liu Qian1Tianze Tong1Jin Zhang1( )
College of Chemistry and Molecular Engineering, Beijing Science and Engineering Center for Nanocarbons, Beijing National Laboratory for Molecular Sciences, Peking University, Beijing 100871, China
Science and Technology on Advanced Ceramic Fibers and Composites Laboratory, College of Aerospace Science and Engineering, National University of Defense Technology, Changsha 410000, China

§ Mingzhi Zou and Weiming Liu contributed equally to this work.

Abstract

Graphene nanoribbons (GNRs) are regarded as an ideal candidate for beyond-silicon electronics. However, synthesis of aligned GNR arrays on insulating substrates with high efficiency is challenging. In this work, we develop a facile strategy, involving KOH pre-treatment and high-temperature annealing, to construct parallel steps on the two-fold symmetry a-plane sapphire substrate. Horizontal GNRs as narrow as 15.1 nm with global alignment across a region of 20 mm2 are then grown on the step edge-enriched substrate through plasma enhanced chemical vapor deposition (PECVD) method. GNRs align well along the atomic steps on sapphire ([ 11¯00] direction) with their widths and densities swiftly adjustable by step morphology modification on substrate surface. A step-edge confined growth mechanism is proposed, attributing the constraint on the nanoribbon broadening to a relatively low growth temperature in PECVD, which restrains the activation energy to suppress GNRs across step edges on sapphire and prevents detrimental nanoribbon widening. The results provide a new perspective for scalable synthesizing well aligned nanoribbons of other two-dimensional materials.

Keywords: sapphire, graphene nanoribbon (GNR), global alignment, insulating substrates, plasma enhanced chemical vapor deposition (PECVD)

References(31)

[1]

Zhang, Y. B.; Tan, Y. W.; Stormer, H. L.; Kim, P. Experimental observation of the quantum Hall effect and Berry’s phase in graphene. Nature 2005, 438, 201–204.

[2]

Chen, S. S.; Wu, Q. Z.; Mishra, C.; Kang, J.; Zhang, H. J.; Cho, K.; Cai, W. W.; Balandin, A. A.; Ruoff, R. S. Thermal conductivity of isotopically modified graphene. Nat. Mater. 2012, 11, 203–207.

[3]

Liu, M.; Yin, X. B.; Ulin-Avila, E.; Geng, B. S.; Zentgraf, T.; Ju, L.; Wang, F.; Zhang, X. A graphene-based broadband optical modulator. Nature 2011, 474, 64–67.

[4]

Schwierz, F. Graphene transistors. Nat. Nanotechnol. 2010, 5, 487–496.

[5]

Yazyev, O. V. A guide to the design of electronic properties of graphene nanoribbons. Acc. Chem. Res. 2013, 46, 2319–2328.

[6]

Liao, A. D.; Wu, J. Z.; Wang, X. R.; Tahy, K.; Jena, D.; Dai, H. J.; Pop, E. Thermally limited current carrying ability of graphene nanoribbons. Phys. Rev. Lett. 2011, 106, 256801.

[7]

Wassmann, T.; Seitsonen, A. P.; Saitta, A. M.; Lazzeri, M.; Mauri, F. Structure, stability, edge states, and aromaticity of graphene ribbons. Phys. Rev. Lett. 2008, 101, 096402.

[8]

Masubuchi, S.; Ono, M.; Yoshida, K.; Hirakawa, K.; Machida, T. Fabrication of graphene nanoribbon by local anodic oxidation lithography using atomic force microscope. Appl. Phys. Lett. 2009, 94, 082107.

[9]

Liu, L.; Zhang, Y. L.; Wang, W. L.; Gu, C. Z.; Bai, X. D.; Wang, E. G. Nanosphere lithography for the fabrication of ultranarrow graphene nanoribbons and on-chip bandgap tuning of graphene. Adv. Mater. 2011, 23, 1246–1251.

[10]

Jiao, L. Y.; Zhang, L.; Wang, X. R.; Diankov, G.; Dai, H. J. Narrow graphene nanoribbons from carbon nanotubes. Nature 2009, 458, 877–880.

[11]

Kosynkin, D. V.; Higginbotham, A. L.; Sinitskii, A.; Lomeda, J. R.; Dimiev, A.; Price, B. K.; Tour, J. M. Longitudinal unzipping of carbon nanotubes to form graphene nanoribbons. Nature 2009, 458, 872–876.

[12]

Chen, C. X.; Lin, Y.; Zhou, W.; Gong, M.; He, Z. Y.; Shi, F. Y.; Li, X. Y.; Wu, J. Z.; Lam, K. T.; Wang, J. N. et al. Sub-10-nm graphene nanoribbons with atomically smooth edges from squashed carbon nanotubes. Nat. Electron. 2021, 4, 653–663.

[13]

Elías, A. L.; Botello-Méndez, A. R.; Meneses-Rodríguez, D.; González, V. J.; Ramírez-González, D.; Ci, L.; Muñoz-Sandoval, E.; Ajayan, P. M.; Terrones, H.; Terrones, M. Longitudinal cutting of pure and doped carbon nanotubes to form graphitic nanoribbons using metal clusters as nanoscalpels. Nano Lett. 2010, 10, 366–372.

[14]

Cai, J. M.; Ruffieux, P.; Jaafar, R.; Bieri, M.; Braun, T.; Blankenburg, S.; Muoth, M.; Seitsonen, A. P.; Saleh, M.; Feng, X. L. et al. Atomically precise bottom-up fabrication of graphene nanoribbons. Nature 2010, 466, 470–473.

[15]

Liu, J. Z.; Li, B. W.; Tan, Y. Z.; Giannakopoulos, A.; Sanchez-Sanchez, C.; Beljonne, D.; Ruffieux, P.; Fasel, R.; Feng, X. L.; Müllen, K. Toward cove-edged low band gap graphene nanoribbons. J. Am. Chem. Soc. 2015, 137, 6097–6103.

[16]

Ruffieux, P.; Wang, S. Y.; Yang, B.; Sánchez-Sánchez, C.; Liu, J.; Dienel, T.; Talirz, L.; Shinde, P.; Pignedoli, C. A.; Passerone, D. et al. On-surface synthesis of graphene nanoribbons with zigzag edge topology. Nature 2016, 531, 489–492.

[17]

Wei, D. C.; Liu, Y. Q.; Zhang, H. L.; Huang, L. P.; Wu, B.; Chen, J. Y.; Yu, G. Scalable synthesis of few-layer graphene ribbons with controlled morphologies by a template method and their applications in nanoelectromechanical switches. J. Am. Chem. Soc. 2009, 131, 11147–11154.

[18]

Jacobberger, R. M.; Kiraly, B.; Fortin-Deschenes, M.; Levesque, P. L.; McElhinny, K. M.; Brady, G. J.; Delgado, R. R.; Roy, S. S.; Mannix, A.; Lagally, M. G. et al. Direct oriented growth of armchair graphene nanoribbons on germanium. Nat. Commun. 2015, 6, 8006.

[19]

Sprinkle, M.; Ruan, M.; Hu, Y.; Hankinson, J.; Rubio-Roy, M.; Zhang, B.; Wu, X.; Berger, C.; De Heer, W. A. Scalable templated growth of graphene nanoribbons on SiC. Nat. Nanotechnol. 2010, 5, 727–731.

[20]

Lu, X. B.; Yang, W.; Wang, S. P.; Wu, S.; Chen, P.; Zhang, J.; Zhao, J.; Meng, J. L.; Xie, G. B.; Wang, D. M. et al. Graphene nanoribbons epitaxy on boron nitride. Appl. Phys. Lett. 2016, 108, 113103.

[21]

Xie, L. M.; Wang, H. L.; Jin, C. H.; Wang, X. R.; Jiao, L. Y.; Suenaga, K.; Dai, H. J. Graphene nanoribbons from unzipped carbon nanotubes: Atomic structures, Raman spectroscopy, and electrical properties. J. Am. Chem. Soc. 2011, 133, 10394–10397.

[22]

Wang, L.; Xu, X. Z.; Zhang, L. N.; Qiao, R. X.; Wu, M. H.; Wang, Z. C.; Zhang, S.; Liang, J.; Zhang, Z. H.; Zhang, Z. B. et al. Epitaxial growth of a 100-square-centimetre single-crystal hexagonal boron nitride monolayer on copper. Nature 2019, 570, 91–95.

[23]

Qin, L. C. Determination of the chiral indices (n, m) of carbon nanotubes by electron diffraction. Phys. Chem. Chem. Phys. 2007, 9, 31–48.

[24]

Overbeck, J.; Barin, G. B.; Daniels, C.; Perrin, M. L.; Braun, O.; Sun, Q.; Darawish, R.; De Luca, M.; Wang, X. Y.; Dumslaff, T. et al. A universal length-dependent vibrational mode in graphene nanoribbons. ACS Nano 2019, 13, 13083–13091.

[25]

Graf, D.; Molitor, F.; Ensslin, K.; Stampfer, C.; Jungen, A.; Hierold, C.; Wirtz, L. Spatially resolved Raman spectroscopy of single- and few-layer graphene. Nano Lett. 2007, 7, 238–242.

[26]

Casiraghi, C.; Hartschuh, A.; Qian, H.; Piscanec, S.; Georgi, C.; Fasoli, A.; Novoselov, K. S.; Basko, D. M.; Ferrari, A. C. Raman spectroscopy of graphene edges. Nano Lett. 2009, 9, 1433–1441.

[27]

Gupta, A. K.; Russin, T. J.; Gutiérrez, H. R.; Eklund, P. C. Probing graphene edges via Raman scattering. ACS Nano 2009, 3, 45–52.

[28]

Hu, Y.; Kang, L. X.; Zhao, Q. C.; Zhong, H.; Zhang, S. C.; Yang, L. W.; Wang, Z. Q.; Lin, J. J.; Li, Q. W.; Zhang, Z. Y. et al. Growth of high-density horizontally aligned SWNT arrays using Trojan catalysts. Nat. Commun. 2015, 6, 6099.

[29]

Simeonov, K.; Lederman, D. Surface structure of structure of (112 ̅0) Al2O3 single crystals after high temperature annealing. Surf. Sci. 2009, 603, 232–236.

[30]

Shadmi, N.; Sanders, E.; Wachtel, E.; Joselevich, E. Guided growth of horizontal single-wall carbon nanotubes on M-plane sapphire. J. Phys. Chem. C 2015, 119, 8382–8387.

[31]

Li, Y. Y.; Chen, M. X.; Weinert, M.; Li, L. Direct experimental determination of onset of electron–electron interactions in gap opening of zigzag graphene nanoribbons. Nat. Commun. 2014, 5, 4311.

File
12274_2022_4797_MOESM1_ESM.pdf (2.7 MB)
Publication history
Copyright
Acknowledgements

Publication history

Received: 25 May 2022
Revised: 28 June 2022
Accepted: 20 July 2022
Published: 06 September 2022
Issue date: January 2023

Copyright

© Tsinghua University Press 2022

Acknowledgements

Acknowledgements

This work was financially supported by the Ministry of Science and Technology of China (Nos. 2016YFA0200100 and 2018YFA0703502), the National Natural Science Foundation of China (Nos. 52021006, 51720105003, 21790052, and 21974004), the Strategic Priority Research Program of Chinese Academy of Sciences (No. XDB36030100), and the Beijing National Laboratory for Molecular Sciences (No. BNLMS-CXTD-202001).

Return