Journal Home > Volume 16 , Issue 1

Dynamic DNA nanodevices have gained tremendous attention due to their extraordinary inherent functionality and advantages, however, dynamic DNA nanodevices-based biosensors are still challenging due to their high reliance on proteases and limited amplification capabilities. Herein, exploiting bispecific aptamer as initiators for the first time, we developed a three-dimensional (3D) DNA nanomotor biosensor powered by DNAzyme and entropy-driven circuit for sensitive and specific detection of lysozyme, in which walking and rolling strategies are efficiently integrated to achieve excellent signal amplification capability. Benefiting from the high selectivity of bispecific aptamer, the 3D DNA nanomotor biosensor can respond to lysozyme with high specificity and operate at high speed to release signals. The whole process is independent of protease, avoiding the influence of adverse environment on the operation stability. Under optimal conditions, it can achieve a limit of detection as low as 0.01 pg/mL with an excellent linear range of 0.05 pg/mL–500 ng/mL for lysozyme. Furthermore, the proposed strategy revealed high accuracy in the analysis of real samples, indicating a great potential for the application of nanomotor biosensors to the detection of non-nucleic acid targets.


menu
Abstract
Full text
Outline
Electronic supplementary material
About this article

Bispecific aptamer-initiated 3D DNA nanomotor biosensor powered by DNAzyme and entropy-driven circuit for sensitive and specificity detection of lysozyme

Show Author's information Shuo Qi1,2Yuhan Sun1,2Xiaoze Dong1,2Imran Mahmood Khan1,2Yan Lv1,2Yin Zhang3Nuo Duan1,2Shijia Wu1,2Zhouping Wang1,2,3,4,5( )
State Key Laboratory of Food Science and Technology, International Joint Laboratory on Food Safety, Jiangnan University, Wuxi 214122, China
School of Food Science and Technology, Jiangnan University, Wuxi 214122, China
Key Laboratory of Meat Processing of Sichuan, Chengdu University, Chengdu 610106, China
National Engineering Research Center for Functional Food, Jiangnan University, Wuxi 214122, China
Collaborative Inno vation Center of Food Safety and Quality Control in Jiangsu Province, Jiangnan University, Wuxi 214122, China

Abstract

Dynamic DNA nanodevices have gained tremendous attention due to their extraordinary inherent functionality and advantages, however, dynamic DNA nanodevices-based biosensors are still challenging due to their high reliance on proteases and limited amplification capabilities. Herein, exploiting bispecific aptamer as initiators for the first time, we developed a three-dimensional (3D) DNA nanomotor biosensor powered by DNAzyme and entropy-driven circuit for sensitive and specific detection of lysozyme, in which walking and rolling strategies are efficiently integrated to achieve excellent signal amplification capability. Benefiting from the high selectivity of bispecific aptamer, the 3D DNA nanomotor biosensor can respond to lysozyme with high specificity and operate at high speed to release signals. The whole process is independent of protease, avoiding the influence of adverse environment on the operation stability. Under optimal conditions, it can achieve a limit of detection as low as 0.01 pg/mL with an excellent linear range of 0.05 pg/mL–500 ng/mL for lysozyme. Furthermore, the proposed strategy revealed high accuracy in the analysis of real samples, indicating a great potential for the application of nanomotor biosensors to the detection of non-nucleic acid targets.

Keywords: specificity, bispecific aptamer, DNA rolling, DNA walking, amplification

References(52)

[1]

Seeman, N. C. DNA in a material world. Nature 2003, 421, 427–431.

[2]

Zhang, F.; Nangreave, J.; Liu, Y.; Yan, H. Structural DNA nanotechnology: State of the art and future perspective. J. Am. Chem. Soc. 2014, 136, 11198–11211.

[3]

Wang, Q.; Wang, J.; Huang, Y.; Du, Y. C.; Zhang, Y.; Cui, Y. X.; Kong, D. M. Development of the DNA-based biosensors for high performance in detection of molecular biomarkers: More rapid, sensitive, and universal. Biosens. Bioelectron. 2022, 197, 113739.

[4]

Libanori, A.; Chen, G. R.; Zhao, X.; Zhou, Y. H.; Chen, J. Smart textiles for personalized healthcare. Nat. Electron. 2022, 5, 142–156.

[5]

Chen, G. R.; Xiao, X.; Zhao, X.; Tat, T.; Bick, M.; Chen, J. Electronic textiles for wearable point-of-care systems. Chem. Rev. 2022, 122, 3259–3291.

[6]

Miao, P.; Tang, Y. G. DNA walking and rolling nanomachine for electrochemical detection of miRNA. Small 2020, 16, 2004518.

[7]

Wang, H. Z.; Zeng, J. H.; Huang, J.; Cheng, H.; Chen, B.; Hu, X.; He, X. X.; Zhou, Y.; Wang, K. M. A self-serviced-track 3D DNA walker for ultrasensitive detection of tumor exosomes by glycoprotein profiling. Angew. Chem., Int. Ed. 2022, 134, e202116932.

[8]

Ryssy, J.; Natarajan, A. K.; Wang, J. H.; Lehtonen, A. J.; Nguyen, M. K.; Klajn, R.; Kuzyk, A. Light-responsive dynamic DNA-origami-based plasmonic assemblies. Angew. Chem., Int. Ed. 2021, 60, 5859–5863.

[9]

Turek, V. A.; Chikkaraddy, R.; Cormier, S.; Stockham, B.; Ding, T.; Keyser, U. F.; Baumberg, J. J. Thermo-responsive actuation of a DNA origami flexor. Adv. Funct. Mater. 2018, 28, 1706410.

[10]

Suzuki, Y.; Kawamata, I.; Mizuno, K.; Murata, S. Large deformation of a DNA-origami nanoarm induced by the cumulative actuation of tension-adjustable modules. Angew. Chem., Int. Ed. 2020, 59, 6230–6234.

[11]

Hoffecker, I. T.; Chen, S. J.; Gådin, A.; Bosco, A.; Teixeira, A. I.; Högberg, B. Solution-controlled conformational switching of an anchored wireframe DNA nanostructure. Small 2019, 15, 1803628.

[12]

Kroener, F.; Heerwig, A.; Kaiser, W.; Mertig, M.; Rant, U. Electrical actuation of a DNA origami nanolever on an electrode. J. Am. Chem. Soc. 2017, 139, 16510–16513.

[13]

Yurke, B.; Turberfield, A. J.; Mills, A. P.; Simmel, F. C.; Neumann, J. L. A DNA-fuelled molecular machine made of DNA. Nature 2000, 406, 605–608.

[14]

Tian, Y.; Mao, C. D. Molecular gears:   A pair of DNA circles continuously rolls against each other. J. Am. Chem. Soc. 2004, 126, 11410–11411.

[15]

Thubagere, A. J.; Li, W.; Johnson, R. F.; Chen, Z. B.; Doroudi, S.; Lee, Y. L.; Izatt, G.; Wittman, S.; Srinivas, N.; Woods, D. et al. A cargo-sorting DNA robot. Science 2017, 357, eaan6558.

[16]

Ahmadi, Y.; Nord, A. L.; Wilson, A. J.; Hütter, C.; Schroeder, F.; Beeby, M.; Barišić, I. The Brownian and flow-driven rotational dynamics of a multicomponent DNA origami-based rotor. Small 2020, 16, 2001855.

[17]

Lund, K.; Manzo, A. J.; Dabby, N.; Michelotti, N.; Johnson-Buck, A.; Nangreave, J.; Taylor, S.; Pei, R. J.; Stojanovic, M. N.; Walter, N. G. et al. Molecular robots guided by prescriptive landscapes. Nature 2010, 465, 206–210.

[18]

Zhang, H.; Xu, X. W.; Jiang, W. An interparticle relatively motional DNA walker and its sensing application. Chem. Sci. 2020, 11, 7415–7423.

[19]

Zhang, X.; Wei, X. W.; Qi, J. J.; Shen, J.; Xu, J. W.; Gong, G. Y.; Wei, Y.; Yang, J.; Zhu, Q. Y.; Bai, T. T. et al. Simultaneous detection of bladder cancer exosomal microRNAs based on inorganic nanoflare and DNAzyme walker. Anal. Chem. 2022, 94, 4787–4793.

[20]

Jung, C.; Allen, P. B.; Ellington, A. D. A stochastic DNA walker that traverses a microparticle surface. Nat. Nanotechnol. 2016, 11, 157–163.

[21]

Oishi, M.; Saito, K. Simple single-legged DNA walkers at diffusion-limited nanointerfaces of gold nanoparticles driven by a DNA circuit mechanism. ACS Nano 2020, 14, 3477–3489.

[22]

Yang, P.; Li, Y. Y.; Mason, S. D.; Chen, F. F.; Chen, J. B.; Zhou, R. X.; Liu, J. W.; Hou, X. D.; Li, F. Concentric DNA amplifier that streamlines in-solution biorecognition and on-particle biocatalysis. Anal. Chem. 2020, 92, 3220–3227.

[23]

Mason, S. D.; Tang, Y. N.; Li, Y. Y.; Xie, X. Y.; Li, F. Emerging bioanalytical applications of DNA walkers. TrAC, Trends Anal. Chem. 2018, 107, 212–221.

[24]

Yuan, C. J.; Fang, J.; Duan, Q. Y.; Yan, Q.; Guo, J.; Yuan, T. X.; Yi, G. Two-layer three-dimensional DNA walker with highly integrated entropy-driven and enzyme-powered reactions for HIV detection. Biosens. Bioelectron. 2019, 133, 243–249.

[25]

Li, D. D.; Xu, Y. X.; Fan, L.; Shen, B.; Ding, X. J.; Yuan, R.; Li, X. M.; Chen, W. X. Target-driven rolling walker based electrochemical biosensor for ultrasensitive detection of circulating tumor DNA using doxorubicin@tetrahedron-Au tags. Biosens. Bioelectron. 2020, 148, 111826.

[26]

Yang, X. L.; Tang, Y. N.; Mason, S. D.; Chen, J. B.; Li, F. Enzyme-powered three-dimensional DNA nanomachine for DNA walking, payload release, and biosensing. ACS Nano 2016, 10, 2324–2330.

[27]

Qu, X. M.; Zhu, D.; Yao, G. B.; Su, S.; Chao, J.; Liu, H. J.; Zuo, X. L.; Wang, L. H.; Shi, J. Y.; Wang, L. H. et al. An exonuclease III-powered, on-particle stochastic DNA walker. Angew. Chem., Int. Ed. 2017, 56, 1855–1858.

[28]

Feng, C.; Wang, Z. H.; Chen, T. S.; Chen, X. X.; Mao, D. S.; Zhao, J.; Li, G. X. A dual-enzyme-assisted three-dimensional DNA walking machine using T4 polynucleotide kinase as activators and application in polynucleotide kinase assays. Anal. Chem. 2018, 90, 2810–2815.

[29]

Huang, W.; Zhan, D. Y.; Xie, Y. M.; Li, X.; Lai, G. S. Dual CHA-mediated high-efficient formation of a tripedal DNA walker for constructing a novel proteinase-free dual-mode biosensing strategy. Biosens. Bioelectron. 2022, 197, 113708.

[30]

Wei, W. T.; Lin, H.; Hao, T. T.; Wang, S.; Hu, Y. F.; Guo, Z. Y.; Luo, X. Y. DNA walker-mediated biosensor for target-triggered triple-mode detection of Vibrio parahaemolyticus. Biosens. Bioelectron. 2021, 186, 113305.

[31]

Yu, Y. Y.; Zhang, W. S.; Guo, Y. H.; Peng, H. P.; Zhu, M.; Miao, D. D.; Su, G. X. Engineering of exosome-triggered enzyme-powered DNA motors for highly sensitive fluorescence detection of tumor-derived exosomes. Biosens. Bioelectron. 2020, 167, 112482.

[32]

Yehl, K.; Mugler, A.; Vivek, S.; Liu, Y.; Zhang, Y.; Fan, M. Z.; Weeks, E. R.; Salaita, K. High-speed DNA-based rolling motors powered by RNase H. Nat. Nanotechnol. 2016, 11, 184–190.

[33]

Xu, Z. Q.; Chang, Y. Y.; Chai, Y. Q.; Wang, H. J.; Yuan, R. Ultrasensitive electrochemiluminescence biosensor for speedy detection of microRNA based on a DNA rolling machine and target recycling. Anal. Chem. 2019, 91, 4883–4888.

[34]

Li, J. M.; Johnson-Buck, A.; Yang, Y. R.; Shih, W. M.; Yan, H.; Walter, N. G. Exploring the speed limit of toehold exchange with a cartwheeling DNA acrobat. Nat. Nanotechnol. 2018, 13, 723–729.

[35]

Wu, N.; Wang, K.; Wang, Y. T.; Chen, M. L.; Chen, X. W.; Yang, T.; Wang, J. H. Three-dimensional DNA nanomachine biosensor by integrating DNA walker and rolling machine cascade amplification for ultrasensitive detection of cancer-related gene. Anal. Chem. 2020, 92, 11111–11118.

[36]

Miao, P.; Chai, H.; Tang, Y. G. DNA hairpins and dumbbell-wheel transitions amplified walking nanomachine for ultrasensitive nucleic acid detection. ACS Nano 2022, 16, 4726–4733.

[37]

Qi, S.; Duan, N.; Khan, I. M.; Dong, X. Z.; Zhang, Y.; Wu, S. J.; Wang, Z. P. Strategies to manipulate the performance of aptamers in SELEX, post-SELEX and microenvironment. Biotechnol. Adv. 2022, 55, 107902.

[38]

Qi, S.; Duan, N.; Sun, Y. H.; Zhou, Y.; Ma, P. F.; Wu, S. J.; Wang, Z. P. High-affinity aptamer of allergen β-lactoglobulin: Selection, recognition mechanism and application. Sensor. Actuat. B:Chem. 2021, 340, 129956.

[39]

Wang, L. P.; Liang, H.; Sun, J.; Liu, Y. C.; Li, J. Y.; Li, J. Y.; Li, J.; Yang, H. H. Bispecific aptamer induced artificial protein-pairing: A strategy for selective inhibition of receptor function. J. Am. Chem. Soc. 2019, 141, 12673–12681.

[40]

Miao, Y. Y.; Gao, Q. Q.; Mao, M. H.; Zhang, C.; Yang, L. Q.; Yang, Y.; Han, D. Bispecific aptamer chimeras enable targeted protein degradation on cell membranes. Angew. Chem., Int. Ed. 2021, 60, 11267–11271.

[41]

Zhu, C.; Li, L. S.; Wang, Z. J.; Irfan, M.; Qu, F. Recent advances of aptasensors for exosomes detection. Biosens. Bioelectron. 2020, 160, 112213.

[42]

Ueki, R.; Atsuta, S.; Ueki, A.; Sando, S. Nongenetic reprogramming of the ligand specificity of growth factor receptors by bispecific DNA aptamers. J. Am. Chem. Soc. 2017, 139, 6554–6557.

[43]

Yang, Y.; Sun, X. Q.; Xu, J.; Cui, C.; Safari Yazd, H.; Pan, X. S.; Zhu, Y. J.; Chen, X. G.; Li, X. W.; Li, J. et al. Circular bispecific aptamer-mediated artificial intercellular recognition for targeted T cell immunotherapy. ACS Nano 2020, 14, 9562–9571.

[44]

Liu, X. W.; Yan, H.; Liu, Y.; Chang, Y. Targeted cell−cell interactions by DNA nanoscaffold-templated multivalent bispecific aptamers. Small 2011, 7, 1673–1682.

[45]

Leśnierowski, G.; Yang, T. Y. Lysozyme and its modified forms: A critical appraisal of selected properties and potential. Trends Food Sci. Technol. 2021, 107, 333–342.

[46]

Melinte, G.; Selvolini, G.; Cristea, C.; Marrazza, G. Aptasensors for lysozyme detection: Recent advances. Talanta 2021, 226, 122169.

[47]

Cox, J. C.; Ellington, A. D. Automated selection of anti-protein aptamers. Biorg. Med. Chem. 2001, 9, 2525–2531.

[48]

Zou, M. J.; Chen, Y.; Xu, X.; Huang, H. D.; Liu, F.; Li, N. The homogeneous fluorescence anisotropic sensing of salivary lysozyme using the 6-carboxyfluorescein-labeled DNA aptamer. Biosens. Bioelectron. 2012, 32, 148–154.

[49]

Wang, B. B.; Zhao, X.; Chen, L. J.; Yang, C.; Yan, X. P. Functionalized persistent luminescence nanoparticle-based aptasensor for autofluorescence-free determination of kanamycin in food samples. Anal. Chem. 2021, 93, 2589–2595.

[50]

Han, J. P.; Cui, Y. C.; Li, F.; Gu, Z.; Yang, D. Y. Responsive disassembly of nucleic acid nanocomplex in cells for precision medicine. Nano Today 2021, 39, 101160.

[51]

Han, J. P.; Cui, Y. C.; Gu, Z.; Yang, D. Y. Controllable assembly/disassembly of polyphenol-DNA nanocomplex for cascade-responsive drug release in cancer cells. Biomaterials 2021, 273, 120846.

[52]

Jia, H. R.; Zhang, Z.; Fang, X.; Jiang, M.; Chen, M.; Chen, S.; Gu, K.; Luo, Z.; Wu, F. G.; Tan, W. Recent advances of cell surface modification based on aptamers. Mater. Today Nano 2022, 18, 100188.

File
12274_2022_4794_MOESM1_ESM.pdf (2.1 MB)
Publication history
Copyright
Acknowledgements

Publication history

Received: 24 June 2022
Revised: 18 July 2022
Accepted: 18 July 2022
Published: 21 August 2022
Issue date: January 2023

Copyright

© Tsinghua University Press 2022

Acknowledgements

Acknowledgements

This work was partly funded by the National Natural Science Foundation of China (Nos. 31871881 and 31871721), the National First-class Discipline Program of Food Science and Technology (No. JUFSTR20180303), and the National High-Level Personnel of Special Support Program (No. W03020371).

Return