Journal Home > Volume 16 , Issue 1

The aging-induced performance enhancement of the perovskite solar cells (PSCs) has been considered to be associated with the oxidation progress of the hole-transporting layer. Whereas the influence of the structural evolution of the passivation layer is underestimated. In this work, a spontaneous relaxation of two-dimensional (2D) passivation layer with increased n-value structure is observed, which can be accelerated under ambient atmosphere. It is demonstrated that device with relaxed 2D passivation layer exhibits reduced non-radiative recombination and optimized charge transfer property, contributing substantially to the aging-induced performance enhancement in 2D-3D heterostructured PSCs. Finally, a high fill factor of 84.15% of the devices is obtained with the relaxed 2D passivation layer, suggesting the spontaneous relaxation of 2D passivation layer is playing a key role in achieving high quality optoelectronic devices.


menu
Abstract
Full text
Outline
Electronic supplementary material
About this article

Spontaneous relaxation of 2D passivation layer contributes to the aging-induced performance enhancement of perovskite solar cells

Show Author's information Wenjing Yu1Changjiang Liu1Xiaoran Sun1( )Tian Hou1Xin Yang1Xin Wang1Yue Yu1Kai Chen1Haijin Li1Yuelong Huang1,2( )Meng Zhang1,2( )
Institute of Photovoltaics, Southwest Petroleum University, Chengdu 610500, China
State Key Laboratory of Oil and Gas Reservoir Geology and Exploitation, Southwest Petroleum University, Chengdu 610500, China

Abstract

The aging-induced performance enhancement of the perovskite solar cells (PSCs) has been considered to be associated with the oxidation progress of the hole-transporting layer. Whereas the influence of the structural evolution of the passivation layer is underestimated. In this work, a spontaneous relaxation of two-dimensional (2D) passivation layer with increased n-value structure is observed, which can be accelerated under ambient atmosphere. It is demonstrated that device with relaxed 2D passivation layer exhibits reduced non-radiative recombination and optimized charge transfer property, contributing substantially to the aging-induced performance enhancement in 2D-3D heterostructured PSCs. Finally, a high fill factor of 84.15% of the devices is obtained with the relaxed 2D passivation layer, suggesting the spontaneous relaxation of 2D passivation layer is playing a key role in achieving high quality optoelectronic devices.

Keywords: passivation, perovskite solar cell, two-dimensional (2D) perovskite, aging, relaxation

References(50)

[1]

Kojima, A.; Teshima, K.; Shirai, Y.; Miyasaka, T. Organometal halide perovskites as visible-light sensitizers for photovoltaic cells. J. Am. Chem. Soc. 2009, 131, 6050–6051.

[2]

Cai, B.; Xing, Y. D.; Yang, Z.; Zhang, W. H.; Qiu, J. S. High performance hybrid solar cells sensitized by organolead halide perovskites. Energy Environ. Sci. 2013, 6, 1480–1485.

[3]
Best Research-Cell Efficiency Chart [Online] https://www.nrel.gov/pv/cell-efficiency.html (accessed Apr 20, 2022)
[4]

Jiang, Q.; Zhao, Y.; Zhang, X. W.; Yang, X. L.; Chen, Y.; Chu, Z. M.; Ye, Q. F.; Li, X. X.; Yin, Z. G.; You, J. B. Surface passivation of perovskite film for efficient solar cells. Nat. Photonics 2019, 13, 460–466.

[5]

Yu, W. J.; Sun, X. R.; Xiao, M.; Hou, T.; Liu, X.; Zheng, B. L.; Yu, H.; Zhang, M.; Huang, Y. L.; Hao, X. J. Recent advances on interface engineering of perovskite solar cells. Nano Res. 2022, 15, 85–103.

[6]

Ricciardulli, A. G.; Yang, S.; Smet, J. H.; Saliba, M. Emerging perovskite monolayers. Nat. Mater. 2021, 20, 1325–1336.

[7]

Chen, P.; Bai, Y.; Wang, S. C.; Lyu, M. Q.; Yun, J. H.; Wang, L. Z. In situ growth of 2D perovskite capping layer for stable and efficient perovskite solar cells. Adv. Funct. Mater. 2018, 28, 1706923.

[8]

Lin, Y.; Bai, Y.; Fang, Y. J.; Chen, Z. L.; Yang, S.; Zheng, X. P.; Tang, S.; Liu, Y.; Zhao, J. J.; Huang, J. S. Enhanced thermal stability in perovskite solar cells by assembling 2D/3D stacking structures. J. Phys. Chem. Lett. 2018, 9, 654–658.

[9]

Liu, Y. H.; Akin, S.; Hinderhofer, A.; Eickemeyer, F. T.; Zhu, H. W.; Seo, J. Y.; Zhang, J. H.; Schreiber, F.; Zhang, H.; Zakeeruddin, S. M. et al. Stabilization of highly efficient and stable phase-pure FAPbI3 perovskite solar cells by molecularly tailored 2D-overlayers. Angew. Chem., Int. Ed. 2020, 59, 15688–15694.

[10]

Wu, G. B.; Liang, R.; Ge, M. Z.; Sun, G. X.; Zhang, Y.; Xing, G. C. Surface passivation using 2D perovskites toward efficient and stable perovskite solar cells. Adv. Mater. 2022, 34, 2105635.

[11]

Akin, S.; Dong, B. T.; Pfeifer, L.; Liu, Y. H.; Graetzel, M.; Hagfeldt, A. Organic ammonium halide modulators as effective strategy for enhanced perovskite photovoltaic performance. Adv. Sci. 2021, 8, 2004593.

[12]

Zhang, C. L.; Wu, S. H.; Tao, L. M.; Arumugam, G. M.; Liu, C.; Wang, Z.; Zhu, S. S.; Yang, Y. Z.; Lin, J.; Liu, X. Y. et al. Fabrication strategy for efficient 2D/3D perovskite solar cells enabled by diffusion passivation and strain compensation. Adv. Energy Mater. 2020, 10, 2002004.

[13]

Sutanto, A. A.; Caprioglio, P.; Drigo, N.; Hofstetter, Y. J.; Garcia-Benito, I.; Queloz, V. I. E.; Neher, D.; Nazeeruddin, M. K.; Stolterfoht, M.; Vaynzof, Y. et al. 2D/3D perovskite engineering eliminates interfacial recombination losses in hybrid perovskite solar cells. Chem 2021, 7, 1903–1916.

[14]

Liu, T. T.; Zhang, J.; Qin, M. C.; Wu, X.; Li, F. Z.; Lu, X. H.; Zhu, Z. L.; Jen, A. K. Y. Modifying surface termination of CsPbI3 grain boundaries by 2D perovskite layer for efficient and stable photovoltaics. Adv. Funct. Mater. 2021, 31, 2009515.

[15]
Cheng, Q.; Xia, H. R.; Li, X.; Wang, B. X.; Li, Y. X.; Zhang, X. N.; Zhang, H.; Zhang, Y.; Zhou, H. Q. High-efficiency and stable perovskite solar cells enabled by low-dimensional perovskite surface modifiers. Solar RRL, in press, DOI: 10.1002/solr.202100805.
[16]

Grancini, G.; Roldán-Carmona, C.; Zimmermann, I.; Mosconi, E.; Lee, X.; Martineau, D.; Narbey, S.; Oswald, F.; De Angelis, F.; Graetzel, M. et al. One-Year stable perovskite solar cells by 2D/3D interface engineering. Nat. Commun. 2017, 8, 15684.

[17]

He, M. S.; Liang, J. H.; Zhang, Z. F.; Qiu, Y. K.; Deng, Z. H.; Xu, H.; Wang, J. L.; Yang, Y. J.; Chen, Z. H.; Chen, C. C. Compositional optimization of a 2D-3D heterojunction interface for 22.6% efficient and stable planar perovskite solar cells. J. Mater. Chem. A 2020, 8, 25831–25841.

[18]

Hawash, Z.; Ono, L. K.; Qi, Y. B. Moisture and oxygen enhance conductivity of LiTFSI-doped spiro-MeOTAD hole transport layer in perovskite solar cells. Adv. Mater. Interfaces 2016, 3, 1600117.

[19]

Cho, Y.; Kim, H. D.; Zheng, J. H.; Bing, J. M.; Li, Y.; Zhang, M.; Green, M. A.; Wakamiya, A.; Huang, S. J.; Ohkita, H. et al. Elucidating mechanisms behind ambient storage-induced efficiency improvements in perovskite solar cells. ACS Energy Lett. 2021, 6, 925–933.

[20]

Roose, B.; Ummadisingu, A.; Correa-Baena, J. P.; Saliba, M.; Hagfeldt, A.; Graetzel, M.; Steiner, U.; Abate, A. Spontaneous crystal coalescence enables highly efficient perovskite solar cells. Nano Energy 2017, 39, 24–29.

[21]

Fei, C. B.; Wang, H. Age-induced recrystallization in perovskite solar cells. Org. Electron. 2019, 68, 143–150.

[22]

Bi, C.; Zheng, X. P.; Chen, B.; Wei, H. T.; Huang, J. S. Spontaneous passivation of hybrid perovskite by sodium ions from glass substrates: Mysterious enhancement of device efficiency revealed. ACS Energy Lett. 2017, 2, 1400–1406.

[23]

Moghadamzadeh, S.; Hossain, I. M.; Jakoby, M.; Nejand, B. A.; Rueda-Delgado, D.; Schwenzer, J. A.; Gharibzadeh, S.; Abzieher, T.; Khan, M. R.; Haghighirad, A. A. et al. Spontaneous enhancement of the stable power conversion efficiency in perovskite solar cells. J. Mater. Chem. A 2020, 8, 670–682.

[24]

Kim, H.; Lee, S. U.; Lee, D. Y.; Paik, M. J.; Na, H.; Lee, J.; Seok, S. I. Optimal interfacial engineering with different length of alkylammonium halide for efficient and stable perovskite solar cells. Adv. Energy Mater. 2019, 9, 1902740.

[25]

Ji, C.; Liang, C. J.; Song, Q.; Gong, H. K.; Liu, N.; You, F. T.; Li, D.; He, Z. Q. Interface engineering of 2D/3D perovskite heterojunction improves photovoltaic efficiency and stability. Solar RRL 2021, 5, 2100072.

[26]

Zhou, N.; Shen, Y. H.; Li, L.; Tan, S. Q.; Liu, N.; Zheng, G. H. J.; Chen, Q.; Zhou, H. P. Exploration of crystallization kinetics in quasi two-dimensional perovskite and high performance solar cells. J. Am. Chem. Soc. 2018, 140, 459–465.

[27]

Sutanto, A. A.; Drigo, N.; Queloz, V. I. E.; Garcia-Benito, I.; Kirmani, A. R.; Richter, L. J.; Schouwink, P. A.; Cho, K. T.; Paek, S.; Nazeeruddin, M. K. et al. Dynamical evolution of the 2D/3D interface: A hidden driver behind perovskite solar cell instability. J. Mater. Chem. A 2020, 8, 2343–2348.

[28]
SutantoA. A.SzostakR.DrigoN.QuelozV. I. E.MarcheziP. E.GerminoJ. C.TolentinoH. C. N.NazeeruddinM. K.NogueiraA. F.GranciniG. In situ analysis reveals the role of 2D perovskite in preventing thermal-induced degradation in 2D/3D perovskite interfacesNano Lett.2020203992399810.1021/acsapm.0c00964

Sutanto, A. A.; Szostak, R.; Drigo, N.; Queloz, V. I. E.; Marchezi, P. E.; Germino, J. C.; Tolentino, H. C. N.; Nazeeruddin, M. K.; Nogueira, A. F.; Grancini, G. In situ analysis reveals the role of 2D perovskite in preventing thermal-induced degradation in 2D/3D perovskite interfaces. Nano Lett. 2020, 20, 3992–3998.

[29]

Yu, J. C.; Badgujar, S.; Jung, E. D.; Singh, V. K.; Kim, D. W.; Gierschner, J.; Lee, E.; Kim, Y. S.; Cho, S.; Kwon, M. S. et al. Highly efficient and stable inverted perovskite solar cell obtained via treatment by semiconducting chemical additive. Adv. Mater. 2019, 31, 1805554.

[30]

Zou, H. Y.; Guo, D. P.; He, B. W.; Yu, J. G.; Fan, K. Enhanced photocurrent density of HTM-free perovskite solar cells by carbon quantum dots. Appl. Surf. Sci. 2018, 430, 625–631.

[31]

Chen, R. S.; Feng, Y. L.; Jing, L.; Wang, M. H.; Ma, H. R.; Bian, J. M.; Shi, Y. T. Low-temperature sprayed carbon electrode in modular HTL-free perovskite solar cells: A comparative study on the choice of carbon sources. J. Mater. Chem. C 2021, 9, 3546–3554.

[32]

Li, G. D.; Song, J.; Wang, D.; Sun, W. H.; Wu, J. H.; Lan, Z. Undoped 2, 2′, 7, 7′-tetrakis (N, N-p-dimethoxy-phenylamino)-9, 9′-spirobifluorene and PbS binary hole-transporter for efficient and stable planar perovskite solar cells. J. Power Sources 2021, 481, 229149.

[33]

Tress, W.; Marinova, N.; Inganäs, O.; Nazeeruddin, M. K.; Zakeeruddin, S. M.; Graetzel, M. Predicting the open-circuit voltage of CH3NH3PbI3 perovskite solar cells using electroluminescence and photovoltaic quantum efficiency spectra: The role of radiative and non-radiative recombination. Adv. Energy Mater. 2015, 5, 1400812.

[34]

Zhou, Q. W.; Duan, J. L.; Du, J.; Guo, Q. Y.; Zhang, Q. Y.; Yang, X. Y.; Duan, Y. Y.; Tang, Q. W. Tailored lattice "tape" to confine tensile interface for 11.08%-efficiency all-inorganic CsPbBr3 perovskite solar cell with an ultrahigh voltage of 1. 702 V. Adv. Sci. 2021, 8, 2101418.

[35]

Yang, J. M.; Xiong, S. B.; Song, J. N.; Wu, H. B.; Zeng, Y. H.; Lu, L. Y.; Shen, K. C.; Hao, T. Y.; Ma, Z. F.; Liu, F. et al. Energetics and energy loss in 2D ruddlesden-popper perovskite solar cells. Adv. Energy Mater. 2020, 10, 2000687.

[36]

Yuan, L. G.; Luo, H. M.; Wang, J. R.; Xu, Z. H.; Li, J.; Jiang, Q. S.; Yan, K. Y. Quantifying the energy loss for a perovskite solar cell passivated with acetamidine halide. J. Mater. Chem. A 2021, 9, 4781–4788.

[37]

Jang, Y. W.; Lee, S.; Yeom, K. M.; Jeong, K.; Choi, K.; Choi, M.; Noh, J. H. Intact 2D/3D halide junction perovskite solar cells via solid-phase in-plane growth. Nat. Energy 2021, 6, 63–71.

[38]

Bisquert, J.; Bertoluzzi, L.; Mora-Sero, I.; Garcia-Belmonte, G. Theory of impedance and capacitance spectroscopy of solar cells with dielectric relaxation, drift-diffusion transport, and recombination. J. Phys. Chem. C 2014, 118, 18983–18991.

[39]

Pascoe, A. R.; Duffy, N. W.; Scully, A. D.; Huang, F. Z.; Cheng, Y. B. Insights into planar CH3NH3PbI3 perovskite solar cells using impedance spectroscopy. J. Phys. Chem. C 2015, 119, 4444–4453.

[40]

Cohen, B. E.; Wierzbowska, M.; Etgar, L. High efficiency and high open circuit voltage in quasi 2D perovskite based solar cells. Adv. Funct. Mater. 2017, 27, 1604733.

[41]

Li, M. K.; Chen, T. P.; Lin, Y. F.; Raghavan, C. M.; Chen, W. L.; Yang, S. H.; Sankar, R.; Luo, C. W.; Chang, Y. M.; Chen, C. W. Intrinsic carrier transport of phase-pure homologous 2D organolead halide hybrid perovskite single crystals. Small 2018, 14, 1803763.

[42]

Hou, W. J.; Han, G. Y.; Ou, T.; Xiao, Y. M.; Chen, Q. An efficient and stable perovskite solar cell with suppressed defects by employing dithizone as a lead indicator. Angew. Chem., Int. Ed. 2020, 59, 21409–21413.

[43]

Li, X. Q.; Li, W. H.; Yang, Y. J.; Lai, X.; Su, Q.; Wu, D.; Li, G. Q.; Wang, K.; Chen, S. M.; Sun, X. W. et al. Defects passivation with dithienobenzodithiophene-based π-conjugated polymer for enhanced performance of perovskite solar cells. Solar RRL 2019, 3, 1900029.

[44]

Jiang, M. C.; Yuan, J. F.; Cao, G. Z.; Tian, J. J. In-situ fabrication of P3HT passivating layer with hole extraction ability for enhanced performance of perovskite solar cell. Chem. Eng. J. 2020, 402, 126152.

[45]

Song, S.; Yang, S. J.; Choi, J.; Han, S. G.; Park, K.; Lee, H.; Min, J.; Ryu, S.; Cho, K. Surface stabilization of a formamidinium perovskite solar cell using quaternary ammonium salt. ACS Appl. Mater. Interfaces 2021, 13, 37052–37062.

[46]

Wang, H. L.; Song, J.; Li, Z. K.; Li, L. D.; Li, J. H.; Li, X. B.; Qu, J. L.; Wong, W. Y. A linear conjugated tetramer as a surface-modification layer to increase perovskite solar cell performance and stability. J. Mater. Chem. A 2020, 8, 11728–11733.

[47]

Li, C.; Tscheuschner, S.; Paulus, F.; Hopkinson, P. E.; Kießling, J.; Köhler, A.; Vaynzof, Y.; Huettner, S. Iodine migration and its effect on hysteresis in perovskite solar cells. Adv. Mater. 2016, 28, 2446–2454.

[48]

Guerrero, A.; Bou, A.; Matt, G.; Almora, O.; Heumüller, T.; Garcia-Belmonte, G.; Bisquert, J.; Hou, Y.; Brabec, C. Switching off hysteresis in perovskite solar cells by fine-tuning energy levels of extraction layers. Adv. Energy Mater. 2018, 8, 1703376.

[49]

Xia, J. M.; Liang, C.; Mei, S. L.; Gu, H.; He, B. C.; Zhang, Z. P.; Liu, T. H.; Wang, K. Y.; Wang, S. S.; Chen, S. et al. Deep surface passivation for efficient and hydrophobic perovskite solar cells. J. Mater. Chem. A 2021, 9, 2919–2927.

[50]

Wu, G. B.; Liang, R.; Zhang, Z. P.; Ge, M. Z.; Xing, G. C.; Sun, G. X. 2D hybrid halide perovskites: Structure, properties, and applications in solar cells. Small 2021, 17, 2103514.

File
12274_2022_4774_MOESM1_ESM.pdf (928.7 KB)
Publication history
Copyright
Acknowledgements

Publication history

Received: 24 April 2022
Revised: 13 July 2022
Accepted: 14 July 2022
Published: 08 August 2022
Issue date: January 2023

Copyright

© Tsinghua University Press 2022

Acknowledgements

Acknowledgements

M. Z. acknowledges the Sichuan Science and Technology Program (No. 2022YFH0080). This work was also supported by scientific research starting project of SWPU (Nos. 2021QHZ005 and 2021QHZ021).

Return