AI Chat Paper
Note: Please note that the following content is generated by AMiner AI. SciOpen does not take any responsibility related to this content.
{{lang === 'zh_CN' ? '文章概述' : 'Summary'}}
{{lang === 'en_US' ? '中' : 'Eng'}}
Chat more with AI
Article Link
Collect
Submit Manuscript
Show Outline
Outline
Show full outline
Hide outline
Outline
Show full outline
Hide outline
Review Article

Advances of photothermal chemistry in photocatalysis, thermocatalysis, and synergetic photothermocatalysis for solar-to-fuel generation

Minmin Gao1Tianxi Zhang2Ghim Wei Ho1,3( )
Department of Electrical and Computer Engineering, National University of Singapore, 4 Engineering Drive 3, Singapore 117583, Singapore
Department of Chemical and Biomolecular Engineering, National University of Singapore, 4 Engineering Drive 4, Singapore 117585, Singapore
Institute of Materials Research and Engineering, Agency for Science, Technology and Research (A*STAR), 3 Research Link, Singapore 117602, Singapore
Show Author Information

Graphical Abstract

This article aims to provide a comprehensive review of the benefits of photothermal catalysis for fuel generation, along with a guide for understanding its mechanisms, rational material designs, characterization techniques and current applications.

Abstract

The urgency of reducing pollutants and greenhouse gas emissions while maintaining fuel supply for the development of society remains one of the greatest challenges. Solar energy, a clean and sustainable energy resource, can be converted into fuels through solar-driven catalysis, and this provides an attractive solution for future energy demand. The current development of photothermal catalysis (PTC) based on the integration of solar thermal and photochemical contributions is becoming increasingly popular for full spectrum utilization. The combination of the thermochemical and photochemical processes synergistically drives the catalytic reactions efficiently under relatively mild conditions. In this review, the mechanisms of PTC are classified based on driving forces and the benefits of photothermal effects in different PTC reactions are discussed. Subsequently, the techniques for differentiating and quantifying the various effects of PTC, including experimental designs, thermometry characterization techniques, and computational studies, are summarized. Then, the major determinant properties and architectural designs for efficient photothermal catalysts are offered. Moreover, applications for fuel generation through water splitting and carbon dioxide reduction are reviewed. Finally, the current challenges and future directions of PTC are presented. This article aims to provide a comprehensive review of the current advances in PTC along with a guide for understanding the mechanisms and rational material designs to pursue solar fuel that would diversify and increase the sustainability of our energy supply.

References

[1]

Wang, Z. J.; Song, H.; Liu, H. M.; Ye, J. H. Coupling of solar energy and thermal energy for carbon dioxide reduction: Status and prospects. Angew. Chem., Int. Ed. 2020, 59, 8016–8035.

[2]

Xu, C. Y.; Hong, J. N.; Sui, P. F.; Zhu, M. N.; Zhang, Y. W.; Luo, J. L. Standalone solar carbon-based fuel production based on semiconductors. Cell Rep. Phys. Sci. 2020, 1, 100101.

[3]

Baffou, G.; Cichos, F.; Quidant, R. Applications and challenges of thermoplasmonics. Nat. Mater. 2020, 19, 946–958.

[4]

Zhang, W. J.; Ma, D.; Pérez-Ramírez, J.; Chen, Z. P. Recent progress in materials exploration for thermocatalytic, photocatalytic, and integrated photothermocatalytic CO2-to-fuel conversion. Adv. Energy Sustainability Res. 2022, 3, 2100169.

[5]

Hong, J. N.; Xu, C. Y.; Deng, B. W.; Gao, Y.; Zhu, X.; Zhang, X. H.; Zhang, Y. W. Photothermal chemistry based on solar energy: From synergistic effects to practical applications. Adv. Sci. 2022, 9, 2103926.

[6]

Ghoussoub, M.; Xia, M. K.; Duchesne, P. N.; Segal, D.; Ozin, G. Principles of photothermal gas-phase heterogeneous CO2 catalysis. Energy Environ. Sci. 2019, 12, 1122–1142.

[7]

Zhu, L. L.; Gao, M. M.; Peh, C. K. N.; Ho, G. W. Solar-driven photothermal nanostructured materials designs and prerequisites for evaporation and catalysis applications. Mater. Horiz. 2018, 5, 323–343.

[8]
Yang, Y.; Zhao, S. H.; Cui, L. F.; Bi, F. K.; Zhang, Y. N.; Liu, N.; Wang, Y. X.; Liu, F. D.; He, C.; Zhang, X. D. Recent advancement and future challenges of photothermal catalysis for VOCs elimination: From catalyst design to applications. Green Energy Environ., in press, https://doi.org/10.1016/j.gee.2022.02.006.
[9]

Zheng, Y. K.; Zhang, L.; Guan, J.; Qian, S. Y.; Zhang, Z. X.; Ngaw, C. K.; Wan, S. L.; Wang, S.; Lin, J. D.; Wang, Y. Controlled synthesis of Cu0/Cu2O for efficient photothermal catalytic conversion of CO2 and H2O. ACS Sustainable Chem. Eng. 2021, 9, 1754–1761.

[10]

Nair, V.; Muñoz-Batista, M. J.; Fernández-García, M.; Luque, R.; Colmenares, J. C. Thermo-photocatalysis: Environmental and energy applications. ChemSusChem 2019, 12, 2098–2116.

[11]

Li, X. J.; Zhao, S. Y.; Duan, X. G.; Zhang, H. Y.; Yang, S. Z.; Zhang, P. P.; Jiang, S. P.; Liu, S. M.; Sun, H. Q.; Wang, S. B. Coupling hydrothermal and photothermal single-atom catalysis toward excellent water splitting to hydrogen. Appl. Catal. B:Environ. 2021, 283, 119660.

[12]

Mateo, D.; Morlanes, N.; Maity, P.; Shterk, G.; Mohammed, O. F.; Gascon, J. Efficient visible-light driven photothermal conversion of CO2 to methane by nickel nanoparticles supported on barium titanate. Adv. Funct. Mater. 2020, 31, 2008244.

[13]

Mateo, D.; Cerrillo, J. L.; Durini, S.; Gascon, J. Fundamentals and applications of photo-thermal catalysis. Chem. Soc. Rev. 2021, 50, 2173–2210.

[14]

Li, H. K.; Dang, C. X.; Yang, G. X.; Cao, Y. H.; Wang, H. J.; Peng, F.; Yu, H. Bi-functional particles for integrated thermo-chemical processes: Catalysis and beyond. Particuology 2021, 56, 10–32.

[15]

Yang, Y. Y.; Feng, H. P.; Niu, C. G.; Huang, D. W.; Guo, H.; Liang, C.; Liu, H. Y.; Chen, S.; Tang, N.; Li, L. Constructing a plasma-based Schottky heterojunction for near-infrared-driven photothermal synergistic water disinfection: Synergetic effects and antibacterial mechanisms. Chem. Eng. J. 2021, 426, 131902.

[16]

Li, N. X.; Tu, Y.; Wang, K.; Huang, D. X.; Shen, Q. H.; Chen, W. S.; Zhou, J. C.; Ma, Q. H.; Liu, M. C. Construction of a photo-thermal-magnetic coupling reaction system for enhanced CO2 reduction to CH4. Chem. Eng. J. 2021, 421, 129940.

[17]

Wang, S. H.; Tountas, A. A.; Pan, W. B.; Zhao, J. J.; He, L.; Sun, W.; Yang, D. R.; Ozin, G. A. CO2 footprint of thermal versus photothermal CO2 catalysis. Small 2021, 17, 2007025.

[18]

Zhang, F.; Li, Y. H.; Qi, M. Y.; Yamada, Y. M. A.; Anpo, M.; Tang, Z. R.; Xu, Y. J. Photothermal catalytic CO2 reduction over nanomaterials. Chem Catal. 2021, 1, 272–297.

[19]

Kho, E. T.; Tan, T. H.; Lovell, E.; Wong, R. J.; Scott, J.; Amal, R. A review on photo-thermal catalytic conversion of carbon dioxide. Green Energy Environ. 2017, 2, 204–217.

[20]

Xie, B. Q.; Lovell, E.; Tan, T. H.; Jantarang, S.; Yu, M. Y.; Scott, J.; Amal, R. Emerging material engineering strategies for amplifying photothermal heterogeneous CO2 catalysis. J. Energy Chem. 2021, 59, 108–125.

[21]

Luo, S. Q.; Ren, X. H.; Lin, H. W.; Song, H.; Ye, J. H. Plasmonic photothermal catalysis for solar-to-fuel conversion: Current status and prospects. Chem. Sci. 2021, 12, 5701–5719.

[22]

Xiao, J. D.; Jiang, H. L. Metal-organic frameworks for photocatalysis and photothermal catalysis. Acc. Chem. Res. 2019, 52, 356–366.

[23]

Gao, M. M.; Zhu, L. L.; Peh, C. K.; Ho, G. W. Solar absorber material and system designs for photothermal water vaporization towards clean water and energy production. Energy Environ. Sci. 2019, 12, 841–864.

[24]

Ma, R.; Sun, J.; Li, D. H.; Wei, J. J. Review of synergistic photo-thermo-catalysis: Mechanisms, materials and applications. Int. J. Hydrog. Energy 2020, 45, 30288–30324.

[25]

Wang, F. F.; Huang, Y. J.; Chai, Z. G.; Zeng, M.; Li, Q.; Wang, Y.; Xu, D. S. Photothermal-enhanced catalysis in core–shell plasmonic hierarchical Cu7S4 microsphere@zeolitic imidazole framework-8. Chem. Sci. 2016, 7, 6887–6893.

[26]

Kim, C.; Hyeon, S.; Lee, J.; Kim, W. D.; Lee, D. C.; Kim, J.; Lee, H. Energy-efficient CO2 hydrogenation with fast response using photoexcitation of CO2 adsorbed on metal catalysts. Nat. Commun. 2018, 9, 3027.

[27]

Wang, Q.; Domen, K. Particulate photocatalysts for light-driven water splitting: Mechanisms, challenges, and design strategies. Chem. Rev. 2020, 120, 919–985.

[28]

Du, S. H.; Bian, X. N.; Zhao, Y. X.; Shi, R.; Zhang, T. R. Progress and prospect of photothermal catalysis. Chem. Res. Chin. Univ. 2022, 38, 723–734.

[29]

Zhang, Y. W.; Xu, C. Y.; Chen, J. C.; Zhang, X. H.; Wang, Z. H.; Zhou, J. H.; Cen, K. F. A novel photo-thermochemical cycle for the dissociation of CO2 using solar energy. Appl. Energy 2015, 156, 223–229.

[30]

Xie, T.; Zhang, Z. Y.; Zheng, H. Y.; Xu, K. D.; Hu, Z.; Lei, Y. Enhanced photothermal catalytic performance of dry reforming of methane over Ni/mesoporous TiO2 composite catalyst. Chem. Eng. J. 2022, 429, 132507.

[31]

Chen, G. B.; Waterhouse, G. I. N.; Shi, R.; Zhao, J. Q.; Li, Z. H.; Wu, L. Z.; Tung, C. H.; Zhang, T. R. From solar energy to fuels: Recent advances in light-driven C1 chemistry. Angew. Chem., Int. Ed. 2019, 58, 17528–17551.

[32]

Xu, Y. F.; Duchesne, P. N.; Wang, L.; Tavasoli, A.; Jelle, A. A.; Xia, M. K.; Liao, J. F.; Kuang, D. B.; Ozin, G. A. High-performance light-driven heterogeneous CO2 catalysis with near-unity selectivity on metal phosphides. Nat. Commun. 2020, 11, 5149.

[33]

Song, C. Q.; Wang, Z. H.; Yin, Z.; Xiao, D. Q.; Ma, D. Principles and applications of photothermal catalysis. Chem Catal. 2022, 2, 52–83.

[34]

Li, Z.; Zhang, X. H.; Zhang, L.; Xu, C. Y.; Zhang, Y. W. Pathway alteration of water splitting via oxygen vacancy formation on anatase titanium dioxide in photothermal catalysis. J. Phys. Chem. C 2020, 124, 26214–26221.

[35]

Zhang, M. T.; Wang, M.; Xu, B. J.; Ma, D. How to measure the reaction performance of heterogeneous catalytic reactions reliably. Joule 2019, 3, 2876–2883.

[36]

Shoji, S.; Peng, X. B.; Yamaguchi, A.; Watanabe, R.; Fukuhara, C.; Cho, Y.; Yamamoto, T.; Matsumura, S.; Yu, M. W.; Ishii, S. et al. Photocatalytic uphill conversion of natural gas beyond the limitation of thermal reaction systems. Nat. Catal. 2020, 3, 148–153.

[37]

Linic, S.; Aslam, U.; Boerigter, C.; Morabito, M. Photochemical transformations on plasmonic metal nanoparticles. Nat. Mater. 2015, 14, 567–576.

[38]

Li, Z.; Zhang, L.; Huang, W. H.; Xu, C. Y.; Zhang, Y. W. Photothermal catalysis for selective CO2 reduction on the modified anatase TiO2 (101) surface. ACS Appl. Energy Mater. 2021, 4, 7702–7709.

[39]

Zhu, Z. Z.; Guo, W. Y.; Zhang, Y.; Pan, C. S.; Xu, J.; Zhu, Y. F.; Lou, Y. Research progress on methane conversion coupling photocatalysis and thermocatalysis. Carbon Energy 2021, 3, 519–540.

[40]

Wang, F.; Li, C. H.; Chen, H. J.; Jiang, R. B.; Sun, L. D.; Li, Q.; Wang, J. F.; Yu, J. C.; Yan, C. H. Plasmonic harvesting of light energy for Suzuki coupling reactions. J. Am. Chem. Soc. 2013, 135, 5588–5601.

[41]

Hoch, L. B.; O’Brien, P. G.; Jelle, A.; Sandhel, A.; Perovic, D. D.; Mims, C. A.; Ozin, G. A. Nanostructured indium oxide coated silicon nanowire arrays: A hybrid photothermal/photochemical approach to solar fuels. ACS Nano 2016, 10, 9017–9025.

[42]

Gao, M. M.; Connor, P. K. N.; Ho, G. W. Plasmonic photothermic directed broadband sunlight harnessing for seawater catalysis and desalination. Energy Environ. Sci. 2016, 9, 3151–3160.

[43]

Han, B.; Wei, W.; Chang, L.; Cheng, P. F.; Hu, Y. H. Efficient visible light photocatalytic CO2 reforming of CH4. ACS Catal. 2016, 6, 494–497.

[44]

Yuan, D. C.; Peng, Y. H.; Ma, L. P.; Li, J. C.; Zhao, J. G.; Hao, J. J.; Wang, S. F.; Liang, B. L.; Ye, J. H.; Li, Y. G. Coke and sintering resistant nickel atomically doped with ceria nanosheets for highly efficient solar driven hydrogen production from bioethanol. Green Chem., 2022, 24, 2044–2050.

[45]

Li, Y. G.; Bai, X. H.; Yuan, D. C.; Zhang, F. Y.; Li, B.; San, X. Y.; Liang, B. L.; Wang, S. F.; Luo, J.; Fu, G. S. General heterostructure strategy of photothermal materials for scalable solar-heating hydrogen production without the consumption of artificial energy. Nat. Commun. 2022, 13, 776.

[46]

Meng, X. G.; Wang, T.; Liu, L. Q.; Ouyang, S. X.; Li, P.; Hu, H. L.; Kako, T.; Iwai, H.; Tanaka, A.; Ye, J. H. Photothermal conversion of CO2 into CH4 with H2 over Group VIII nanocatalysts: An alternative approach for solar fuel production. Angew. Chem., Int. Ed. 2014, 53, 11478–11482.

[47]

Rej, S.; Mascaretti, L.; Santiago, E. Y.; Tomanec, O.; Kment, Š.; Wang, Z. M.; Zbořil, R.; Fornasiero, P.; Govorov, A. O.; Naldoni, A. Determining plasmonic hot electrons and photothermal effects during H2 evolution with TiN-Pt nanohybrids. ACS Catal. 2020, 10, 5261–5271.

[48]

Takami, D.; Ito, Y.; Kawaharasaki, S.; Yamamoto, A.; Yoshida, H. Low temperature dry reforming of methane over plasmonic Ni photocatalysts under visible light irradiation. Sustainable Energy Fuels 2019, 3, 2968–2971.

[49]

Nguyen, N. T.; Yan, T. J.; Wang, L.; Loh, J. Y. Y.; Duchesne, P. N.; Mao, C. L.; Li, P. C.; Jelle, A. A.; Xia, M. K.; Ghoussoub, M. et al. Plasmonic titanium nitride facilitates indium oxide CO2 photocatalysis. Small 2020, 16, 2005754.

[50]

Aslam, U.; Rao, V. G.; Chavez, S.; Linic, S. Catalytic conversion of solar to chemical energy on plasmonic metal nanostructures. Nat. Catal. 2018, 1, 656–665.

[51]

Chen, X.; Li, Q.; Zhang, M.; Li, J. J.; Cai, S. C.; Chen, J.; Jia, H. P. MOF-templated preparation of highly dispersed Co/Al2O3 composite as the photothermal catalyst with high solar-to-fuel efficiency for CO2 methanation. ACS Appl. Mater. Interfaces 2020, 12, 39304–39317.

[52]

Peh, C. K. N.; Gao, M. M.; Ho, G. W. Harvesting broadband absorption of the solar spectrum for enhanced photocatalytic H2 generation. J. Mater. Chem. A 2015, 3, 19360–19367.

[53]

Hoch, L. B.; Wood, T. E.; O'Brien, P. G.; Liao, K.; Reyes, L. M.; Mims, C. A.; Ozin, G. A. The rational design of a single-component photocatalyst for gas-phase CO2 reduction using both UV and visible light. Adv. Sci. 2014, 1, 1400013.

[54]

Li, Y. Y.; Peng, Y. K.; Hu, L. S.; Zheng, J. W.; Prabhakaran, D.; Wu, S.; Puchtler, T. J.; Li, M.; Wong, K. Y.; Taylor, R. A. et al. Photocatalytic water splitting by N-TiO2 on MgO (111) with exceptional quantum efficiencies at elevated temperatures. Nat. Commun. 2019, 10, 4421.

[55]

Li, Y. Y.; Wang, C. H.; Song, M.; Li, D. S.; Zhang, X. T.; Liu, Y. C. TiO2−x/CoOx photocatalyst sparkles in photothermocatalytic reduction of CO2 with H2O steam. Appl. Catal. B:Environ. 2019, 243, 760–770.

[56]

Chen, G. B.; Gao, R.; Zhao, Y. F.; Li, Z. H.; Waterhouse, G. I. N.; Shi, R.; Zhao, J. Q.; Zhang, M. T.; Shang, L.; Sheng, G. Y. et al. Alumina-supported CoFe alloy catalysts derived from layered-double-hydroxide nanosheets for efficient photothermal CO2 hydrogenation to hydrocarbons. Adv. Mater. 2018, 30, 1704663.

[57]

Pan, F. P.; Xiang, X. M.; Deng, W.; Zhao, H. L.; Feng, X. H.; Li, Y. A novel photo-thermochemical approach for enhanced carbon dioxide reforming of methane. ChemCatChem 2018, 10, 940–945.

[58]

Linic, S.; Christopher, P.; Ingram, D. B. Plasmonic-metal nanostructures for efficient conversion of solar to chemical energy. Nat. Mater. 2011, 10, 911–921.

[59]

Li, J.; Ye, Y. H.; Ye, L. Q.; Su, F. Y.; Ma, Z. Y.; Huang, J. D.; Xie, H. Q.; Doronkin, D. E.; Zimina, A.; Grunwaldt, J. D. et al. Sunlight induced photo-thermal synergistic catalytic CO2 conversion via localized surface plasmon resonance of MoO3−x. J. Mater. Chem. A 2019, 7, 2821–2830.

[60]

Guo, L.; Sun, Q.; Marcus, K.; Hao, Y.; Deng, J.; Bi, K.; Yang, Y. Photocatalytic glycerol oxidation on AuxCu-CuS@TiO2 plasmonic heterostructures. J. Mater. Chem. A 2018, 6, 22005–22012.

[61]

Gan, Z. X.; Wu, X. L.; Meng, M.; Zhu, X. B.; Yang, L.; Chu, P. K. Photothermal contribution to enhanced photocatalytic performance of graphene-based nanocomposites. ACS Nano 2014, 8, 9304–9310.

[62]

Ng, S. W. L.; Gao, M. M.; Lu, W. H.; Hong, M. H.; Ho, G. W. Selective wavelength enhanced photochemical and photothermal H2 generation of classical oxide supported metal catalyst. Adv. Funct. Mater. 2021, 31, 2104750.

[63]

Wang, L.; Dong, Y. C.; Yan, T. J.; Hu, Z. X.; Jelle, A. A.; Meira, D. M.; Duchesne, P. N.; Loh, J. Y. Y.; Qiu, C. Y.; Storey, E. E. et al. Black indium oxide a photothermal CO2 hydrogenation catalyst. Nat. Commun. 2020, 11, 2432.

[64]

Yang, M. Q.; Shen, L.; Lu, Y. Y.; Chee, S. W.; Lu, X.; Chi, X.; Chen, Z. H.; Xu, Q. H.; Mirsaidov, U.; Ho, G. W. Disorder engineering in monolayer nanosheets enabling photothermic catalysis for full solar spectrum (250–2500 nm) harvesting. Angew. Chem., Int. Ed. 2019, 58, 3077–3081.

[65]

Jia, J.; Wang, H.; Lu, Z. L.; O'Brien, P. G.; Ghoussoub, M.; Duchesne, P.; Zheng, Z. Q.; Li, P. C.; Qiao, Q.; Wang, L. et al. Photothermal catalyst engineering: Hydrogenation of gaseous CO2 with high activity and tailored selectivity. Adv. Sci. 2017, 4, 1700252.

[66]

Sun, M. Y.; Zhao, B. H.; Chen, F. P.; Liu, C. B.; Lu, S. Y.; Yu, Y. F.; Zhang, B. Thermally-assisted photocatalytic CO2 reduction to fuels. Chem. Eng. J. 2021, 408, 127280.

[67]

Song, H.; Luo, S. Q.; Huang, H. M.; Deng, B. W.; Ye, J. H. Solar-driven hydrogen production: Recent advances, challenges, and future perspectives. ACS Energy Lett. 2022, 7, 1043–1065.

[68]

Li, P. Y.; Liu, L.; An, W. J.; Wang, H.; Guo, H. X.; Liang, Y. H.; Cui, W. Q. Ultrathin porous g-C3N4 nanosheets modified with AuCu alloy nanoparticles and C–C coupling photothermal catalytic reduction of CO2 to ethanol. Appl. Catal. B:Environ. 2020, 266, 118618.

[69]

Liu, D. L.; Xu, Y.; Sun, M. Y.; Huang, Y.; Yu, Y. F.; Zhang, B. Photothermally assisted photocatalytic conversion of CO2-H2O into fuels over a WN-WO3 Z-scheme heterostructure. J. Mater. Chem. A 2020, 8, 1077–1083.

[70]

Ghuman, K. K.; Wood, T. E.; Hoch, L. B.; Mims, C. A.; Ozin, G. A.; Singh, C. V. Illuminating CO2 reduction on frustrated Lewis pair surfaces: Investigating the role of surface hydroxides and oxygen vacancies on nanocrystalline In2O(3−x)(OH)y. Phys. Chem. Chem. Phys. 2015, 17, 14623–14635.

[71]

Ghuman, K. K.; Hoch, L. B.; Szymanski, P.; Loh, J. Y. Y.; Kherani, N. P.; El-Sayed, M. A.; Ozin, G. A.; Singh, C. V. Photoexcited surface frustrated Lewis pairs for heterogeneous photocatalytic CO2 reduction. J. Am. Chem. Soc. 2016, 138, 1206–1214.

[72]

Yu, F.; Wang, C. H.; Li, Y. Y.; Ma, H.; Wang, R.; Liu, Y. C.; Suzuki, N.; Terashima, C.; Ohtani, B.; Ochiai, T. et al. Enhanced solar photothermal catalysis over solution plasma activated TiO2. Adv. Sci. 2020, 7, 2000204.

[73]

Ling, L. L.; Yang, W. J.; Yan, P.; Wang, M.; Jiang, H. L. Light-assisted CO2 hydrogenation over Pd3Cu@UiO-66 promoted by active sites in close proximity. Angew. Chem., Int. Ed. 2022, 61, e202116396.

[74]

Liu, H. M.; Meng, X. G.; Dao, T. D.; Zhang, H. B.; Li, P.; Chang, K.; Wang, T.; Li, M.; Nagao, T.; Ye, J. H. Conversion of carbon dioxide by methane reforming under visible-light irradiation: Surface-plasmon-mediated nonpolar molecule activation. Angew. Chem., Int. Ed. 2015, 54, 11545–11549.

[75]

Lu, B. W.; Quan, F. J.; Sun, Z.; Jia, F. L.; Zhang, L. Z. Photothermal reverse-water-gas-shift over Au/CeO2 with high yield and selectivity in CO2 conversion. Catal. Commun. 2019, 129, 105724.

[76]

Liu, H. M.; Li, M.; Dao, T. D.; Liu, Y. Y.; Zhou, W.; Liu, L. Q.; Meng, X. G.; Nagao, T.; Ye, J. H. Design of PdAu alloy plasmonic nanoparticles for improved catalytic performance in CO2 reduction with visible light irradiation. Nano Energy 2016, 26, 398–404.

[77]

Song, H.; Meng, X. G.; Dao, T. D.; Zhou, W.; Liu, H. M.; Shi, L.; Zhang, H. B.; Nagao, T.; Kako, T.; Ye, J. H. Light-enhanced carbon dioxide activation and conversion by effective plasmonic coupling effect of Pt and Au nanoparticles. ACS Appl. Mater. Interfaces 2018, 10, 408–416.

[78]

Xu, C. Y.; Huang, W. H.; Li, Z.; Deng, B. W.; Zhang, Y. W.; Ni, M. J.; Cen, K. F. Photothermal coupling factor achieving CO2 reduction based on palladium-nanoparticle-loaded TiO2. ACS Catal. 2018, 8, 6582–6593.

[79]

Docao, S.; Koirala, A. R.; Kim, M. G.; Hwang, I. C.; Song, M. K.; Yoon, K. B. Solar photochemical-thermal water splitting at 140 °C with Cu-loaded TiO2. Energy Environ. Sci. 2017, 10, 628–640.

[80]

Zhou, L. N.; Martirez, J. M. P.; Finzel, J.; Zhang, C.; Swearer, D. F.; Tian, S.; Robatjazi, H.; Lou, M. H.; Dong, L. L.; Henderson, L. et al. Light-driven methane dry reforming with single atomic site antenna-reactor plasmonic photocatalysts. Nat. Energy 2020, 5, 61–70.

[81]

Jia, J.; O’Brien, P. G.; He, L.; Qiao, Q.; Fei, T.; Reyes, L. M.; Burrow, T. E.; Dong, Y. C.; Liao, K.; Varela, M. et al. Visible and near-infrared photothermal catalyzed hydrogenation of gaseous CO2 over nanostructured Pd@Nb2O5. Adv. Sci. 2016, 3, 1600189.

[82]

Mateo, D.; Albero, J.; García, H. Graphene supported NiO/Ni nanoparticles as efficient photocatalyst for gas phase CO2 reduction with hydrogen. Appl. Catal. B:Environ. 2018, 224, 563–571.

[83]

Pan, F. P.; Xiang, X. M.; Du, Z. C.; Sarnello, E.; Li, T.; Li, Y. Integrating photocatalysis and thermocatalysis to enable efficient CO2 reforming of methane on Pt supported CeO2 with Zn doping and atomic layer deposited MgO overcoating. Appl. Catal. B:Environ. 2020, 260, 118189.

[84]

Zhang, G. Q.; Wu, S. W.; Li, Y. Z.; Zhang, Q. Significant improvement in activity, durability, and light-to-fuel efficiency of Ni nanoparticles by La2O3 cluster modification for photothermocatalytic CO2 reduction. Appl. Catal. B:Environ. 2020, 264, 118544.

[85]

Yang, H.; He, L. Q.; Hu, Y. W.; Lu, X. H.; Li, G. R.; Liu, B. J.; Ren, B.; Tong, Y. X.; Fang, P. P. Quantitative detection of photothermal and photoelectrocatalytic effects induced by SPR from Au@Pt nanoparticles. Angew. Chem., Int. Ed. 2015, 54, 11462–11466.

[86]

Zhang, X.; Li, X. Q.; Reish, M. E.; Zhang, D.; Su, N. Q.; Gutiérrez, Y.; Moreno, F.; Yang, W. T.; Everitt, H. O.; Liu, J. Plasmon-enhanced catalysis: Distinguishing thermal and nonthermal effects. Nano Lett. 2018, 18, 1714–1723.

[87]

Gao, M. M.; Peh, C. K.; Zhu, L. L.; Yilmaz, G.; Ho, G. W. Photothermal catalytic gel featuring spectral and thermal management for parallel freshwater and hydrogen production. Adv. Energy Mater. 2020, 10, 2000925.

[88]

Huang, H.; Mao, M. Y.; Zhang, Q.; Li, Y. Z.; Bai, J. L.; Yang, Y.; Zeng, M.; Zhao, X. J. Solar-light-driven CO2 reduction by CH4 on silica-cluster-modified Ni nanocrystals with a high solar-to-fuel efficiency and excellent durability. Adv. Energy Mater. 2018, 8, 1702472.

[89]

Li, X. Q.; Everitt, H. O.; Liu, J. Confirming nonthermal plasmonic effects enhance CO2 methanation on Rh/TiO2 catalysts. Nano Res. 2019, 12, 1906–1911.

[90]

Robatjazi, H.; Zhao, H. Q.; Swearer, D. F.; Hogan, N. J.; Zhou, L. N.; Alabastri, A.; McClain, M. J.; Nordlander, P.; Halas, N. J. Plasmon-induced selective carbon dioxide conversion on earth-abundant aluminum-cuprous oxide antenna-reactor nanoparticles. Nat. Commun. 2017, 8, 27.

[91]

Cai, M. J.; Wu, Z. Y.; Li, Z.; Wang, L.; Sun, W.; Tountas, A. A.; Li, C. R.; Wang, S. H.; Feng, K.; Xu, A. B. et al. Greenhouse-inspired supra-photothermal CO2 catalysis. Nat. Energy 2021, 6, 807–814.

[92]

Li, Y. G.; Hao, J. C.; Song, H.; Zhang, F. Y.; Bai, X. H.; Meng, X. G.; Zhang, H. Y.; Wang, S. F.; Hu, Y.; Ye, J. H. Selective light absorber-assisted single nickel atom catalysts for ambient sunlight-driven CO2 methanation. Nat. Commun. 2019, 10, 2359.

[93]

Wang, Q.; Pornrungroj, C.; Linley, S.; Reisner, E. Strategies to improve light utilization in solar fuel synthesis. Nat. Energy 2022, 7, 13–24.

[94]

Menges, F.; Mensch, P.; Schmid, H.; Riel, H.; Stemmer, A.; Gotsmann, B. Temperature mapping of operating nanoscale devices by scanning probe thermometry. Nat. Commun. 2016, 7, 10874.

[95]

Mecklenburg, M.; Hubbard, W. A.; White, E. R.; Dhall, R.; Ronin, S. B.; Aloni, S.; Regan, B. C. Nanoscale temperature mapping in operating microelectronic devices. Science, 2015, 347, 629–632.

[96]
BarellaM.VioliI. L.GargiuloJ.MartinezL. P.GoschinF.GuglielmottiV.PallarolaD.SchlückerS.Pilo-PaisM.AcunaG. P. In situ photothermal response of single gold nanoparticles through hyperspectral imaging anti-Stokes thermometryACS Nano2021152458246710.1021/acsnano.0c06185

Barella, M.; Violi, I. L.; Gargiulo, J.; Martinez, L. P.; Goschin, F.; Guglielmotti, V.; Pallarola, D.; Schlücker, S.; Pilo-Pais, M.; Acuna, G. P. et al. In situ photothermal response of single gold nanoparticles through hyperspectral imaging anti-Stokes thermometry. ACS Nano 2021, 15, 2458–2467.

[97]

Feng, K.; Wang, S. H.; Zhang, D. K.; Wang, L.; Yu, Y. Y.; Feng, K.; Li, Z.; Zhu, Z. J.; Li, C. R.; Cai, M. J. et al. Cobalt plasmonic superstructures enable almost 100% broadband photon efficient CO2 photocatalysis. Adv. Mater. 2020, 32, 2000014.

[98]

Mao, C. L.; Li, H.; Gu, H. G.; Wang, J. X.; Zou, Y. J.; Qi, G. D.; Xu, J.; Deng, F.; Shen, W. J.; Li, J. et al. Beyond the thermal equilibrium limit of ammonia synthesis with dual temperature zone catalyst powered by solar light. Chem 2019, 5, 2702–2717.

[99]

Xie, S. B.; Iglesia, E.; Bell, A. T. Effects of temperature on the Raman spectra and dispersed oxides. J. Phys. Chem. B 2001, 105, 5144–5152.

[100]

Song, C. Q.; Liu, X.; Xu, M.; Masi, D.; Wang, Y. G.; Deng, Y. C.; Zhang, M. T.; Qin, X. T.; Feng, K.; Yan, J. et al. Photothermal conversion of CO2 with tunable selectivity using Fe-based catalysts: From oxide to carbide. ACS Catal. 2020, 10, 10364–10374.

[101]

Westrich, T. A.; Dahlberg, K. A.; Kaviany, M.; Schwank, J. W. High-temperature photocatalytic ethylene oxidation over TiO2. J. Phys. Chem. C 2011, 115, 16537–16543.

[102]

Mahmoud, M. A. Reducing the photocatalysis induced by hot electrons of plasmonic nanoparticles due to tradeoff of photothermal heating. Phys. Chem. Chem. Phys. 2017, 19, 32016–32023.

[103]

Li, Y.; Li, R. Z.; Li, Z. H.; Wei, W. Q.; Ouyang, S. X.; Yuan, H.; Zhang, T. R. Effect of support on catalytic performance of photothermal Fischer–Tropsch synthesis to produce lower olefins over Fe5C2-based catalysts. Chem. Res. Chin. Univ. 2020, 36, 1006–1012.

[104]

Zhang, D. K.; Lv, K. X.; Li, C. R.; Fang, Y. S.; Wang, S. H.; Chen, Z. J.; Wu, Z. Y.; Guan, W. H.; Lou, D. Y.; Sun, W. et al. All-earth-abundant photothermal silicon platform for CO2 catalysis with nearly 100% sunlight harvesting ability. Sol. RRL 2021, 5, 2000387.

[105]

Zhang, Z. S.; Mao, C. L.; Meira, D. M.; Duchesne, P. N.; Tountas, A. A.; Li, Z.; Qiu, C. Y.; Tang, S. L.; Song, R.; Ding, X. et al. New black indium oxide-tandem photothermal CO2-H2 methanol selective catalyst. Nat. Commun. 2022, 13, 1512.

[106]

Ulmer, U.; Dingle, T.; Duchesne, P. N.; Morris, R. H.; Tavasoli, A.; Wood, T.; Ozin, G. A. Fundamentals and applications of photocatalytic CO2 methanation. Nat. Commun. 2019, 10, 3169.

[107]

Cai, M. J.; Li, C. R.; He, L. Enhancing photothermal CO2 catalysis by thermal insulating substrates. Rare Met. 2020, 39, 881–886.

[108]

Kong, N.; Han, B.; Li, Z.; Fang, Y. S.; Feng, K.; Wu, Z. Y.; Wang, S. H.; Xu, A. B.; Yu, Y. Y.; Li, C. R. et al. Ruthenium nanoparticles supported on Mg(OH)2 microflowers as catalysts for photothermal carbon dioxide hydrogenation. ACS Appl. Nano Mater. 2020, 3, 3028–3033.

[109]

Liu, G. G.; Meng, X. G.; Zhang, H. B.; Zhao, G. X.; Pang, H.; Wang, T.; Li, P.; Kako, T.; Ye, J. H. Elemental boron for efficient carbon dioxide reduction under light irradiation. Angew. Chem., Int. Ed. 2017, 56, 5570–5574.

[110]

Ren, J.; Ouyang, S. X.; Xu, H.; Meng, X. G.; Wang, T.; Wang, D. F.; Ye, J. H. Targeting activation of CO2 and H2 over Ru-loaded ultrathin layered double hydroxides to achieve efficient photothermal CO2 methanation in flow-type system. Adv. Energy Mater. 2017, 7, 1601657.

[111]

Wu, Z. Y.; Li, C. R.; Li, Z.; Feng, K.; Cai, M. J.; Zhang, D. K.; Wang, S. H.; Chu, M. Y.; Zhang, C. C.; Shen, J. H. et al. Niobium and titanium carbides (MXenes) as superior photothermal supports for CO2 photocatalysis. ACS Nano 2021, 15, 5696–5705.

[112]

Mateo, D.; Albero, J.; García, H. Titanium-perovskite-supported RuO2 nanoparticles for photocatalytic CO2 methanation. Joule 2019, 3, 1949–1962.

[113]

Cho, Y.; Shoji, S.; Yamaguchi, A.; Hoshina, T.; Fujita, T.; Abe, H.; Miyauchi, M. Visible-light-driven dry reforming of methane using a semiconductor-supported catalyst. Chem. Commun. 2020, 56, 4611–4614.

[114]

Li, Y.; Xue, J. B.; Shen, Q. Q.; Jia, S. F.; Li, Q.; Li, Y. X.; Liu, X. G.; Jia, H. S. Construction of a ternary spatial junction in yolk–shell nanoreactor for efficient photo-thermal catalytic hydrogen generation. Chem. Eng. J. 2021, 423, 130188.

[115]

Zhang, H. W.; Itoi, T.; Konishi, T.; Izumi, Y. Dual photocatalytic roles of light: Charge separation at the band gap and heat via localized surface plasmon resonance to convert CO2 into CO over silver-zirconium oxide. J. Am. Chem. Soc. 2019, 141, 6292–6301.

[116]

Song, R.; Luo, B.; Geng, J. F.; Song, D. X.; Jing, D. W. Photothermocatalytic hydrogen evolution over Ni2P/TiO2 for full-spectrum solar energy conversion. Ind. Eng. Chem. Res. 2018, 57, 7846–7854.

[117]

Caudillo-Flores, U.; Agostini, G.; Marini, C.; Kubacka, A.; Fernández-García, M. Hydrogen thermo-photo production using Ru/TiO2: Heat and light synergistic effects. Appl. Catal. B:Environ. 2019, 256, 117790.

[118]

Fang, S. Y.; Sun, Z. X.; Hu, Y. H. Insights into the thermo-photo catalytic production of hydrogen from water on a low-cost NiOx-loaded TiO2 catalyst. ACS Catal. 2019, 9, 5047–5056.

[119]

Ha, M. N.; Lu, G. Z.; Liu, Z. F.; Wang, L. C.; Zhao, Z. 3DOM-LaSrCoFeO6−δ as a highly active catalyst for the thermal and photothermal reduction of CO2 with H2O to CH4. J. Mater. Chem. A 2016, 4, 13155–13165.

[120]

Wang, L. C.; Wang, Y.; Cheng, Y.; Liu, Z. F.; Guo, Q. S.; Ha, M. N.; Zhao, Z. Hydrogen-treated mesoporous WO3 as a reducing agent of CO2 to fuels (CH4 and CH3OH) with enhanced photothermal catalytic performance. J. Mater. Chem. A 2016, 4, 5314–5322.

[121]

Lin, L. L.; Wang, K.; Yang, K.; Chen, X.; Fu, X. Z.; Dai, W. X. The visible-light-assisted thermocatalytic methanation of CO2 over Ru/TiO(2−x)Nx. Appl. Catal. B:Environ. 2017, 204, 440–455.

[122]

Zhang, H. B.; Wang, T.; Wang, J. J.; Liu, H. M.; Dao, T. D.; Li, M.; Liu, G. G.; Meng, X. G.; Chang, K.; Shi, L. et al. Surface-plasmon-enhanced photodriven CO2 reduction catalyzed by metal-organic-framework-derived iron nanoparticles encapsulated by ultrathin carbon layers. Adv. Mater. 2016, 28, 3703–3710.

[123]

Wang, Z. J.; Song, H.; Pang, H.; Ning, Y. X.; Dao, T. D.; Wang, Z.; Chen, H. L.; Weng, Y. X.; Fu, Q.; Nagao, T. et al. Photo-assisted methanol synthesis via CO2 reduction under ambient pressure over plasmonic Cu/ZnO catalysts. Appl. Catal. B: Environ. 2019, 250, 10–16.

[124]

Wang, L.; Ghoussoub, M.; Wang, H.; Shao, Y.; Sun, W.; Tountas, A. A.; Wood, T. E.; Li, H.; Loh, J. Y. Y.; Dong, Y. C. et al. Photocatalytic hydrogenation of carbon dioxide with high selectivity to methanol at atmospheric pressure. Joule 2018, 2, 1369–1381.

[125]

Han, K. H.; Wang, Y.; Wang, S.; Liu, Q. Y.; Deng, Z. Y.; Wang, F. G. Narrowing band gap energy of CeO2 in (Ni/CeO2)@SiO2 catalyst for photothermal methane dry reforming. Chem. Eng. J. 2021, 421, 129989.

[126]

Wang, C.; Su, Y.; Tavasoli, A.; Sun, W.; Wang, L.; Ozin, G. A.; Yang, D. Recent advances in nanostructured catalysts for photo-assisted dry reforming of methane. Mater. Today Nano 2021, 14, 100113.

[127]

Liu, H. M.; Song, H.; Zhou, W.; Meng, X. G.; Ye, J. H. A promising application of optical hexagonal TaN in photocatalytic reactions. Angew. Chem., Int. Ed. 2018, 57, 16781–16784.

[128]

Li, Z. H.; Shi, R.; Zhao, J. Q.; Zhang, T. R. Ni-based catalysts derived from layered-double-hydroxide nanosheets for efficient photothermal CO2 reduction under flow-type system. Nano Res. 2021, 14, 4828–4832.

[129]

Liu, H. M.; Meng, X. G.; Dao, T. D.; Liu, L. Q.; Li, P.; Zhao, G. X.; Nagao, T.; Yang, L. Q.; Ye, J. H. Light assisted CO2 reduction with methane over SiO2 encapsulated Ni nanocatalysts for boosted activity and stability. J. Mater. Chem. A 2017, 5, 10567–10573.

[130]

Sun, W.; Cao, X. E. Photothermal CO2 catalysis: From catalyst discovery to reactor design. Chem Catal. 2022, 2, 215–217.

[131]

Cao, X. E.; Kaminer, Y.; Hong, T.; Schein, P.; Liu, T. W.; Hanrath, T.; Erickson, D. HI-Light: A glass-waveguide-based “shell-and-tube” photothermal reactor platform for converting CO2 to fuels. iScience 2020, 23, 101856.

Nano Research
Pages 9985-10005
Cite this article:
Gao M, Zhang T, Ho GW. Advances of photothermal chemistry in photocatalysis, thermocatalysis, and synergetic photothermocatalysis for solar-to-fuel generation. Nano Research, 2022, 15(12): 9985-10005. https://doi.org/10.1007/s12274-022-4795-3
Topics:
Part of a topical collection:

1685

Views

55

Crossref

58

Web of Science

58

Scopus

4

CSCD

Altmetrics

Received: 10 May 2022
Revised: 18 July 2022
Accepted: 20 July 2022
Published: 15 August 2022
© Tsinghua University Press 2022
Return