Discover the SciOpen Platform and Achieve Your Research Goals with Ease.
Search articles, authors, keywords, DOl and etc.
As a typical two-dimensional material, graphitic carbon nitride (g-CN) has attracted great interest because of its distinctive electronic, optical, and catalytic properties. However, the absence of a feasible route toward large-area and high-quality films hinders its development in optoelectronics. Herein, high-quality g-CN films have been grown on Si substrate via a vapor-phase transport-assisted condensation method. The g-CN/Si heterojunction shows an obvious response to ultraviolet–visible-near infrared photons with a responsivity of 133 A·W−1, which is two orders of magnitude higher than the best value ever reported for g-CN photodetectors. A position-sensitive detector (PSD) has been developed using the lateral photovoltaic effect of the g-CN/Si heterojunction. The PSD shows a wide response spectrum ranging from 300 to 1,100 nm, and a position sensitivity and rise/decay time of 395 mV·mm−1 and 3.1/50 μs, respectively. Moreover, the application of the g-CN/Si heterojunction photodetector in trajectory tracking and acoustic detection has been realized for the first time. This work unveils the potential of g-CN for large-area photodetectors, and prospects for their applications in trajectory tracking and acoustic detection.
Qin, J. N.; Barrio, J.; Peng, G. M.; Tzadikov, J.; Abisdris, L.; Volokh, M.; Shalom, M. Direct growth of uniform carbon nitride layers with extended optical absorption towards efficient water-splitting photoanodes. Nat. Commun. 2020, 11, 4701.
Wen, J. Q.; Xie, J.; Chen, X. B.; Li, X. A review on g-C3N4-based photocatalysts. Appl. Surf. Sci. 2017, 391, 72–123.
Lv, Y.; Yue, L.; Khan, I. M.; Zhou, Y.; Cao, W. B.; Niazi, S.; Wang, Z. P. Fabrication of magnetically recyclable yolk–shell Fe3O4@TiO2 nanosheet/Ag/g-C3N4 microspheres for enhanced photocatalytic degradation of organic pollutants. Nano Res. 2021, 14, 2363–2371.
Dong, Y. Q.; Wang, Q.; Wu, H. S.; Chen, Y. M.; Lu, C. H.; Chi, Y. W.; Yang, H. H. Graphitic carbon nitride materials: Sensing, imaging and therapy. Small 2016, 12, 5376–5393.
Wang, M.; Liang, Q. H.; Han, J. W.; Tao, Y.; Liu, D. H.; Zhang, C.; Lv, W.; Yang, Q. H. Catalyzing polysulfide conversion by g-C3N4 in a graphene network for long-life lithium-sulfur batteries. Nano Res. 2018, 11, 3480–3489.
Hao, Q.; Jia, G. H.; Wei, W.; Vinu, A.; Wang, Y.; Arandiyan, H.; Ni, B. J. Graphitic carbon nitride with different dimensionalities for energy and environmental applications. Nano Res. 2020, 13, 18–37.
Yu, H. J.; Haviv, E.; Neumann, R. Visible-light photochemical reduction of CO2 to CO coupled to hydrocarbon dehydrogenation. Angew. Chem. 2020, 132, 6278–6282.
Xiao, X. D.; Lin, S. Y.; Zhang, L. P.; Meng, H. Y.; Zhou, J.; Li, Q.; Liu, J. N.; Qiao, P. Z.; Jiang, B. J.; Fu, H. G. Constructing Pd–N interactions in Pd/g-C3N4 to improve the charge dynamics for efficient photocatalytic hydrogen evolution. Nano Res. 2022, 15, 2928–2934.
Zhou, Z. X.; Zhang, Y. Y.; Shen, Y. F.; Liu, S. Q.; Zhang, Y. J. Molecular engineering of polymeric carbon nitride: Advancing applications from photocatalysis to biosensing and more. Chem. Soc. Rev. 2018, 47, 2298–2321.
Liu, Z. Y.; Wang, C. F.; Zhu, Z. L.; Lou, Q.; Shen, C. L.; Chen, Y. C.; Sun, J. L.; Ye, Y. L.; Zang, J. H.; Dong, L. et al. Wafer-scale growth of two-dimensional graphitic carbon nitride films. Matter 2021, 4, 1625–1638.
Liu, Z. X.; Zhu, Y. P.; El-Demellawi, J. K.; Velusamy, D. B.; El-Zohry, A. M.; Bakr, O. M.; Mohammed, O. F.; Alshareef, H. N. Metal halide perovskite and phosphorus doped g-C3N4 bulk heterojunctions for air-stable photodetectors. ACS Energy Lett. 2019, 4, 2315–2322.
Wang, S. J.; Zhang, J. Q.; Li, B.; Sun, H. Q.; Wang, S. B. Engineered graphitic carbon nitride-based photocatalysts for visible-light-driven water splitting: A review. Energy Fuels 2021, 35, 6504–6526.
Jia, C. C.; Yang, L. J.; Zhang, Y. Z.; Zhang, X.; Xiao, K.; Xu, J. S.; Liu, J. Graphitic carbon nitride films: Emerging paradigm for versatile applications. ACS Appl. Mater. Interfaces 2020, 12, 53571–53591.
Zhang, J. S.; Zhang, M. W.; Sun, R. Q.; Wang, X. C. A facile band alignment of polymeric carbon nitride semiconductors to construct isotype heterojunctions. Angew. Chem., Int. Ed. 2012, 51, 10145–10149.
Han, Y. Y.; Lu, X. L.; Tang, S. F.; Yin, X. P.; Wei, Z. W.; Lu, T. B. Metal-free 2D/2D heterojunction of graphitic carbon nitride/graphdiyne for improving the hole mobility of graphitic carbon nitride. Adv. Energy Mater. 2018, 8, 1702992.
Hou, Y.; Wen, Z. H.; Cui, S. M.; Guo, X. R.; Chen, J. H. Constructing 2D porous graphitic C3N4 nanosheets/nitrogen-doped graphene/layered MoS2 ternary nanojunction with enhanced photoelectrochemical activity. Adv. Mater. 2013, 25, 6291–6297.
Li, Y. H.; Gu, M. L.; Zhang, X. M.; Fan, J. J.; Lv, K. L.; Carabineiro, S. A. C.; Dong, F. 2D g-C3N4 for advancement of photo-generated carrier dynamics: Status and challenges. Mater. Today 2020, 41, 270–303.
Velusamy, D. B.; Haque, M. A.; Parida, M. R.; Zhang, F.; Wu, T.; Mohammed, O. F.; Alshareef, H. N. 2D organic-inorganic hybrid thin films for flexible UV–visible photodetectors. Adv. Funct. Mater. 2017, 27, 1605554.
Fang, H. J.; Ma, H. L.; Zheng, C.; Lennon, S.; Wu, W. T.; Wu, L. L.; Wang, H. A high-performance transparent photodetector via building hierarchical g-C3N4 nanosheets/CNTs van der Waals heterojunctions by a facile and scalable approach. Appl. Surf. Sci. 2020, 529, 147122.
Prakash, N.; Kumar, G.; Singh, M.; Barvat, A.; Pal, P.; Singh, S. P.; Singh, H. K.; Khanna, S. P. Binary multifunctional ultrabroadband self-powered g-C3N4/Si heterojunction high-performance photodetector. Adv. Opt. Mater. 2018, 6, 1800191.
Bian, J. C.; Huang, C.; Zhang, R. Q. Graphitic carbon nitride film: An emerging star for catalytic and optoelectronic applications. ChemSusChem 2016, 9, 2723–2735.
Li, K. Y.; Yang, X.; Tian, Y. Z.; Chen, Y. C.; Lin, C. N.; Zhang, Z. F.; Xu, Z. Y.; Zang, J. H.; Shan, C. X. Ga2O3 solar-blind position-sensitive detectors. Sci. China Phys. Mech. Astron. 2020, 63, 117312.
Foisal, A. R. M.; Nguyen, T.; Dinh, T.; Nguyen, T. K.; Tanner, P.; Streed, E. W.; Dao, D. V. 3C-SiC/Si heterostructure:An excellent platform for position-sensitive detectors based on photovoltaic effect. ACS Appl. Mater. Interfaces 2019, 11, 40980–40987.
Hu, C.; Wang, X. J.; Song, B. High-performance position-sensitive detector based on the lateral photoelectrical effect of two-dimensional materials. Light Sci. Appl. 2020, 9, 88.
Hao, L. Z.; Liu, Y. J.; Han, Z. D.; Xu, Z. J.; Zhu, J. Large lateral photovoltaic effect in MoS2/GaAs heterojunction. Nanoscale Res. Lett. 2017, 12, 562.
Wang, W. H.; Liu, K. Y.; Jiang, J.; Du, R. X.; Sun, L. T.; Chen, W.; Lu, J. P.; Ni, Z. H. Ultrasensitive graphene-Si position-sensitive detector for motion tracking. InfoMat 2020, 2, 761–768.
Wang, W. H.; Lu, J. P.; Ni, Z. H. Position-sensitive detectors based on two-dimensional materials. Nano Res. 2021, 14, 1889–1900.
Foisal, A. R. M.; Qamar, A.; Nguyen, T.; Dinh, T.; Phan, H. P.; Nguyen, H.; Duran, P. G.; Streed, E. W.; Dao, D. V. Ultra-sensitive self-powered position-sensitive detector based on horizontally-aligned double 3C-SiC/Si heterostructures. Nano Energy 2021, 79, 105494.
Cong, R. D.; Qiao, S.; Liu, J. H.; Mi, J. S.; Yu, W.; Liang, B. L.; Fu, G. S.; Pan, C. F.; Wang, S. F. Ultrahigh, ultrafast, and self-powered visible-near-infrared optical position-sensitive detector based on a CVD-prepared vertically standing few-layer MoS2/Si heterojunction. Adv. Sci. 2018, 5, 1700502.
Fortunato, E.; Lavareda, G.; Vieira, M.; Martins, R. Thin film position sensitive detector based on amorphous silicon p-i-n diode. Rev. Sci. Instrum. 1994, 65, 3784–3786.
Toneva, A.; Sueva, D. Two-coordinate position sensitive amorphous silicon photodetectors. Sens. Actuators A Phys. 1999, 73, 210–214.
Kroke, E.; Schwarz, M.; Horath-Bordon, E.; Kroll, P.; Noll, B.; Norman, A. D. Tri-s-triazine derivatives. Part I. From trichloro-tri-s-triazine to graphitic C3N4 structures. New J. Chem. 2002, 26, 508–512.
Groenewolt, M.; Antonietti, M. Synthesis of g-C3N4 nanoparticles in mesoporous silica host matrices. Adv. Mater. 2005, 17, 1789–1792.
Aleksandrzak, M.; Kukulka, W.; Mijowska, E. Graphitic carbon nitride/graphene oxide/reduced graphene oxide nanocomposites for photoluminescence and photocatalysis. Appl. Surf. Sci. 2017, 398, 56–62.
Fu, J. W.; Liu, K.; Jiang, K. X.; Li, H. J. W.; An, P. D.; Li, W. Z.; Zhang, N.; Li, H. M.; Xu, X. W.; Zhou, H. Q. et al. Graphitic carbon nitride with dopant induced charge localization for enhanced photoreduction of CO2 to CH4. Adv. Sci. 2019, 6, 1900796.
Chang, C.; Fu, Y.; Hu, M.; Wang, C. Y.; Shan, G. Q.; Zhu, L. Y. Photodegradation of bisphenol A by highly stable palladium-doped mesoporous graphite carbon nitride (Pd/mpg-C3N4) under simulated solar light irradiation.
Dementjev, A. P.; De Graaf, A.; Van De Sanden, M. C. M.; Maslakov, K. I.; Naumkin, A. V.; Serov, A. A. X-ray photoelectron spectroscopy reference data for identification of the C3N4 phase in carbon-nitrogen films.
Wang, Y.; Liu, X. Q.; Zheng, C. C.; Li, Y. C.; Jia, S. R.; Li, Z.; Zhao, Y. L. Tailoring TiO2 nanotube-interlaced graphite carbon nitride nanosheets for improving visible-light-driven photocatalytic performance. Adv. Sci. 2018, 5, 1700844.
Feng, J. Q.; Gao, H. S.; Zheng, L. R.; Chen, Z. P.; Zeng, S. J.; Jiang, C. Y.; Dong, H. F.; Liu, L. C.; Zhang, S. J.; Zhang, X. P. A Mn-N3 single-atom catalyst embedded in graphitic carbon nitride for efficient CO2 electroreduction. Nat. Commun. 2020, 11, 4341.
Chen, Y. C.; Lu, Y. J.; Lin, C. N.; Tian, Y. Z.; Gao, C. J.; Dong, L.; Shan, C. X. Self-powered diamond/β-Ga2O3 photodetectors for solar-blind imaging. J. Mater. Chem. C 2018, 6, 5727–5732.
Gong, X.; Tong, M. H.; Xia, Y. J.; Cai, W. Z.; Moon, J. S.; Cao, Y.; Yu, G.; Shieh, C. L.; Nilsson, B.; Heeger, A. J. High-detectivity polymer photodetectors with spectral response from 300 nm to 1450 nm. Science 2009, 325, 1665–1667.
Chen, X. X.; Yang, X.; Lou, Q.; Zhang, Y.; Chen, Y. C.; Lu, Y. C.; Dong, L.; Shan, C. X. Fabry–Perot interference and piezo-phototronic effect enhanced flexible MoS2 photodetector. Nano Res. 2022, 15, 4395–4402.
Kind, H.; Yan, H. Q.; Messer, B.; Law, M.; Yang, P. D. Nanowire ultraviolet photodetectors and optical switches. Adv. Mater. 2002, 14, 158–160.
Chen, Y. C.; Yang, X.; Zhang, Y.; Chen, X. X.; Sun, J. L.; Xu, Z. Y.; Li, K. Y.; Dong, L.; Shan, C. X. Ultra-sensitive flexible Ga2O3 solar-blind photodetector array realized via ultra-thin absorbing medium. Nano Res. 2022, 15, 3711–3719.
Mukherjee, B.; Cai, Y. Q.; Tan, H. R.; Feng, Y. P.; Tok, E. S.; Sow, C. H. NIR Schottky photodetectors based on individual single-crystalline GeSe nanosheet. ACS Appl. Mater. Interfaces 2013, 5, 9594–9604.
Chen, Y. C.; Lu, Y. J.; Yang, X.; Li, S. F.; Li, K. Y.; Chen, X. X.; Xu, Z. Y.; Zang, J. H.; Shan, C. X. Bandgap engineering of Gallium oxides by crystalline disorder. Mater. Today Phys. 2021, 18, 100369.
Chen, Y. C.; Zhang, K. K.; Yang, X.; Chen, X. X.; Sun, J. L.; Zhao, Q.; Li, K. Y.; Shan, C. X. Solar-blind photodetectors based on MXenes-β-Ga2O3 Schottky junctions. J. Phys. D Appl. Phys. 2020, 53, 484001.
Wang, Y. H.; Tang, Y. Q.; Li, H. R.; Yang, Z. B.; Zhang, Q. Y.; He, Z. B.; Huang, X.; Wei, X. H.; Tang, W. H.; Huang, W. et al. P-GaSe/n-Ga2O3 van der Waals heterostructure photodetector at solar-blind wavelengths with ultrahigh responsivity and detectivity. ACS Photonics 2021, 8, 2256–2264.
Zhang, Y.; Yu, Y. Q.; Mi, L. F.; Wang, H.; Zhu, Z. F.; Wu, Q. Y.; Zhang, Y. G.; Jiang, Y. In situ fabrication of vertical multilayered MoS2/Si homotype heterojunction for high-speed visible-near-infrared photodetectors. Small 2016, 12, 1062–1071.
Hu, C.; Wang, X. J.; Miao, P.; Zhang, L. L.; Song, B. Q.; Liu, W. L.; Lv, Z.; Zhang, Y.; Sui, Y.; Tang, J. K. et al. Origin of the ultrafast response of the lateral photovoltaic effect in amorphous MoS2/Si Junctions. ACS Appl. Mater. Interfaces 2017, 9, 18362–18368.
Xiao, S. Q.; Wang, H.; Yu, C. Q.; Xia, Y. X.; Lu, J. J.; Jin, Q. Y.; Wang, Z. H. A novel position-sensitive detector based on metal-oxide-semiconductor structures of Co-SiO2-Si. New J. Phys. 2008, 10, 033018.
Wang, X. J.; Zhao, X. F.; Hu, C.; Zhang, Y.; Song, B. Q.; Zhang, L. L.; Liu, W. L.; Lv, Z.; Zhang, Y.; Tang, J. K. et al. Large lateral photovoltaic effect with ultrafast relaxation time in SnSe/Si junction. Appl. Phys. Lett. 2016, 109, 023502.
Yu, C. Q.; Wang, H. Large lateral photovoltaic effect in metal-(oxide-) semiconductor structures. Sensors 2010, 10, 10155–10180.
Yu, C. Q.; Wang, H.; Xia, Y. X. Enhanced lateral photovoltaic effect in an improved oxide-metal-semiconductor structure of TiO2/Ti/Si. Appl. Phys. Lett. 2009, 95, 263506.
Boeringer, D. W.; Tsu, R. Lateral photovoltaic effect in porous silicon. Appl. Phys. Lett. 1994, 65, 2332–2334.
Liu, S.; Xie, X.; Wang, H. Lateral photovoltaic effect and electron transport observed in Cr nano-film. Opt. Express 2014, 22, 11627–11632.
Fortunato, E.; Lavareda, G.; Martins, R.; Soares, F.; Fernandes, L. Large-area 1D thin-film position-sensitive detector with high detection resolution. Sens. Actuators A Phys. 1996, 51, 135–142.
Henry, J.; Livingstone, J. Thin-film amorphous silicon position-sensitive detectors. Adv. Mater. 2001, 13, 1022–1026.
Tabatabaie, N.; Meynadier, M. H.; Nahory, R. E.; Harbison, J. P.; Florez, L. T. Large lateral photovoltaic effect in modulation-doped AlGaAs/GaAs heterostructures. Appl. Phys. Lett. 1989, 55, 792–794.
Sayan, S.; Emge, T.; Garfunkel, E.; Zhao, X. Y.; Wielunski, L.; Bartynski, R. A.; Vanderbilt, D.; Suehle, J. S.; Suzer, S.; Banaszak-Holl, M. Band alignment issues related to HfO2/SiO2/p-Si gate stacks. J. Appl. Phys. 2004, 96, 7485–7491.
Wang, R. P.; Li, H. L.; Zhang, L. H.; Zeng, Y. J.; Lv, Z. Y.; Yang, J. Q.; Mao, J. Y.; Wang, Z. P.; Zhou, Y.; Han, S. T. Graphitic carbon nitride nanosheets for solution processed non-volatile memory devices. J. Mater. Chem. C 2019, 7, 10203–10210.