Discover the SciOpen Platform and Achieve Your Research Goals with Ease.
Search articles, authors, keywords, DOl and etc.
We reveal the ultralow friction or superlubricity of water nanodroplets containing cations and anions on graphene substrates at high ion concentration by molecular dynamics simulations. When the ion concentration is higher than 7 wt.% and the nanodroplet diameter is larger than 10 nm, the friction coefficients of water nanodroplets are lower than 10−2, and can decrease to the order of 10−3 with increasing the ion concentration further. At a certain ion concentration, the optimal nanodroplet diameter of 17–20 nm exists at which the friction coefficient is the lowest. The ultralow friction behaviors of water nanodroplets containing cations and anions are mainly attributed to the opposite variation trends between the interfacial adhesion energy and surface energy of water nanodroplet with ion concentration, and the interfacial hydrophobicity sustained by high ion concentration. These results unveil the essential role of ions in achieving the superlubricity of water nanodroplets.
Raviv, U.; Giasson, S.; Kampf, N.; Gohy, J. F.; Jérôme, R.; Klein, J. Lubrication by charged polymers. Nature 2003, 425, 163–165.
Wang, H. D.; Liu, Y. H.; Liu, W. R.; Liu, Y. M.; Wang, K. P.; Li, J. J.; Ma, T. B.; Eryilmaz, O. L.; Shi, Y. J.; Erdemir, A. et al. Superlubricity of polyalkylene glycol aqueous solutions enabled by ultrathin layered double hydroxide nanosheets. ACS Appl. Mater. Interfaces 2019, 11, 20249–20256.
Ma, Q.; He, T.; Khan, A. M.; Wang, Q.; Chung, Y. W. Achieving macroscale liquid superlubricity using glycerol aqueous solutions. Tribol. Int. 2021, 160, 107006.
Ge, X. Y.; Li, J. J.; Zhang, C. H.; Liu, Y. H.; Luo, J. B. Superlubricity and antiwear properties of in situ-formed ionic liquids at ceramic interfaces induced by tribochemical reactions. ACS Appl. Mater. Interfaces 2019, 11, 6568–6574.
Gao, T. Y.; Li, J. J.; Yi, S.; Luo, J. B. Potential-dependent friction on a graphitic surface in ionic solution. J. Phys. Chem. C 2020, 124, 23745–23751.
Rosenhek-Goldian, I.; Kampf, N.; Klein, J. Trapped aqueous films lubricate highly hydrophobic surfaces. ACS Nano 2018, 12, 10075–10083.
Diao, Y. J.; Greenwood, G.; Wang, M. C.; Nam, S.; Espinosa-Marzal, R. M. Slippery and sticky graphene in water. ACS Nano 2019, 13, 2072–2082.
Han, T. Y.; Zhang, C. H.; Li, J. J.; Yuan, S. H.; Chen, X. C.; Zhang, J. Y.; Luo, J. B. Origins of superlubricity promoted by hydrated multivalent Ions. J. Phys. Chem. Lett. 2020, 11, 184–190.
Yin, J.; Li, X. M.; Yu, J.; Zhang, Z. H.; Zhou, J. X.; Guo, W. L. Generating electricity by moving a droplet of ionic liquid along graphene. Nat. Nanotechnol. 2014, 9, 378–383.
Kwak, S. S.; Lin, S. S.; Lee, J. H.; Ryu, H.; Kim, T. Y.; Zhong, H. K.; Chen, H. S.; Kim, S. W. Triboelectrification-induced large electric power generation from a single moving droplet on graphene/polytetrafluoroethylene. ACS Nano 2016, 10, 7297–7302.
Yang, S. S.; Su, Y. D.; Xu, Y.; Wu, Q.; Zhang, Y. B.; Raschke, M. B.; Ren, M. X.; Chen, Y.; Wang, J. L.; Guo, W. L. et al. Mechanism of electric power generation from ionic droplet motion on polymer supported graphene. J. Am. Chem. Soc. 2018, 140, 13746–13752.
Park, D.; Won, S.; Kim, K. S.; Jung, J. Y.; Choi, J. Y.; Nah, J. The influence of substrate-dependent triboelectric charging of graphene on the electric potential generation by the flow of electrolyte droplets. Nano Energy 2018, 54, 66–72.
Park, J.; Song, S.; Yang, Y. J.; Kwon, S. H.; Sim, E.; Kim, Y. S. Identification of droplet-flow-induced electric energy on electrolyte-insulator-semiconductor structure. J. Am. Chem. Soc. 2017, 139, 10968–10971.
Park, J.; Song, S.; Shin, C. H.; Yang, Y.; Weber, S. A. L.; Sim, E.; Kim, Y. S. Ion specificity on electric energy generated by flowing water droplets. Angew. Chem., Int. Ed. 2018, 57, 2091–2095.
Xu, W. H.; Zheng, H. X.; Liu, Y.; Zhou, X. F.; Zhang, C.; Song, Y. X.; Deng, X.; Leung, M.; Yang, Z. B.; Xu, R. X. et al. A droplet-based electricity generator with high instantaneous power density. Nature 2020, 578, 392–396.
Ma, M.; Tocci, G.; Michaelides, A.; Aeppli, G. Fast diffusion of water nanodroplets on graphene. Nat. Mater. 2016, 15, 66–71.
Papadopoulou, E.; Megaridis, C. M.; Walther, J. H.; Koumoutsakos, P. Ultrafast propulsion of water nanodroplets on patterned graphene. ACS Nano 2019, 13, 5465–5472.
Smith-Mannschott, K.; Xu, Q.; Heyden, S.; Bain, N.; Snoeijer, J. H.; Dufresne, E. R.; Style, R. W. Droplets sit and slide anisotropically on soft, stretched substrates. Phys. Rev. Lett. 2021, 126, 158004.
Rajegowda, R.; Kannam, S. K.; Hartkamp, R.; Sathian, S. P. Thermophoretically driven water droplets on graphene and boron nitride surfaces. Nanotechnology 2018, 29, 215401.
Liu, Q. C.; Xu, B. X. A unified mechanics model of wettability gradient-driven motion of water droplet on solid surfaces. Extreme Mech. Lett. 2016, 9, 304–309.
Liu, Q. C.; Xu, B. X. Actuating water droplets on graphene via surface wettability gradients. Langmuir 2015, 31, 9070–9075.
Mahmood, A.; Chen, S.; Chen, L.; Chen, C. L.; Liu, D.; Weng, D.; Wang, J. D. Spontaneous propulsion of a water nanodroplet induced by a wettability gradient: A molecular dynamics simulation study. Phys. Chem. Chem. Phys. 2020, 22, 4805–4814.
Mirsaidov, U. M.; Zheng, H. M.; Bhattacharya, D.; Casana, Y.; Matsudaira, P. Direct observation of stick-slip movements of water nanodroplets induced by an electron beam. Proc. Natl. Acad. Sci. USA 2012, 109, 7187–7190.
Oh, K. J.; Gao, G. T.; Zeng, X. C. Nucleation of water and methanol droplets on cations and anions: The sign preference. Phys. Rev. Lett. 2001, 86, 5080–5083.
O’Brien, J. T.; Williams, E. R. Effects of ions on hydrogen-bonding water networks in large aqueous nanodrops. J. Am. Chem. Soc. 2012, 134, 10228–10236.
Thaunay, F.; Jana, C.; Clavaguéra, C.; Ohanessian, G. Strategy for modeling the infrared spectra of ion-containing water drops. J. Phys. Chem. A 2018, 122, 832–842.
Zhu, Y. B.; Wang, F. C.; Bai, J.; Zeng, X. C.; Wu, H. A. Compression limit of two-dimensional water constrained in graphene nanocapillaries. ACS Nano 2015, 9, 12197–12204.
Xie, Y. B.; Fu, L.; Niehaus, T.; Joly, L. Liquid-solid slip on charged walls: The dramatic impact of charge distribution. Phys. Rev. Lett. 2020, 125, 014501.
Stuart, S. J.; Tutein, A. B.; Harrison, J. A. A reactive potential for hydrocarbons with intermolecular interactions. J. Chem. Phys. 2000, 112, 6472–6486.
Abascal, J. L. F.; Vega, C. A general purpose model for the condensed phases of water: TIP4P/2005. J. Chem. Phys. 2005, 123, 234505.
Luedtke, W. D.; Landman, U. Slip diffusion and lévy flights of an adsorbed gold nanocluster. Phys. Rev. Lett. 1999, 82, 3835–3838.
Tansel, B.; Sager, J.; Rector, T.; Garland, J.; Strayer, R. F.; Levine, L.; Roberts, M.; Hummerick, M.; Bauer, J. Significance of hydrated radius and hydration shells on ionic permeability during nanofiltration in dead end and cross flow modes. Sep. Purif. Technol. 2006, 51, 40–47.
Nosonovsky, M.; Bhushan, B. Roughness optimization for biomimetic superhydrophobic surfaces. Microsyst. Technol. 2005, 11, 535–549.
Li, H.; Zeng, X. C. Wetting and interfacial properties of water nanodroplets in contact with graphene and monolayer boron-nitride sheets. ACS Nano 2012, 6, 2401–2409.
Li, Z. T.; Wang, Y. J.; Kozbial, A.; Shenoy, G.; Zhou, F.; McGinley, R.; Ireland, P.; Morganstein, B.; Kunkel, A.; Surwade, S. P. et al. Effect of airborne contaminants on the wettability of supported graphene and graphite. Nat. Mater. 2013, 12, 925–931.
Cai, X. X.; Xie, W. J.; Yang, Y.; Long, Z. R.; Zhang, J.; Qiao, Z. R.; Yang, L. J.; Gao, Y. Q. Structure of water confined between two parallel graphene plates. J. Chem. Phys. 2019, 150, 124703.
Berendsen, H. J. C.; Grigera, J. R.; Straatsma, T. P. The missing term in effective pair potentials. J. Phys. Chem 1987, 91, 6269–6271.
Jalali, H.; Lotfi, E.; Boya, R.; Neek-Amal, M. Abnormal dielectric constant of nanoconfined water between graphene layers in the presence of salt. J. Phys. Chem. B 2021, 125, 1604–1610.