Journal Home > Volume 16 , Issue 1

Nanostructured aluminum recently delivers a variety of new applications of the earth-abundant Al resource due to the unique properties, but its controllable synthesis remains very challenging with harsh conditions and spontaneously flammable precursors. Herein, a surface group directed method is developed to efficiently achieve low-temperature synthesis and self-assembly of zero-dimensional (0D) Al nanocrystals over one-dimensional (1D) carbon fibers (Al@CFs) through non-flammable AlCl3 reduction at 70 °C. Theoretical calculations unveil surface ‒OLi groups of carbon fibers exert efficient binding effect to AlCl3, which guides intimate adsorption and in-situ self-assembly of the generated Al nanocrystals. The distinctive 0D-over-1D Al@CFs provides long 1D conductive networks for electron transfer, ultrafine 0D Al nanocrystals for fast lithiation and excellent buffering effect for volume change, thus exhibiting high structure stability and superior lithium storage performance. This work paves the way for mild and controllable synthesis of Al-based nanomaterials for new high-value applications.


menu
Abstract
Full text
Outline
Electronic supplementary material
About this article

Surface group directed low-temperature synthesis and self-assembly of Al nanostructures for lithium storage

Show Author's information Xianglong Kong1,§Zhi Li1,§Xudong Zhao1,§Shunpeng Chen2Zhuoyan Wu3Fei He1( )Piaoping Yang1Xinghua Chang4Xingguo Li2Zhiliang Liu1( )Jie Zheng2( )
College of Material Sciences and Chemical Engineering, Harbin Engineering University, Harbin 150001, China
Beijing National Laboratory for Molecular Sciences, College of Chemistry and Molecular Engineering, Peking University, Beijing 100871, China
Comprehensive Energy Research Center, Institute of Science and Technology, China Three Gorges Corporation, Beijing 100038, China
Key Laboratory for Mineral Materials and Application of Hunan Province, School of Minerals Processing and Bioengineering, Central South University, Changsha 410083, China

§ Xianglong Kong, Zhi Li, and Xudong Zhao contributed equally to this work.

Abstract

Nanostructured aluminum recently delivers a variety of new applications of the earth-abundant Al resource due to the unique properties, but its controllable synthesis remains very challenging with harsh conditions and spontaneously flammable precursors. Herein, a surface group directed method is developed to efficiently achieve low-temperature synthesis and self-assembly of zero-dimensional (0D) Al nanocrystals over one-dimensional (1D) carbon fibers (Al@CFs) through non-flammable AlCl3 reduction at 70 °C. Theoretical calculations unveil surface ‒OLi groups of carbon fibers exert efficient binding effect to AlCl3, which guides intimate adsorption and in-situ self-assembly of the generated Al nanocrystals. The distinctive 0D-over-1D Al@CFs provides long 1D conductive networks for electron transfer, ultrafine 0D Al nanocrystals for fast lithiation and excellent buffering effect for volume change, thus exhibiting high structure stability and superior lithium storage performance. This work paves the way for mild and controllable synthesis of Al-based nanomaterials for new high-value applications.

Keywords: self-assembly, lithium storage, low-temperature synthesis, Al nanostructure, surface group

References(47)

[1]

Zhang, Q.; Zhu, Y. M.; Gao, X.; Wu, Y. X.; Hutchinson, C. Training high-strength aluminum alloys to withstand fatigue. Nat. Commun. 2020, 11, 5198.

[2]

Xia, J. X.; Yamaji, N.; Kasai, T.; Ma, J. F. Plasma membrane-localized transporter for aluminum in rice. Proc. Natl. Acad. Sci. USA 2010, 107, 18381–18385.

[3]

Dai, D. H.; Gu, D. D.; Poprawe, R.; Xia, M. J. Influence of additive multilayer feature on thermodynamics, stress and microstructure development during laser 3D printing of aluminum-based material. Sci. Bull. 2017, 62, 779–787.

[4]

Xia, G. L.; Zhang, H. Y.; Liang, M.; Zhang, J.; Sun, W. W.; Fang, F.; Sun, D. L.; Yu, X. B. Unlocking the lithium storage capacity of aluminum by molecular immobilization and purification. Adv. Mater. 2019, 31, 1901372.

[5]

Yang, S.; Lu, S. Y.; Li, Y.; Yu, H.; He, L. X.; Sun, T. M.; Yang, B.; Liu, K. Poly (ethylene oxide) mediated synthesis of sub-100-nm aluminum nanocrystals for deep ultraviolet plasmonic nanomaterials. CCS Chem. 2020, 2, 516–526.

[6]

Zhou, L. N.; Zhang, C.; McClain, M. J.; Manjavacas, A.; Krauter, C. M.; Tian, S.; Berg, F.; Everitt, H. O.; Carter, E. A.; Nordlander, P. et al. Aluminum nanocrystals as a plasmonic photocatalyst for hydrogen dissociation. Nano Lett. 2016, 16, 1478–1484.

[7]

Zhang, F. F.; Plain, J.; Gérard, D.; Martin, J. Surface roughness and substrate induced symmetry-breaking: Influence on the plasmonic properties of aluminum nanostructure arrays. Nanoscale 2021, 13, 1915–1926.

[8]

Wang, H. D.; Tan, H. F.; Luo, X. Y.; Wang, H.; Ma, T.; Lv, M.; Song, X. L.; Jin, S. M.; Chang, X. H.; Li, X. G. The progress on aluminum-based anode materials for lithium-ion batteries. J. Mater. Chem. A 2020, 8, 25649–25662.

[9]

Park, J. H.; Hudaya, C.; Kim, A. Y.; Rhee, D. K.; Yeo, S. J.; Choi, W.; Yoo, P. J.; Lee, J. K. Al-C hybrid nanoclustered anodes for lithium ion batteries with high electrical capacity and cyclic stability. Chem. Commun. 2014, 50, 2837–2840.

[10]

Hu, R. Z.; Zhang, L.; Liu, X.; Zeng, M. Q.; Zhu, M. Investigation of immiscible alloy system of Al-Sn thin films as anodes for lithium ion batteries. Electrochem. Commun. 2008, 10, 1109–1112.

[11]

Zhang, H. Y.; Xia, G. L.; Fang, F.; Sun, D. L.; Yu, X. B. Low-temperature electroless synthesis of mesoporous aluminum nanoparticles on graphene for high-performance lithium-ion batteries. J. Mater. Chem. A 2019, 7, 13917–13921.

[12]

Clark, B. D.; Jacobson, C. R.; Lou, M. H.; Yang, J.; Zhou, L. N.; Gottheim, S.; DeSantis, C. J.; Nordlander, P.; Halas, N. J. Aluminum nanorods. Nano Lett. 2018, 18, 1234–1240.

[13]

McClain, M. J.; Schlather, A. E.; Ringe, E.; King, N. S.; Liu, L. F.; Manjavacas, A.; Knight, M. W.; Kumar, I.; Whitmire, K. H.; Everitt, H. O. et al. Aluminum nanocrystals. Nano Lett. 2015, 15, 2751–2755.

[14]

Meziani, M. J.; Bunker, C. E.; Lu, F. S.; Li, H. T.; Wang, W.; Guliants, E. A.; Quinn, R. A.; Sun, Y. P. Formation and properties of stabilized aluminum nanoparticles. ACS Appl. Mater. Interfaces 2009, 1, 703–709.

[15]

Kresse, G.; Furthmüller, J. Efficiency of ab-initio total energy calculations for metals and semiconductors using a plane-wave basis set. Comput. Mater. Sci. 1996, 6, 15–50.

[16]

Perdew, J. P.; Burke, K.; Ernzerhof, M. Generalized gradient approximation made simple. Phys. Rev. Lett. 1996, 77, 3865–3868.

[17]

Larijani, H. T.; Jahanshahi, M.; Ganji, M. D.; Kiani, M. H. Computational studies on the interactions of glycine amino acid with graphene, h-BN and h-SiC monolayers. Phys. Chem. Chem. Phys. 2017, 19, 1896–1908.

[18]

Ashraf, M. A.; Liu, Z. L.; Li, C.; Peng, W. X.; Najafi, M. Examination of potential of B-CNT (6, 0), Al-CNT (6, 0) and Ga-CNT (6, 0) as novel catalysts to oxygen reduction reaction: A DFT study. J. Mol. Liq. 2019, 290, 111366.

[19]

Li, Y. L.; Jia, B. M.; Fan, Y. Z.; Zhu, K. L.; Li, G. Q.; Su, C. Y. Bimetallic zeolitic imidazolite framework derived carbon nanotubes embedded with Co nanoparticles for efficient bifunctional oxygen electrocatalyst. Adv. Energy Mater. 2018, 8, 1702048.

[20]

Liu, Z. L.; Yang, S.; Sun, B. X.; Chang, X. H.; Zheng, Z.; Li, X. G. A peapod-like CoP@C nanostructure from phosphorization in a low-temperature molten salt for high-performance lithium-ion batteries. Angew. Chem., Int. Ed. 2018, 57, 10187–10191.

[21]

Wang, P.; Xi, B. J.; Zhang, Z. C. Y.; Huang, M.; Feng, J. K.; Xiong, S. L. Atomic tungsten on graphene with unique coordination enabling kinetically boosted lithium-sulfur batteries. Angew. Chem., Int. Ed. 2021, 60, 15563–15571.

[22]

Xu, X. J.; Liu, J.; Liu, J. W.; Ouyang, L. Z.; Hu, R. Z.; Wang, H.; Yang, L. C.; Zhu, M. A general metal-organic framework (MOF)-derived selenidation strategy for in situ carbon-encapsulated metal selenides as high-rate anodes for Na-ion batteries. Adv. Funct. Mater. 2018, 28, 1707573.

[23]

Hu, Z. R.; Chen, F.; Xu, J. L.; Nian, Q.; Lin, D.; Chen, C. J.; Zhu, X.; Chen, Y.; Zhang, M. 3D printing graphene-aluminum nanocomposites. J. Alloy. Compd. 2018, 746, 269–276.

[24]
Speight, J. G. Lange’s Handbook of Chemistry, 16th ed; McGraw-Hill Professional: New York, 2005.
[25]

Chang, X.; Xie, Z.; Liu, Z.; Zheng, X.; Zheng, J.; Li, X. Aluminum: An underappreciated anode material for lithium-ion batteries. Energy Stor. Mater. 2020, 25, 93–99.

[26]

Wang, Y. L.; Liu, F. M.; Fan, G. L.; Qiu, X. G.; Liu, J. D.; Yan, Z. H.; Zhang, K.; Cheng, F. Y.; Chen, J. Electroless formation of a fluorinated Li/Na hybrid interphase for robust lithium anodes. J. Am. Chem. Soc. 2021, 143, 2829–2837.

[27]

Li, Z.; Zhang, J. T.; Chen, Y. M.; Li, J.; Lou, X. W. Pie-like electrode design for high-energy density lithium-sulfur batteries. Nat. Commun. 2015, 6, 8850.

[28]

Hu, R. Z.; Shi, Q.; Wang, H.; Zeng, M. Q.; Zhu, M. Influences of composition on the electrochemical performance in immiscible Sn-Al thin films as anodes for lithium ion batteries. J. Phys. Chem. C 2009, 113, 18953–18961.

[29]

Liu, W. L.; Du, L. Y.; Ju, S. L.; Cheng, X. Y.; Wu, Q.; Hu, Z.; Yu, X. B. Encapsulation of red phosphorus in carbon nanocages with ultrahigh content for high-capacity and long cycle life sodium-ion batteries. ACS Nano 2021, 15, 5679–5688.

[30]

Li, G. L.; Chen, H.; Zhang, B.; Guo, H.; Chen, S. P.; Chang, X. H.; Wu, X. H.; Zheng, J.; Li, X. G. Interfacial covalent bonding enables transition metal phosphide superior lithium storage performance. Appl. Surf. Sci. 2022, 582, 152404.

[31]

Wang, W. J.; Zhu, X. H.; Fu, L. Touch ablation of lithium dendrites via liquid metal for high-rate and long-lived batteries. CCS Chem. 2021, 3, 686–695.

[32]

Hu, R. Z.; Ouyang, Y. P.; Liang, T.; Wang, H.; Liu, J.; Chen, J.; Yang, C. H.; Yang, L. C.; Zhu, M. Stabilizing the nanostructure of SnO2 anodes by transition metals: A route to achieve high initial Coulombic efficiency and stable capacities for lithium storage. Adv. Mater. 2017, 29, 1605006.

[33]

Li, G. L.; Wang, Y. T.; Guo, H.; Liu, Z. L.; Chen, P. H.; Zheng, X. Y.; Sun, J. L.; Chen, H.; Zheng, J.; Li, X. G. Direct plasma phosphorization of Cu foam for Li ion batteries. J. Mater. Chem. A 2020, 8, 16920–16925.

[34]

Jin, T.; Ji, X.; Wang, P. F.; Zhu, K. J.; Zhang, J. X.; Cao, L. S.; Chen, L.; Cui, C. Y.; Deng, T.; Liu, S. F. et al. High-energy aqueous sodium-ion batteries. Angew. Chem., Int. Ed. 2021, 60, 11943–11948.

[35]

An, Y. L.; Tian, Y.; Zhang, Y. C.; Wei, C. L.; Tan, L. W.; Zhang, C. H.; Cui, N. X.; Xiong, S. L.; Feng, J. K.; Qian, Y. T. Two-dimensional silicon/carbon from commercial alloy and CO2 for lithium storage and flexible Ti3C2Tx MXene-based lithium-metal batteries. ACS Nano 2020, 14, 17574–17588.

[36]

Sun, X.; Yang, C. K.; Zhao, Y. J.; Li, Y.; Shang, Z. C.; Zhou, H. H.; Liu, W.; Luo, L.; Sun, X. M. Ultrathin aluminum nanosheets grown on carbon nanotubes for high performance lithium ion batteries. Adv. Funct. Mater. 2022, 32, 2109112.

[37]

Yao, L.; Gu, Q. F.; Yu, X. B. Three-dimensional MOFs@MXene aerogel composite derived MXene threaded hollow carbon confined CoS nanoparticles toward advanced alkali-ion batteries. ACS Nano 2021, 15, 3228–3240.

[38]

Hu, R. Z.; Zeng, M. Q.; Li, C. Y. V.; Zhu, M. Microstructure and electrochemical performance of thin film anodes for lithium ion batteries in immiscible Al-Sn system. J. Power Sources 2009, 188, 268–273.

[39]

Zhao, X. D.; Kong, X. L.; Liu, Z. L.; Li, Z.; Xie, Z. W.; Wu, Z. Y.; He, F.; Chang, X. H.; Yang, P. P.; Zheng, J. et al. The cutting-edge phosphorus-rich metal phosphides for energy storage and conversion. Nano Today 2021, 40, 101245.

[40]

Liu, Z. L.; Yang, S. L.; Sun, B. X.; Yang, P. P.; Zheng, J.; Li, X. G. Low-temperature synthesis of honeycomb CuP2@C in molten ZnCl2 salt for high-performance lithium ion batteries. Angew. Chem., Int. Ed. 2020, 59, 1975–1979.

[41]

Chang, X. H.; Wang, T.; Liu, Z. L.; Zheng, X. Y.; Zheng, J.; Li, X. G. Ultrafine Sn nanocrystals in a hierarchically porous N-doped carbon for lithium ion batteries. Nano Res. 2017, 10, 1950–1958.

[42]

Zhang, H. Y.; Ju, S. L.; Xia, G. L.; Yu, X. B. Identifying the positive role of lithium hydride in stabilizing Li metal anodes. Sci. Adv. 2022, 8, eabl8245.

[43]

Kwon, G. D.; Moyen, E.; Lee, Y. J.; Joe, J.; Pribat, D. Graphene-coated aluminum thin film anodes for lithium-ion batteries. ACS Appl. Mater. Interfaces 2018, 10, 29486–29495.

[44]

Tahmasebi, M. H.; Kramer, D.; Geßwein, H.; Zheng, T. Y.; Leung, K. C.; Lo, B. T. W.; Mönig, R.; Boles, S. T. In situ formation of aluminum-silicon-lithium active materials in aluminum matrices for lithium-ion batteries. J. Mater. Chem. A 2020, 8, 4877–4888.

[45]

Chen, S.; Yang, X. Y.; Zhang, J.; Ma, J. P.; Meng, Y. Q.; Tao, K. J.; Li, F.; Geng, J. X. Aluminum−lithium alloy as a stable and reversible anode for lithium batteries. Electrochim. Acta 2021, 368, 137626.

[46]

Doglione, R.; Vankova, S.; Amici, J.; Penazzi, N. Microstructure evolution and capacity: Comparison between 2090-T8 aluminium alloy and pure aluminium anodes. J. Alloys Compd. 2017, 727, 428–435.

[47]

Chen, B. J.; Zu, L. H.; Liu, Y.; Meng, R. J.; Feng, Y. T.; Peng, C. X.; Zhu, F.; Hao, T. Z.; Ru, J. J.; Wang, Y. G. et al. Space-confined atomic clusters catalyze superassembly of silicon nanodots within carbon frameworks for use in lithium-ion batteries. Angew. Chem., Int. Ed. 2020, 59, 3137–3142.

File
12274_2022_4776_MOESM1_ESM.pdf (3.4 MB)
Publication history
Copyright
Acknowledgements

Publication history

Received: 12 May 2022
Revised: 13 July 2022
Accepted: 14 July 2022
Published: 10 August 2022
Issue date: January 2023

Copyright

© Tsinghua University Press 2022

Acknowledgements

Acknowledgements

The authors acknowledge the financial support from the National Natural Science Foundation of China (Nos. 22101065 and 51972075), the Natural Science Foundation of Heilongjiang Province (No. YQ2021B001), the China Postdoctoral Science Foundation (No. 2020M681075), and the Fundamental Research Funds for the Central Universities.

Return