Journal Home > Volume 16 , Issue 1

As a typical two-dimensional material, graphitic carbon nitride (g-CN) has attracted great interest because of its distinctive electronic, optical, and catalytic properties. However, the absence of a feasible route toward large-area and high-quality films hinders its development in optoelectronics. Herein, high-quality g-CN films have been grown on Si substrate via a vapor-phase transport-assisted condensation method. The g-CN/Si heterojunction shows an obvious response to ultraviolet–visible-near infrared photons with a responsivity of 133 A·W−1, which is two orders of magnitude higher than the best value ever reported for g-CN photodetectors. A position-sensitive detector (PSD) has been developed using the lateral photovoltaic effect of the g-CN/Si heterojunction. The PSD shows a wide response spectrum ranging from 300 to 1,100 nm, and a position sensitivity and rise/decay time of 395 mV·mm−1 and 3.1/50 μs, respectively. Moreover, the application of the g-CN/Si heterojunction photodetector in trajectory tracking and acoustic detection has been realized for the first time. This work unveils the potential of g-CN for large-area photodetectors, and prospects for their applications in trajectory tracking and acoustic detection.


menu
Abstract
Full text
Outline
Electronic supplementary material
About this article

Ultrasensitive broadband position-sensitive detector based on graphitic carbon nitride

Show Author's information Xuexia ChenXun Yang( )Qing LouYongzhi TianZhiyu LiuChaofan LvYancheng ChenLin Dong( )Chong-Xin Shan( )
Henan Key Laboratory of Diamond Optoelectronic Materials and Devices, Key Laboratory of Material Physics, Ministry of Education, School of Physics and Microelectronics, Zhengzhou University, Zhengzhou 450052, China

Abstract

As a typical two-dimensional material, graphitic carbon nitride (g-CN) has attracted great interest because of its distinctive electronic, optical, and catalytic properties. However, the absence of a feasible route toward large-area and high-quality films hinders its development in optoelectronics. Herein, high-quality g-CN films have been grown on Si substrate via a vapor-phase transport-assisted condensation method. The g-CN/Si heterojunction shows an obvious response to ultraviolet–visible-near infrared photons with a responsivity of 133 A·W−1, which is two orders of magnitude higher than the best value ever reported for g-CN photodetectors. A position-sensitive detector (PSD) has been developed using the lateral photovoltaic effect of the g-CN/Si heterojunction. The PSD shows a wide response spectrum ranging from 300 to 1,100 nm, and a position sensitivity and rise/decay time of 395 mV·mm−1 and 3.1/50 μs, respectively. Moreover, the application of the g-CN/Si heterojunction photodetector in trajectory tracking and acoustic detection has been realized for the first time. This work unveils the potential of g-CN for large-area photodetectors, and prospects for their applications in trajectory tracking and acoustic detection.

Keywords: heterojunction, graphitic carbon nitride (g-CN), position-sensitive detector (PSD), lateral photovoltaic effect (LPE), trajectory tracking, acoustic detection

References(62)

[1]

Qin, J. N.; Barrio, J.; Peng, G. M.; Tzadikov, J.; Abisdris, L.; Volokh, M.; Shalom, M. Direct growth of uniform carbon nitride layers with extended optical absorption towards efficient water-splitting photoanodes. Nat. Commun. 2020, 11, 4701.

[2]

Wen, J. Q.; Xie, J.; Chen, X. B.; Li, X. A review on g-C3N4-based photocatalysts. Appl. Surf. Sci. 2017, 391, 72–123.

[3]

Lv, Y.; Yue, L.; Khan, I. M.; Zhou, Y.; Cao, W. B.; Niazi, S.; Wang, Z. P. Fabrication of magnetically recyclable yolk–shell Fe3O4@TiO2 nanosheet/Ag/g-C3N4 microspheres for enhanced photocatalytic degradation of organic pollutants. Nano Res. 2021, 14, 2363–2371.

[4]

Dong, Y. Q.; Wang, Q.; Wu, H. S.; Chen, Y. M.; Lu, C. H.; Chi, Y. W.; Yang, H. H. Graphitic carbon nitride materials: Sensing, imaging and therapy. Small 2016, 12, 5376–5393.

[5]

Wang, M.; Liang, Q. H.; Han, J. W.; Tao, Y.; Liu, D. H.; Zhang, C.; Lv, W.; Yang, Q. H. Catalyzing polysulfide conversion by g-C3N4 in a graphene network for long-life lithium-sulfur batteries. Nano Res. 2018, 11, 3480–3489.

[6]

Hao, Q.; Jia, G. H.; Wei, W.; Vinu, A.; Wang, Y.; Arandiyan, H.; Ni, B. J. Graphitic carbon nitride with different dimensionalities for energy and environmental applications. Nano Res. 2020, 13, 18–37.

[7]

Yu, H. J.; Haviv, E.; Neumann, R. Visible-light photochemical reduction of CO2 to CO coupled to hydrocarbon dehydrogenation. Angew. Chem. 2020, 132, 6278–6282.

[8]

Xiao, X. D.; Lin, S. Y.; Zhang, L. P.; Meng, H. Y.; Zhou, J.; Li, Q.; Liu, J. N.; Qiao, P. Z.; Jiang, B. J.; Fu, H. G. Constructing Pd–N interactions in Pd/g-C3N4 to improve the charge dynamics for efficient photocatalytic hydrogen evolution. Nano Res. 2022, 15, 2928–2934.

[9]

Zhou, Z. X.; Zhang, Y. Y.; Shen, Y. F.; Liu, S. Q.; Zhang, Y. J. Molecular engineering of polymeric carbon nitride: Advancing applications from photocatalysis to biosensing and more. Chem. Soc. Rev. 2018, 47, 2298–2321.

[10]

Liu, Z. Y.; Wang, C. F.; Zhu, Z. L.; Lou, Q.; Shen, C. L.; Chen, Y. C.; Sun, J. L.; Ye, Y. L.; Zang, J. H.; Dong, L. et al. Wafer-scale growth of two-dimensional graphitic carbon nitride films. Matter 2021, 4, 1625–1638.

[11]

Liu, Z. X.; Zhu, Y. P.; El-Demellawi, J. K.; Velusamy, D. B.; El-Zohry, A. M.; Bakr, O. M.; Mohammed, O. F.; Alshareef, H. N. Metal halide perovskite and phosphorus doped g-C3N4 bulk heterojunctions for air-stable photodetectors. ACS Energy Lett. 2019, 4, 2315–2322.

[12]

Wang, S. J.; Zhang, J. Q.; Li, B.; Sun, H. Q.; Wang, S. B. Engineered graphitic carbon nitride-based photocatalysts for visible-light-driven water splitting: A review. Energy Fuels 2021, 35, 6504–6526.

[13]

Jia, C. C.; Yang, L. J.; Zhang, Y. Z.; Zhang, X.; Xiao, K.; Xu, J. S.; Liu, J. Graphitic carbon nitride films: Emerging paradigm for versatile applications. ACS Appl. Mater. Interfaces 2020, 12, 53571–53591.

[14]

Zhang, J. S.; Zhang, M. W.; Sun, R. Q.; Wang, X. C. A facile band alignment of polymeric carbon nitride semiconductors to construct isotype heterojunctions. Angew. Chem., Int. Ed. 2012, 51, 10145–10149.

[15]

Han, Y. Y.; Lu, X. L.; Tang, S. F.; Yin, X. P.; Wei, Z. W.; Lu, T. B. Metal-free 2D/2D heterojunction of graphitic carbon nitride/graphdiyne for improving the hole mobility of graphitic carbon nitride. Adv. Energy Mater. 2018, 8, 1702992.

[16]

Hou, Y.; Wen, Z. H.; Cui, S. M.; Guo, X. R.; Chen, J. H. Constructing 2D porous graphitic C3N4 nanosheets/nitrogen-doped graphene/layered MoS2 ternary nanojunction with enhanced photoelectrochemical activity. Adv. Mater. 2013, 25, 6291–6297.

[17]

Li, Y. H.; Gu, M. L.; Zhang, X. M.; Fan, J. J.; Lv, K. L.; Carabineiro, S. A. C.; Dong, F. 2D g-C3N4 for advancement of photo-generated carrier dynamics: Status and challenges. Mater. Today 2020, 41, 270–303.

[18]

Velusamy, D. B.; Haque, M. A.; Parida, M. R.; Zhang, F.; Wu, T.; Mohammed, O. F.; Alshareef, H. N. 2D organic-inorganic hybrid thin films for flexible UV–visible photodetectors. Adv. Funct. Mater. 2017, 27, 1605554.

[19]

Fang, H. J.; Ma, H. L.; Zheng, C.; Lennon, S.; Wu, W. T.; Wu, L. L.; Wang, H. A high-performance transparent photodetector via building hierarchical g-C3N4 nanosheets/CNTs van der Waals heterojunctions by a facile and scalable approach. Appl. Surf. Sci. 2020, 529, 147122.

[20]

Prakash, N.; Kumar, G.; Singh, M.; Barvat, A.; Pal, P.; Singh, S. P.; Singh, H. K.; Khanna, S. P. Binary multifunctional ultrabroadband self-powered g-C3N4/Si heterojunction high-performance photodetector. Adv. Opt. Mater. 2018, 6, 1800191.

[21]

Bian, J. C.; Huang, C.; Zhang, R. Q. Graphitic carbon nitride film: An emerging star for catalytic and optoelectronic applications. ChemSusChem 2016, 9, 2723–2735.

[22]

Li, K. Y.; Yang, X.; Tian, Y. Z.; Chen, Y. C.; Lin, C. N.; Zhang, Z. F.; Xu, Z. Y.; Zang, J. H.; Shan, C. X. Ga2O3 solar-blind position-sensitive detectors. Sci. China Phys. Mech. Astron. 2020, 63, 117312.

[23]

Foisal, A. R. M.; Nguyen, T.; Dinh, T.; Nguyen, T. K.; Tanner, P.; Streed, E. W.; Dao, D. V. 3C-SiC/Si heterostructure:An excellent platform for position-sensitive detectors based on photovoltaic effect. ACS Appl. Mater. Interfaces 2019, 11, 40980–40987.

[24]

Hu, C.; Wang, X. J.; Song, B. High-performance position-sensitive detector based on the lateral photoelectrical effect of two-dimensional materials. Light Sci. Appl. 2020, 9, 88.

[25]

Hao, L. Z.; Liu, Y. J.; Han, Z. D.; Xu, Z. J.; Zhu, J. Large lateral photovoltaic effect in MoS2/GaAs heterojunction. Nanoscale Res. Lett. 2017, 12, 562.

[26]

Wang, W. H.; Liu, K. Y.; Jiang, J.; Du, R. X.; Sun, L. T.; Chen, W.; Lu, J. P.; Ni, Z. H. Ultrasensitive graphene-Si position-sensitive detector for motion tracking. InfoMat 2020, 2, 761–768.

[27]

Wang, W. H.; Lu, J. P.; Ni, Z. H. Position-sensitive detectors based on two-dimensional materials. Nano Res. 2021, 14, 1889–1900.

[28]

Foisal, A. R. M.; Qamar, A.; Nguyen, T.; Dinh, T.; Phan, H. P.; Nguyen, H.; Duran, P. G.; Streed, E. W.; Dao, D. V. Ultra-sensitive self-powered position-sensitive detector based on horizontally-aligned double 3C-SiC/Si heterostructures. Nano Energy 2021, 79, 105494.

[29]

Cong, R. D.; Qiao, S.; Liu, J. H.; Mi, J. S.; Yu, W.; Liang, B. L.; Fu, G. S.; Pan, C. F.; Wang, S. F. Ultrahigh, ultrafast, and self-powered visible-near-infrared optical position-sensitive detector based on a CVD-prepared vertically standing few-layer MoS2/Si heterojunction. Adv. Sci. 2018, 5, 1700502.

[30]

Fortunato, E.; Lavareda, G.; Vieira, M.; Martins, R. Thin film position sensitive detector based on amorphous silicon p-i-n diode. Rev. Sci. Instrum. 1994, 65, 3784–3786.

[31]

Toneva, A.; Sueva, D. Two-coordinate position sensitive amorphous silicon photodetectors. Sens. Actuators A Phys. 1999, 73, 210–214.

[32]

Kroke, E.; Schwarz, M.; Horath-Bordon, E.; Kroll, P.; Noll, B.; Norman, A. D. Tri-s-triazine derivatives. Part I. From trichloro-tri-s-triazine to graphitic C3N4 structures. New J. Chem. 2002, 26, 508–512.

[33]

Groenewolt, M.; Antonietti, M. Synthesis of g-C3N4 nanoparticles in mesoporous silica host matrices. Adv. Mater. 2005, 17, 1789–1792.

[34]

Aleksandrzak, M.; Kukulka, W.; Mijowska, E. Graphitic carbon nitride/graphene oxide/reduced graphene oxide nanocomposites for photoluminescence and photocatalysis. Appl. Surf. Sci. 2017, 398, 56–62.

[35]
Moon, H. S.; Hsiao, K. C.; Wu, M. C.; Yun, Y. J.; Hsu, Y. J.; Yong, K. J. Spatial separation of cocatalysts on Z-scheme organic/inorganic heterostructure hollow spheres for enhanced photocatalytic H2 evolution and in-depth analysis of the charge-transfer mechanism. Adv. Mater., in press, https://doi.org.10.1002/adma.202200172.
[36]

Fu, J. W.; Liu, K.; Jiang, K. X.; Li, H. J. W.; An, P. D.; Li, W. Z.; Zhang, N.; Li, H. M.; Xu, X. W.; Zhou, H. Q. et al. Graphitic carbon nitride with dopant induced charge localization for enhanced photoreduction of CO2 to CH4. Adv. Sci. 2019, 6, 1900796.

[37]
ChangC.FuY.HuM.WangC. Y.ShanG. Q.ZhuL. Y. Photodegradation of bisphenol A by highly stable palladium-doped mesoporous graphite carbon nitride (Pd/mpg-C3N4) under simulated solar light irradiationAppl. Catal. B Environ.2013142–143553560

Chang, C.; Fu, Y.; Hu, M.; Wang, C. Y.; Shan, G. Q.; Zhu, L. Y. Photodegradation of bisphenol A by highly stable palladium-doped mesoporous graphite carbon nitride (Pd/mpg-C3N4) under simulated solar light irradiation. Appl. Catal. B Environ. 2013, 142–143, 553–560.

[38]
DementjevA. P.De GraafA.Van De SandenM. C. M.MaslakovK. I.NaumkinA. V.SerovA. A. X-ray photoelectron spectroscopy reference data for identification of the C3N4 phase in carbon-nitrogen filmsDiamond Relat. Mater.2000919041907

Dementjev, A. P.; De Graaf, A.; Van De Sanden, M. C. M.; Maslakov, K. I.; Naumkin, A. V.; Serov, A. A. X-ray photoelectron spectroscopy reference data for identification of the C3N4 phase in carbon-nitrogen films. Diamond Relat. Mater. 2000, 9, 1904–1907.

[39]

Wang, Y.; Liu, X. Q.; Zheng, C. C.; Li, Y. C.; Jia, S. R.; Li, Z.; Zhao, Y. L. Tailoring TiO2 nanotube-interlaced graphite carbon nitride nanosheets for improving visible-light-driven photocatalytic performance. Adv. Sci. 2018, 5, 1700844.

[40]

Feng, J. Q.; Gao, H. S.; Zheng, L. R.; Chen, Z. P.; Zeng, S. J.; Jiang, C. Y.; Dong, H. F.; Liu, L. C.; Zhang, S. J.; Zhang, X. P. A Mn-N3 single-atom catalyst embedded in graphitic carbon nitride for efficient CO2 electroreduction. Nat. Commun. 2020, 11, 4341.

[41]

Chen, Y. C.; Lu, Y. J.; Lin, C. N.; Tian, Y. Z.; Gao, C. J.; Dong, L.; Shan, C. X. Self-powered diamond/β-Ga2O3 photodetectors for solar-blind imaging. J. Mater. Chem. C 2018, 6, 5727–5732.

[42]

Gong, X.; Tong, M. H.; Xia, Y. J.; Cai, W. Z.; Moon, J. S.; Cao, Y.; Yu, G.; Shieh, C. L.; Nilsson, B.; Heeger, A. J. High-detectivity polymer photodetectors with spectral response from 300 nm to 1450 nm. Science 2009, 325, 1665–1667.

[43]

Chen, X. X.; Yang, X.; Lou, Q.; Zhang, Y.; Chen, Y. C.; Lu, Y. C.; Dong, L.; Shan, C. X. Fabry–Perot interference and piezo-phototronic effect enhanced flexible MoS2 photodetector. Nano Res. 2022, 15, 4395–4402.

[44]

Kind, H.; Yan, H. Q.; Messer, B.; Law, M.; Yang, P. D. Nanowire ultraviolet photodetectors and optical switches. Adv. Mater. 2002, 14, 158–160.

DOI
[45]

Chen, Y. C.; Yang, X.; Zhang, Y.; Chen, X. X.; Sun, J. L.; Xu, Z. Y.; Li, K. Y.; Dong, L.; Shan, C. X. Ultra-sensitive flexible Ga2O3 solar-blind photodetector array realized via ultra-thin absorbing medium. Nano Res. 2022, 15, 3711–3719.

[46]

Mukherjee, B.; Cai, Y. Q.; Tan, H. R.; Feng, Y. P.; Tok, E. S.; Sow, C. H. NIR Schottky photodetectors based on individual single-crystalline GeSe nanosheet. ACS Appl. Mater. Interfaces 2013, 5, 9594–9604.

[47]

Chen, Y. C.; Lu, Y. J.; Yang, X.; Li, S. F.; Li, K. Y.; Chen, X. X.; Xu, Z. Y.; Zang, J. H.; Shan, C. X. Bandgap engineering of Gallium oxides by crystalline disorder. Mater. Today Phys. 2021, 18, 100369.

[48]

Chen, Y. C.; Zhang, K. K.; Yang, X.; Chen, X. X.; Sun, J. L.; Zhao, Q.; Li, K. Y.; Shan, C. X. Solar-blind photodetectors based on MXenes-β-Ga2O3 Schottky junctions. J. Phys. D Appl. Phys. 2020, 53, 484001.

[49]

Wang, Y. H.; Tang, Y. Q.; Li, H. R.; Yang, Z. B.; Zhang, Q. Y.; He, Z. B.; Huang, X.; Wei, X. H.; Tang, W. H.; Huang, W. et al. P-GaSe/n-Ga2O3 van der Waals heterostructure photodetector at solar-blind wavelengths with ultrahigh responsivity and detectivity. ACS Photonics 2021, 8, 2256–2264.

[50]

Zhang, Y.; Yu, Y. Q.; Mi, L. F.; Wang, H.; Zhu, Z. F.; Wu, Q. Y.; Zhang, Y. G.; Jiang, Y. In situ fabrication of vertical multilayered MoS2/Si homotype heterojunction for high-speed visible-near-infrared photodetectors. Small 2016, 12, 1062–1071.

[51]

Hu, C.; Wang, X. J.; Miao, P.; Zhang, L. L.; Song, B. Q.; Liu, W. L.; Lv, Z.; Zhang, Y.; Sui, Y.; Tang, J. K. et al. Origin of the ultrafast response of the lateral photovoltaic effect in amorphous MoS2/Si Junctions. ACS Appl. Mater. Interfaces 2017, 9, 18362–18368.

[52]

Xiao, S. Q.; Wang, H.; Yu, C. Q.; Xia, Y. X.; Lu, J. J.; Jin, Q. Y.; Wang, Z. H. A novel position-sensitive detector based on metal-oxide-semiconductor structures of Co-SiO2-Si. New J. Phys. 2008, 10, 033018.

[53]

Wang, X. J.; Zhao, X. F.; Hu, C.; Zhang, Y.; Song, B. Q.; Zhang, L. L.; Liu, W. L.; Lv, Z.; Zhang, Y.; Tang, J. K. et al. Large lateral photovoltaic effect with ultrafast relaxation time in SnSe/Si junction. Appl. Phys. Lett. 2016, 109, 023502.

[54]

Yu, C. Q.; Wang, H. Large lateral photovoltaic effect in metal-(oxide-) semiconductor structures. Sensors 2010, 10, 10155–10180.

[55]

Yu, C. Q.; Wang, H.; Xia, Y. X. Enhanced lateral photovoltaic effect in an improved oxide-metal-semiconductor structure of TiO2/Ti/Si. Appl. Phys. Lett. 2009, 95, 263506.

[56]

Boeringer, D. W.; Tsu, R. Lateral photovoltaic effect in porous silicon. Appl. Phys. Lett. 1994, 65, 2332–2334.

[57]

Liu, S.; Xie, X.; Wang, H. Lateral photovoltaic effect and electron transport observed in Cr nano-film. Opt. Express 2014, 22, 11627–11632.

[58]

Fortunato, E.; Lavareda, G.; Martins, R.; Soares, F.; Fernandes, L. Large-area 1D thin-film position-sensitive detector with high detection resolution. Sens. Actuators A Phys. 1996, 51, 135–142.

[59]

Henry, J.; Livingstone, J. Thin-film amorphous silicon position-sensitive detectors. Adv. Mater. 2001, 13, 1022–1026.

DOI
[60]

Tabatabaie, N.; Meynadier, M. H.; Nahory, R. E.; Harbison, J. P.; Florez, L. T. Large lateral photovoltaic effect in modulation-doped AlGaAs/GaAs heterostructures. Appl. Phys. Lett. 1989, 55, 792–794.

[61]

Sayan, S.; Emge, T.; Garfunkel, E.; Zhao, X. Y.; Wielunski, L.; Bartynski, R. A.; Vanderbilt, D.; Suehle, J. S.; Suzer, S.; Banaszak-Holl, M. Band alignment issues related to HfO2/SiO2/p-Si gate stacks. J. Appl. Phys. 2004, 96, 7485–7491.

[62]

Wang, R. P.; Li, H. L.; Zhang, L. H.; Zeng, Y. J.; Lv, Z. Y.; Yang, J. Q.; Mao, J. Y.; Wang, Z. P.; Zhou, Y.; Han, S. T. Graphitic carbon nitride nanosheets for solution processed non-volatile memory devices. J. Mater. Chem. C 2019, 7, 10203–10210.

File
12274_2022_4780_MOESM1_ESM.pdf (354.7 KB)
Publication history
Copyright
Acknowledgements

Publication history

Received: 25 May 2022
Revised: 08 July 2022
Accepted: 15 July 2022
Published: 31 August 2022
Issue date: January 2023

Copyright

© Tsinghua University Press 2022

Acknowledgements

Acknowledgements

This work was financially supported by Henan Center for Outstanding Overseas Scientists (No. GZS201903), the National Natural Science Foundation of China (Nos. 61804136, 11974317, and 62027816), Henan Science Fund for Distinguished Young Scholars (No. 212300410020), Key Project of Henan Higher Education (No. 21A140001), and the Zhengzhou University Physics Discipline Improvement Program.

Return