Journal Home > Volume 16 , Issue 1

The realization of colloidal alloy quantum dots (QDs) with narrow spectral linewidths requires minimization of the contributions of inhomogeneous and homogeneous broadening to the ensemble spectrum. Recently, there has been remarkable progress in eliminating the inhomogeneous contribution by controlling the size distribution of the QDs. However, considerable challenges remain in suppressing the homogeneous broadening, in terms of both intrinsic principles and rational synthetic routes. We find that ground-state exciton fine structure splitting and exciton–phonon coupling play a pivotal role in the homogeneous broadening mechanism. Here we demonstrate that the elimination of the lattice mismatch strain by using a coherent strain structure can decrease the light-heavy hole splitting, thus suppressing the asymmetric broadening of the emission on the high energy side. Besides, the improvement of the uniformity of the alloy by using a stepwise ion exchange strategy can weaken the exciton–longitudinal optical (LO)-phonon interactions, further minimizing the homogeneous broadening. As a result, the final alloy QD products exhibit a widely tunable blue emission wavelength (445–470 nm) with the narrowest ensemble photoluminescence full width at half maximum (FWHM) of 10.1–13.5 nm (or 58.4–75.3 meV). Our study provides a potential strategy for other semiconductor nanocrystals with ultranarrow spectral linewidths.


menu
Abstract
Full text
Outline
Electronic supplementary material
About this article

Enabling ultranarrow blue emission linewidths in colloidal alloy quantum dots by decreasing the exciton fine structure splitting and exciton–phonon coupling

Show Author's information Jinke Bai1Linfeng Wang1Tingting Zhang2Tianyi Hou2Meilun Zhang2Bing Xu2Dongyu Li2Xiao Jin2( )Qinghua Li2Yuxiao Wang1Xueru Zhang1Yinglin Song1( )
Department of Physics, Harbin Institute of Technology, Harbin 150001, China
Guangdong Provincial Key Laboratory of Development and Education for Special Needs Children, Lingnan Normal University, Zhanjiang 524048, China

Abstract

The realization of colloidal alloy quantum dots (QDs) with narrow spectral linewidths requires minimization of the contributions of inhomogeneous and homogeneous broadening to the ensemble spectrum. Recently, there has been remarkable progress in eliminating the inhomogeneous contribution by controlling the size distribution of the QDs. However, considerable challenges remain in suppressing the homogeneous broadening, in terms of both intrinsic principles and rational synthetic routes. We find that ground-state exciton fine structure splitting and exciton–phonon coupling play a pivotal role in the homogeneous broadening mechanism. Here we demonstrate that the elimination of the lattice mismatch strain by using a coherent strain structure can decrease the light-heavy hole splitting, thus suppressing the asymmetric broadening of the emission on the high energy side. Besides, the improvement of the uniformity of the alloy by using a stepwise ion exchange strategy can weaken the exciton–longitudinal optical (LO)-phonon interactions, further minimizing the homogeneous broadening. As a result, the final alloy QD products exhibit a widely tunable blue emission wavelength (445–470 nm) with the narrowest ensemble photoluminescence full width at half maximum (FWHM) of 10.1–13.5 nm (or 58.4–75.3 meV). Our study provides a potential strategy for other semiconductor nanocrystals with ultranarrow spectral linewidths.

Keywords: alloy quantum dots, spectral linewidth, light-heavy hole splitting, exciton–phonon coupling, homogeneous broadening

References(85)

[1]

Brus, L. E. Electron–electron and electron–hole interactions in small semiconductor crystallites: The size dependence of the lowest excited electronic state. J. Chem. Phys. 1984, 80, 4403–4409.

[2]

Nirmal, M.; Brus, L. Luminescence photophysics in semiconductor nanocrystals. Acc. Chem. Res. 1999, 32, 407–414.

[3]

Alivisatos, A. P. Perspectives on the physical chemistry of semiconductor nanocrystals. J. Phys. Chem. 1996, 100, 13226–13239.

[4]

Bawendi, M. G.; Steigerwald, M. L.; Brus, L. E. The quantum mechanics of larger semiconductor clusters (“quantum dots”). Annu. Rev. Phys. Chem. 1990, 41, 477–496.

[5]

Peng, X. Mechanisms for the shape-control and shape-evolution of colloidal semiconductor nanocrystals. Adv. Mater. 2003, 15, 459–463.

[6]

Murray, C. B.; Norris, D. J.; Bawendi, M. G. Synthesis and characterization of nearly monodisperse CdE (E = sulfur, selenium, tellurium) semiconductor nanocrystallites. J. Am. Chem. Soc. 1993, 115, 8706–8715.

[7]

Peng, Z. A.; Peng, X. G. Formation of high-quality CdTe, CdSe, and CdS nanocrystals using CdO as precursor. J. Am. Chem. Soc. 2001, 123, 183–184.

[8]

Yu, W. W.; Peng, X. G. Formation of high-quality CdS and other II-VI semiconductor nanocrystals in noncoordinating solvents: Tunable reactivity of monomers. Angew. Chem., Int. Ed. 2002, 41, 2368–2371.

DOI
[9]

Yang, Y. A.; Wu, H. M.; Williams, K. R.; Cao, Y. C. Synthesis of CdSe and CdTe nanocrystals without precursor injection. Angew. Chem. 2005, 117, 6870–6873.

[10]

Lin, S. X.; Li, J. Z.; Pu, C. D.; Lei, H. R.; Zhu, M. Y.; Qin, H. Y.; Peng, X. G. Surface and intrinsic contributions to extinction properties of ZnSe quantum dots. Nano Res. 2020, 13, 824–831.

[11]

Medintz, I. L.; Uyeda, H. T.; Goldman, E. R.; Mattoussi, H. Quantum dot bioconjugates for imaging, labelling and sensing. Nat. Mater. 2005, 4, 435–446.

[12]

Chan, W. C. W.; Nie, S. M. Quantum dot bioconjugates for ultrasensitive nonisotopic detection. Science 1998, 281, 2016–2018.

[13]

Eisler, H. J.; Sundar, V. C.; Bawendi, M. G.; Walsh, M.; Smith, H. I.; Klimov, V. Color-selective semiconductor nanocrystal laser. Appl. Phys. Lett. 2002, 80, 4614–4616.

[14]

Fan, F. J.; Voznyy, O.; Sabatini, R. P.; Bicanic, K. T.; Adachi, M. M.; McBride, J. R.; Reid, K. R.; Park, Y. S.; Li, X. Y.; Jain, A. et al. Continuous-wave lasing in colloidal quantum dot solids enabled by facet-selective epitaxy. Nature 2017, 544, 75–79.

[15]

Dang, C. N.; Lee, J.; Breen, C.; Steckel, J. S.; Coe-Sullivan, S.; Nurmikko, A. Red, green and blue lasing enabled by single-exciton gain in colloidal quantum dot films. Nat. Nanotechnol. 2012, 7, 335–339.

[16]

Kim, T. H.; Cho, K. S.; Lee, E. K.; Lee, S. J.; Chae, J.; Kim, J. W.; Kim, D. H.; Kwon, J. Y.; Amaratunga, G.; Lee, S. Y. et al. Full-colour quantum dot displays fabricated by transfer printing. Nat. Photonics 2011, 5, 176–182.

[17]

Dai, X. L.; Zhang, Z. X.; Jin, Y. Z.; Niu, Y.; Cao, H. J.; Liang, X. Y.; Chen, L. W.; Wang, J. P.; Peng, X. G. Solution-processed, high-performance light-emitting diodes based on quantum dots. Nature 2014, 515, 96–99.

[18]

Won, Y. H.; Cho, O.; Kim, T.; Chung, D. Y.; Kim, T.; Chung, H.; Jang, H.; Lee, J.; Kim, D.; Jang, E. Highly efficient and stable InP/ZnSe/ZnS quantum dot light-emitting diodes. Nature 2019, 575, 634–638.

[19]

Bai, J. K.; Zhang, M. L.; Jiang, R. Y.; Wu, Z. M.; Wang, L. F.; Jin, X.; Li, Q. H.; Wang, Y. X.; Zhang, X. R.; Song, Y. L. High color-rendering index and stable white light-emitting diodes based on highly luminescent quantum dots. Part. Part. Syst. Charact. 2021, 38, 2100120.

[20]

Jin, X.; Chang, C.; Zhao, W. F.; Huang, S. J.; Gu, X. B.; Zhang, Q.; Li, F.; Zhang, Y. B.; Li, Q. H. Balancing the electron and hole transfer for efficient quantum dot light-emitting diodes by employing a versatile organic electron-blocking layer. ACS Appl. Mater. Interfaces 2018, 10, 15803–15811.

[21]

Bruchez, M.; Moronne, M.; Gin, P.; Weiss, S.; Alivisatos, A. P. Semiconductor nanocrystals as fluorescent biological labels. Science 1998, 281, 2013–2016.

[22]

Gao, M.; Yang, H. W.; Shen, H. B.; Zeng, Z. P.; Fan, F. J.; Tang, B. B.; Min, J. J.; Zhang, Y.; Hua, Q. Z.; Li, L. S. et al. Bulk-like ZnSe quantum dots enabling efficient ultranarrow blue light-emitting diodes. Nano Lett. 2021, 21, 7252–7260.

[23]

Park, Y. S.; Lim, J.; Klimov, V. I. Asymmetrically strained quantum dots with non-fluctuating single-dot emission spectra and subthermal room-temperature linewidths. Nat. Mater. 2019, 18, 249–255.

[24]

Cassidy, J.; Ellison, C.; Bettinger, J.; Yang, M. R.; Moroz, P.; Zamkov, M. Enabling narrow emission line widths in colloidal nanocrystals through coalescence growth. Chem. Mater. 2020, 32, 7524–7534.

[25]

Li, Z. H.; Chen, F.; Wang, L.; Shen, H. B.; Guo, L. J.; Kuang, Y. M.; Wang, H. Z.; Li, N.; Li, L. S. Synthesis and evaluation of ideal core/shell quantum dots with precisely controlled shell growth: Nonblinking, single photoluminescence decay channel, and suppressed FRET. Chem. Mater. 2018, 30, 3668–3676.

[26]

Cui, J.; Beyler, A. P.; Coropceanu, I.; Cleary, L.; Avila, T. R.; Chen, Y.; Cordero, J. M.; Heathcote, S. L.; Harris, D. K.; Chen, O. et al. Evolution of the single-nanocrystal photoluminescence linewidth with size and shell: Implications for exciton-phonon coupling and the optimization of spectral linewidths. Nano Lett. 2016, 16, 289–296.

[27]

Kelley, A. M. Electron–phonon coupling in CdSe nanocrystals. J. Phys. Chem. Lett. 2010, 1, 1296–1300.

[28]

Salvador, M. R.; Graham, M. W.; Scholes, G. D. Exciton-phonon coupling and disorder in the excited states of CdSe colloidal quantum dots. J. Chem. Phys. 2006, 125, 184709.

[29]

Gellen, T. A.; Lem, J.; Turner, D. B. Probing homogeneous line broadening in CdSe nanocrystals using multidimensional electronic spectroscopy. Nano Lett. 2017, 17, 2809–2815.

[30]

Marshall, L. F.; Cui, J.; Brokmann, X.; Bawendi, M. G. Extracting spectral dynamics from single chromophores in solution. Phys. Rev. Lett. 2010, 105, 053005.

[31]

Kang, S.; Kim, Y.; Jang, E.; Kang, Y.; Han, S. Fundamental limit of the emission linewidths of quantum dots: An ab initio study of CdSe nanocrystals. ACS Appl. Mater. Interfaces 2020, 12, 22012–22018.

[32]

Peng, X. G.; Wickham, J.; Alivisatos, A. P. Kinetics of II-VI and III-V colloidal semiconductor nanocrystal growth: “Focusing” of size distributions. J. Am. Chem. Soc. 1998, 120, 5343–5344.

[33]

Chen, O.; Zhao, J.; Chauhan, V. P.; Cui, J.; Wong, C.; Harris, D. K.; Wei, H.; Han, H. S.; Fukumura, D.; Jain, R. K. et al. Compact high-quality CdSe-CdS core–shell nanocrystals with narrow emission linewidths and suppressed blinking. Nat. Mater. 2013, 12, 445–451.

[34]

Zhou, J. H.; Zhu, M. Y.; Meng, R. Y.; Qin, H. Y.; Peng, X. G. Ideal CdSe/CdS core/shell nanocrystals enabled by entropic ligands and their core size-, shell thickness-, and ligand-dependent photoluminescence properties. J. Am. Chem. Soc. 2017, 139, 16556–16567.

[35]
Gindele, F.; Hild, K.; Langbein, W.; Woggon, U. Temperature-dependent line widths of single excitons and biexcitons. J. Lumin. 2000, 87–89, 381–383.
[36]

Nomura, S.; Kobayashi, T. Exciton–LO-phonon couplings in spherical semiconductor microcrystallites. Phys. Rev. B 1992, 45, 1305–1316.

[37]

Takagahara, T. Electron–phonon interactions and excitonic dephasing in semiconductor nanocrystals. Phys. Rev. Lett. 1993, 71, 3577–3580.

[38]

Kelley, A. M. Exciton–optical phonon coupling in II-VI semiconductor nanocrystals. J. Chem. Phys. 2019, 151, 140901.

[39]

Liptay, T. J.; Marshall, L. F.; Rao, P. S.; Ram, R. J.; Bawendi, M. G. Anomalous stokes shift in CdSe nanocrystals. Phys. Rev. B 2007, 76, 155314.

[40]

Huang, L.; Ye, Z. K.; Yang, L.; Li, J. Z.; Qin, H. Y.; Peng, X. G. Synthesis of colloidal quantum dots with an ultranarrow photoluminescence peak. Chem. Mater. 2021, 33, 1799–1810.

[41]

Lin, C.; Gong, K.; Kelley, D. F.; Kelley, A. M. Size-dependent exciton-phonon coupling in CdSe nanocrystals through resonance Raman excitation profile analysis. J. Phys. Chem. C 2015, 119, 7491–7498.

[42]

Zhong, X. H.; Feng, Y. Y.; Knoll, W.; Han, M. Y. Alloyed ZnxCd1−xS nanocrystals with highly narrow luminescence spectral width. J. Am. Chem. Soc. 2003, 125, 13559–13563.

[43]

Ithurria, S.; Dubertret, B. Quasi 2D colloidal CdSe platelets with thicknesses controlled at the atomic level. J. Am. Chem. Soc. 2008, 130, 16504–16505.

[44]

Ithurria, S.; Tessier, M. D.; Mahler, B.; Lobo, R. P. S. M.; Dubertret, B.; Efros, A. L. Colloidal nanoplatelets with two-dimensional electronic structure. Nat. Mater. 2011, 10, 936–941.

[45]

Efros, A. L.; Rosen, M. The electronic structure of semiconductor nanocrystals. Annu. Rev. Mater. Sci. 2000, 30, 475–521.

[46]

Lim, J.; Park, Y. S.; Klimov, V. I. Optical gain in colloidal quantum dots achieved with direct-current electrical pumping. Nat. Mater. 2018, 17, 42–49.

[47]

Rainò, G.; Stöferle, T.; Moreels, I.; Gomes, R.; Hens, Z.; Mahrt, R. F. Controlling the exciton fine structure splitting in CdSe/CdS dot-in-rod nanojunctions. ACS Nano 2012, 6, 1979–1987.

[48]

Tolbert, S. H.; Alivisatos, A. P. High-pressure structural transformations in semiconductor nanocrystals. Annu. Rev. Phys. Chem. 1995, 46, 595–626.

[49]

Yang, C. S.; Hsieh, Y. P.; Kuo, M. C.; Tseng, P. Y.; Yeh, Z. W.; Chiu, K. C.; Shen, J. L.; Chu, A. H. M.; Chou, W. C.; Lan, W. H. Compressive strain induced heavy hole and light hole splitting of Zn1-xCd­xSe epilayers grown by molecular beam epitaxy. Mater. Chem. Phys. 2003, 78, 602–607.

[50]

Efros, A. L. Optical Properties of semiconductor nanocrystals with degenerate valence band. Superlattices Microstruct. 1992, 11, 167–169.

[51]

Laheld, U. E. H.; Einevoll, G. T. Excitons in CdSe quantum dots. Phys. Rev. B 1997, 55, 5184–5204.

[52]

Gao, Y.; Peng, X. G. Crystal structure control of CdSe nanocrystals in growth and nucleation: Dominating effects of surface versus interior structure. J. Am. Chem. Soc. 2014, 136, 6724–6732.

[53]

Ren, S. F.; Xia, J. B.; Han, H. X.; Wang, Z. P. Electronic structure and optical properties of [(ZnSe)m(CdSe)n]N-ZnSe multiple quantum wells. Phys. Rev. B 1994, 50, 14416.

[54]

Jin, X.; Xie, K. L.; Zhang, T. T.; Lian, H. D.; Zhang, Z. H.; Xu, B.; Li, D. Y.; Li, Q. H. Cation exchange assisted synthesis of ZnCdSe/ZnSe quantum dots with narrow emission line widths and near-unity photoluminescence quantum yields. Chem. Commun. 2020, 56, 6130–6133.

[55]

Protière, M.; Reiss, P. Highly luminescent Cd1−xZnxSe/ZnS core/shell nanocrystals emitting in the blue-green spectral range. Small 2007, 3, 399–403.

[56]

Lin, Q. L.; Wang, L.; Li, Z. H.; Shen, H. B.; Guo, L. J.; Kuang, Y. M.; Wang, H. Z.; Li, L. S. Nonblinking quantum-dot-based blue light-emitting diodes with high efficiency and a balanced charge-injection process. ACS Photonics 2018, 5, 939–946.

[57]

Lee, H.; Yang, H.; Holloway, P. H. Single-step growth of colloidal ternary ZnCdSe nanocrystals. J. Lumin. 2007, 126, 314–318.

[58]

Groeneveld, E.; Witteman, L.; Lefferts, M.; Ke, X. X.; Bals, S.; Van Tendeloo, G.; de Mello Donega, C. Tailoring ZnSe-CdSe colloidal quantum dots via cation exchange: From core/shell to alloy nanocrystals. ACS Nano 2013, 7, 7913–7930.

[59]

Chen, S.; Cao, W. R.; Liu, T. L.; Tsang, S. W.; Yang, Y. X.; Yan, X. L.; Qian, L. J. On the degradation mechanisms of quantum-dot light-emitting diodes. Nat. Commun. 2019, 10, 765.

[60]

Zhong, X. H.; Han, M. Y.; Dong, Z. L.; White, T. J.; Knoll, W. Composition-tunable ZnxCd1−xSe nanocrystals with high luminescence and stability. J. Am. Chem. Soc. 2003, 125, 8589–8594.

[61]

Yuan, Y. C.; Zhu, H.; Wang, X. D.; Cui, D. Z.; Gao, Z. H.; Su, D.; Zhao, J.; Chen, O. Cu-catalyzed synthesis of CdZnSe-CdZnS alloy quantum dots with highly tunable emission. Chem. Mater. 2019, 31, 2635–2643.

[62]

Zhong, X. H.; Zhang, Z. H.; Liu, S. H.; Han, M. Y.; Knoll, W. Embryonic nuclei-induced alloying process for the reproducible synthesis of blue-emitting ZnxCd1−xSe nanocrystals with long-time thermal stability in size distribution and emission wavelength. J. Phys. Chem. B 2004, 108, 15552–15559.

[63]

Zhong, X. H.; Feng, Y. Y.; Zhang, Y. L.; Gu, Z. Y.; Zou, L. A facile route to violet-to orange-emitting CdxZn1−xSe alloy nanocrystals via cation exchange reaction. Nanotechnology 2007, 18, 385606.

[64]

Cao, J.; Jiang, Z. J. Thickness-dependent shell homogeneity of ZnSe/CdSe core/shell nanocrystals and their spectroscopic and electron- and hole-transfer dynamics properties. J. Phys. Chem. C 2020, 124, 12049–12064.

[65]

Gong, K.; Kelley, D. F.; Kelley, A. M. Nonuniform excitonic charge distribution enhances exciton-phonon coupling in ZnSe/CdSe alloyed quantum dots. J. Phys. Chem. Lett. 2017, 8, 626–630.

[66]

Yalcin, A. O.; Goris, B.; van Dijk-Moes, R. J. A.; Fan, Z. C.; Erdamar, A. K.; Tichelaar, F. D.; Vlugt, T. J. H.; Van Tendeloo, G.; Bals, S.; Vanmaekelbergh, D. et al. Heat-induced transformation of CdSe-CdS-ZnS core-multishell quantum dots by Zn diffusion into inner layers. Chem. Commun. 2015, 51, 3320–3323.

[67]

Shen, H. B.; Zhou, C. H.; Xu, S. S.; Yu, C. L.; Wang, H. Z.; Chen, X.; Li, L. S. Phosphine-free synthesis of Zn1−xCdxSe/ZnSe/ZnSexS1−x/ZnS core/multishell structures with bright and stable blue-green photoluminescence. J. Mater. Chem. 2011, 21, 6046–6053.

[68]

Sagar, D. M.; Cooney, R. R.; Sewall, S. L.; Dias, E. A.; Barsan, M. M.; Butler, I. S.; Kambhampati, P. Size dependent, state-resolved studies of exciton–phonon couplings in strongly confined semiconductor quantum dots. Phys. Rev. B 2008, 77, 235321.

[69]

Shiang, J.; Wolters, R.; Heath, J. Theory of size-dependent resonance Raman intensities in InP nanocrystals. J. Chem. Phys. 1997, 106, 8981–8994.

[70]

Seong, M. J.; Mićić, O. I.; Nozik, A.; Mascarenhas, A.; Cheong, H. M. Size-dependent Raman study of InP quantum dots. Appl. Phys. Lett. 2003, 82, 185–187.

[71]

Hennion, B.; Moussa, F.; Pepy, G.; Kunc, K. Normal modes of vibrations in ZnSe. Phys. Lett. A 1971, 36, 376–378.

[72]

Gong, K.; Kelley, D. F.; Kelley, A. M. Resonance Raman spectroscopy and electron-phonon coupling in Zinc selenide quantum dots. J. Phys. Chem. C 2016, 120, 29533–29539.

[73]

Tschirner, N.; Lange, H.; Schliwa, A.; Biermann, A.; Thomsen, C.; Lambert, K.; Gomes, R.; Hens, Z. Interfacial alloying in CdSe/CdS heteronanocrystals: A Raman spectroscopy analysis. Chem. Mater. 2012, 24, 311–318.

[74]

Aubert, T.; Cirillo, M.; Flamee, S.; Van Deun, R.; Lange, H.; Thomsen, C.; Hens, Z. Homogeneously alloyed CdSe1 ;xSx quantum dots (0 ≤ x ≤ 1): An efficient synthesis for full optical tunability. Chem. Mater. 2013, 25, 2388–2390.

[75]

Kagan, C. R.; Murray, C. B.; Bawendi, M. G. Long-range resonance transfer of electronic excitations in close-packed CdSe quantum-dot solids. Phys. Rev. B 1996, 54, 8633–8643.

[76]

Bai, J. K.; Wang, L. F.; Chen, W. Y.; Jin, X.; Li, Q. H.; Wang, Y. X.; Zhang, X. R.; Song, Y. L. Efficient quantum dot light-emitting diodes based on well-type thick-shell CdxZn1−xS/CdSe/CdyZn1 ;yS quantum dots. Part. Part. Syst. Charact. 2020, 37, 2000115.

[77]

Varshni, Y. P. Temperature dependence of the energy gap in semiconductors. Physica 1967, 34, 149–154.

[78]

Paufler, P. Numerical data and functional relationships in science and technology—New series. Z. Kristallogr. Cryst. Mater. 1994, 209, 1009–1010.

[79]

Pässler, R. Unprecedented integral-free Debye temperature formulas: Sample applications to heat capacities of ZnSe and ZnTe. Adv. Condens. Matter Phys. 2017, 2017, 9321439.

[80]

Lee, J.; Koteles, E. S.; Vassell, M. O. Luminescence linewidths of excitons in GaAs quantum wells below 150 K. Phy. Rev. B 1986, 33, 5512.

[81]

Zhang, L. G.; Shen, D. Z.; Fan, X. W.; Lu, S. Z. Exciton–phonon scattering in CdSe/ZnSe quantum dots. Chin. Phys. Lett. 2002, 19, 578–580.

[82]

Kelley, A. M. Electron–phonon coupling in CdSe nanocrystals from an atomistic phonon model. ACS Nano 2011, 5, 5254–5262.

[83]

Valerini, D.; Cretí, A.; Lomascolo, M.; Manna, L.; Cingolani, R.; Anni, M. Temperature dependence of the photoluminescence properties of colloidal CdSe/ZnS core/shell quantum dots embedded in a polystyrene matrix. Phys. Rev. B 2005, 71, 235409.

[84]

De Oliveira, C. R. M.; De Paula, A. M.; Plentz Filho, F. O.; Medeiros Neto, J. A.; Barbosa, L. C.; Alves, O. L.; Menezes, E. A.; Rios, J. M. M.; Fragnito, H. L.; Cruz, C. H. B. et al. Probing of the quantum dot size distribution in CdTe-doped glasses by photoluminescence excitation spectroscopy. Appl. Phys. Lett. 1995, 66, 439–441.

[85]

Shen, H. B.; Gao, Q.; Zhang, Y. B.; Lin, Y.; Lin, Q. L.; Li, Z. H.; Chen, L.; Zeng, Z. P.; Li, X. G.; Jia, Y. et al. Visible quantum dot light-emitting diodes with simultaneous high brightness and efficiency. Nat. Photonics 2019, 13, 192–197.

File
12274_2022_4784_MOESM1_ESM.pdf (3.2 MB)
Publication history
Copyright
Acknowledgements

Publication history

Received: 05 May 2022
Revised: 24 June 2022
Accepted: 18 July 2022
Published: 27 August 2022
Issue date: January 2023

Copyright

© Tsinghua University Press 2022

Acknowledgements

Acknowledgements

We gratefully acknowledge the financial support of the Natural Science Foundation of China (No. 12174169), the Natural Science Foundation of Guangdong Province (Nos. 2021A1515012292 and 2022A1515012448), the Scientific Research Foundation of the Higher Education Institutions of Guangdong Province (Nos. 2019KCXTD012, 2020ZDZX3034, 2019KZDZX2008, and 2020ZDZX2055), the Natural Science Foundation of Jiangxi Province (Nos. 20192ACBL21045 and 20181BBE50022), the Talent Project of Lingnan Normal University (Nos. ZL2021029 and ZL2021030), the Science and Technology Plan Project of Zhanjiang (Nos. 2020B01085, 2021A05233, 2020A03003, and 2021A05042), the Young Innovative Talents Project of University of Guangdong Province (No. 2018KQNCX153), and the Yanling Outstanding Yong Teacher Training Program Funded Project of Lingnan Normal University (No. YL20200102).

Return