Journal Home > Volume 16 , Issue 1

The hollow spherical covalent organic frameworks (COFs) have a wide application prospect thanks to their special structures. However, the controllable synthesis of uniform and stable hollow COFs is still a challenge. We herein propose a self-templated method for the preparation of hollow COFs through the Ostwald ripening mechanism under ambient conditions, which avoids most disadvantages of the commonly used hard-templating and soft-templating methods. A detailed time-dependent study reveals that the COFs are transformed from initial spheres to hollow spheres because of the inside-out Ostwald ripening process. The obtained hollow spherical COFs have high crystallinity, specific surface area (2,036 m2·g−1), stability, and single-batch yield. Thanks to unique hollow structure, clear through holes, and hydrophobic pore environment of the hollow spherical COFs, the obtained immobilized lipase (BCL@H-COF-OMe) exhibits higher thermostability, polar organic solvent tolerance, and reusability. The BCL@H-COF-OMe also shows higher catalytic performance than the lipase immobilized on non-hollow COF and free lipase in the kinetic resolution of secondary alcohols. This study provides a simple approach for the preparation of hollow spherical COFs, and will promote the valuable research of COFs in the field of biocatalysis.


menu
Abstract
Full text
Outline
Electronic supplementary material
About this article

Preparation of hollow spherical covalent organic frameworks via Oswald ripening under ambient conditions for immobilizing enzymes with improved catalytic performance

Show Author's information Hao Zhao1Guanhua Liu1( )Yunting Liu1Liya Zhou1Li Ma1Ying He1Xiaobing Zheng1Jing Gao1Yanjun Jiang1,2( )
School of Chemical Engineering and Technology, Hebei University of Technology, Tianjin 300130, China
State Key Laboratory of Biocatalysis and Enzyme Engineering, School of Life Sciences, Hubei University, Wuhan 430062, China

Abstract

The hollow spherical covalent organic frameworks (COFs) have a wide application prospect thanks to their special structures. However, the controllable synthesis of uniform and stable hollow COFs is still a challenge. We herein propose a self-templated method for the preparation of hollow COFs through the Ostwald ripening mechanism under ambient conditions, which avoids most disadvantages of the commonly used hard-templating and soft-templating methods. A detailed time-dependent study reveals that the COFs are transformed from initial spheres to hollow spheres because of the inside-out Ostwald ripening process. The obtained hollow spherical COFs have high crystallinity, specific surface area (2,036 m2·g−1), stability, and single-batch yield. Thanks to unique hollow structure, clear through holes, and hydrophobic pore environment of the hollow spherical COFs, the obtained immobilized lipase (BCL@H-COF-OMe) exhibits higher thermostability, polar organic solvent tolerance, and reusability. The BCL@H-COF-OMe also shows higher catalytic performance than the lipase immobilized on non-hollow COF and free lipase in the kinetic resolution of secondary alcohols. This study provides a simple approach for the preparation of hollow spherical COFs, and will promote the valuable research of COFs in the field of biocatalysis.

Keywords: covalent organic framework, hollow spherical structure, Oswald ripening mechanism, lipase, kinetic resolution

References(46)

[1]

Côté, A. P.; Benin, A. I.; Ockwig, N. W.; O'Keeffe, M.; Matzger, A. J.; Yaghi, O. M. Porous, crystalline, covalent organic frameworks. Science 2005, 310, 1166–1170.

[2]

Huang, J.; Liu, X. J.; Zhang, W.; Liu, Z. F.; Zhong, H.; Shao, B. B.; Liang, Q. H.; Liu, Y.; Zhang, W.; He, Q. Y. Functionalization of covalent organic frameworks by metal modification: Construction, properties and applications. Chem. Eng. J. 2021, 404, 127136.

[3]

Ma, D. L.; Qian, C.; Qi, Q. Y.; Zhong, Z. R.; Jiang, G. F.; Zhao, X. Effects of connecting sequences of building blocks on reticular synthesis of covalent organic frameworks. Nano Res. 2020, 14, 381–386.

[4]

Liu, X. G.; Huang, D. L.; Lai, C.; Zeng, G. M.; Qin, L.; Wang, H.; Yi, H.; Li, B. S.; Liu, S. Y.; Zhang, M. M. et al. Recent advances in covalent organic frameworks (COFs) as a smart sensing material. Chem. Soc. Rev. 2019, 48, 5266–5302.

[5]

Yao, S. C.; Liu, Z. R.; Li, L. L. Recent progress in nanoscale covalent organic frameworks for cancer diagnosis and therapy. Nano-Micro Lett. 2021, 13, 176.

[6]

Zhang, X. L.; Li, G. L.; Wu, D.; Zhang, B.; Hu, N.; Wang, H. L.; Liu, J. H.; Wu, Y. N. Recent advances in the construction of functionalized covalent organic frameworks and their applications to sensing. Biosens. Bioelectron. 2019, 145, 111699.

[7]

Baldwin, L. A.; Crowe, J. W.; Pyles, D. A.; McGrier, P. L. Metalation of a mesoporous three-dimensional covalent organic framework. J. Am. Chem. Soc. 2016, 138, 15134–15137.

[8]

Fan, H. W.; Mundstock, A.; Feldhoff, A.; Knebel, A.; Gu, J. H.; Meng, H.; Caro, J. Covalent organic framework-covalent organic framework bilayer membranes for highly selective gas separation. J. Am. Chem. Soc. 2018, 140, 10094–10098.

[9]

Sun, Q.; Fu, C. W.; Aguila, B.; Perman, J.; Wang, S.; Huang, H. Y.; Xiao, F. S.; Ma, S. Q. Pore environment control and enhanced performance of enzymes infiltrated in covalent organic frameworks. J. Am. Chem. Soc. 2018, 140, 984–992.

[10]

Vyas, V. S.; Haase, F.; Stegbauer, L.; Savasci, G.; Podjaski, F.; Ochsenfeld, C.; Lotsch, B. V. A tunable azine covalent organic framework platform for visible light-induced hydrogen generation. Nat. Commun. 2015, 6, 8508.

[11]

Zhang, S. H.; Xia, W.; Yang, Q.; Kaneti, Y. V.; Xu, X. T.; Alshehri, S. M.; Ahamad, T.; Hossain, S. A.; Na, J.; Tang, J. et al. Core−shell motif construction: Highly graphitic nitrogen-doped porous carbon electrocatalysts using MOF-derived carbon@COF heterostructures as sacrificial templates. Chem. Eng. J. 2020, 396, 125154.

[12]

Huo, T. T.; Yang, Y. F.; Qian, M.; Jiang, H. L.; Du, Y. L.; Zhang, X. Y.; Xie, Y. B.; Huang, R. Q. Versatile hollow COF nanospheres via manipulating transferrin corona for precise glioma-targeted drug delivery. Biomaterials 2020, 260, 120305.

[13]

Li, M. M.; Qiao, S.; Zheng, Y. L.; Andaloussi, Y. H.; Li, X.; Zhang, Z. J.; Li, A.; Cheng, P.; Ma, S. Q.; Chen, Y. Fabricating covalent organic framework capsules with commodious microenvironment for enzymes. J. Am. Chem. Soc. 2020, 142, 6675–6681.

[14]

Liu, Y. Y.; Li, X. C.; Wang, S.; Cheng, T.; Yang, H. Y.; Liu, C.; Gong, Y. T.; Lai, W. Y.; Huang, W. Self-templated synthesis of uniform hollow spheres based on highly conjugated three-dimensional covalent organic frameworks. Nat. Commun. 2020, 11, 5561.

[15]

Tang, Y.; Li, W. Y.; Muhammad, Y.; Jiang, S. L.; Huang, M. Y.; Zhang, H. Z.; Zhao, Z. X.; Zhao, Z. X. Fabrication of hollow covalent-organic framework microspheres via emulsion-interfacial strategy to enhance laccase immobilization for tetracycline degradation. Chem. Eng. J. 2021, 421, 129743.

[16]

Yec, C. C.; Zeng, H. C. Synthesis of complex nanomaterials via Ostwald ripening. J. Mater. Chem. A 2014, 2, 4843–4851.

[17]

Doan-Nguyen, T. P.; Jiang, S.; Koynov, K.; Landfester, K.; Crespy, D. Ultrasmall nanocapsules obtained by controlling Ostwald ripening. Angew. Chem., Int. Ed. 2021, 60, 18094–18102.

[18]

Kandambeth, S.; Venkatesh, V.; Shinde, D. B.; Kumari, S.; Halder, A.; Verma, S.; Banerjee, R. Self-templated chemically stable hollow spherical covalent organic framework. Nat. Commun. 2015, 6, 6786.

[19]

Zhao, W.; Yan, P. Y.; Yang, H. F.; Bahri, M.; James, A. M.; Chen, H. M.; Liu, L. J.; Li, B. Y.; Pang, Z. F.; Clowes, R. et al. Using sound to synthesize covalent organic frameworks in water. Nat. Synth. 2022, 1, 87–95.

[20]

Raveendran, S.; Parameswaran, B.; Ummalyma, S. B.; Abraham, A.; Mathew, A. K.; Madhavan, A.; Rebello, S.; Pandey, A. Applications of microbial enzymes in food industry. Food Technol. Biotechnol. 2018, 56, 16–30.

[21]

Tian, K. Y.; Li, Z. A simple biosystem for the high-yielding cascade conversion of racemic alcohols to enantiopure amines. Angew. Chem., Int. Ed. 2020, 59, 21745–21751.

[22]

Yadav, R. K.; Baeg, J. O.; Oh, G. H.; Park, N. J.; Kong, K. J.; Kim, J.; Hwang, D. W.; Biswas, S. K. A photocatalyst-enzyme coupled artificial photosynthesis system for solar energy in production of formic acid from CO2. J. Am. Chem. Soc. 2012, 134, 11455–11461.

[23]

Du, Y. J.; Gao, J.; Zhou, L. Y.; Ma, L.; He, Y.; Zheng, X. F.; Huang, Z. H.; Jiang, Y. J. MOF-based nanotubes to hollow nanospheres through protein-induced soft-templating pathways. Adv. Sci. 2019, 359, 1252–1264.

[24]

Kumar, A.; Park, G. D.; Patel, S. K. S.; Kondaveeti, S.; Otari, S.; Anwar, M. Z.; Kalia, V. C.; Singh, Y.; Kim, S. C.; Cho, B. K. et al. SiO2 microparticles with carbon nanotube-derived mesopores as an efficient support for enzyme immobilization. Chem. Eng. J. 2019, 359, 1252–1264.

[25]

Du, Y. J.; Gao, J.; Liu, H. J.; Zhou, L. Y.; Ma, L.; He, Y.; Huang, Z. H.; Jiang, Y. J. Enzyme@silica nanoflower@metal-organic framework hybrids: A novel type of integrated nanobiocatalysts with improved stability. Nano Res. 2018, 11, 4380–4389.

[26]

Gan, J. S.; Bagheri, A. R.; Aramesh, N.; Gul, I.; Franco, M.; Almulaiky, Y. Q.; Bilal, M. Covalent organic frameworks as emerging host platforms for enzyme immobilization and robust biocatalysis—A review. Int. J. Biol. Macromol. 2021, 167, 502–515.

[27]

Su, D.; Feng, B. W.; Xu, P. F.; Zeng, Q.; Shan, B. X.; Song, Y. G. Covalent organic frameworks and electron mediator-based open circuit potential biosensor for in vivo electrochemical measurements. Anal. Methods 2018, 10, 4320–4328.

[28]

Samui, A.; Happy; Sahu, S. K. Integration of α-amylase into covalent organic framework for highly efficient biocatalyst. Microporous Mesoporous Mater. 2020, 291, 109700.

[29]

Xu, H.; Gao, J.; Jiang, D. L. Stable, crystalline, porous, covalent organic frameworks as a platform for chiral organocatalysts. Nat. Chem. 2015, 7, 905–912.

[30]

Yang, L.; Guo, Q. Y.; Kang, H.; Chen, R. Z.; Liu, Y. Q.; Wei, D. C. Self-controlled growth of covalent organic frameworks by repolymerization. Chem. Mater. 2020, 32, 5634–5640.

[31]

Li, X. L.; Zhang, C. L.; Cai, S. L.; Lei, X. H.; Altoe, V.; Hong, F.; Urban, J. J.; Ciston, J.; Chan, E. M.; Liu, Y. Facile transformation of imine covalent organic frameworks into ultrastable crystalline porous aromatic frameworks. Nat. Commun. 2018, 9, 2998.

[32]

Yang, H. G.; Zeng, H. C. Preparation of hollow anatase TiO2 nanospheres via Ostwald ripening. J. Phys. Chem. B 2004, 108, 3492–3495.

[33]

Feng, J.; Yin, Y. D. Self-templating approaches to hollow nanostructures. Adv. Mater. 2019, 31, 1802349.

[34]

Zhao, H.; Liu, G. H.; Liu, Y. T.; Liu, X. L.; Wang, H. X.; Chen, H. X.; Gao, J.; Jiang, Y. J. Metal nanoparticles@covalent organic framework@enzymes: A universal platform for fabricating a metal-enzyme integrated nanocatalyst. ACS Appl. Mater. Interfaces 2022, 14, 2881–2892.

[35]

Wang, Z. F.; Yang, Y.; Zhao, Z. F.; Zhang, P. H.; Zhang, Y. S.; Liu, J. J.; Ma, S. Q.; Cheng, P.; Chen, Y.; Zhang, Z. J. Green synthesis of olefin-linked covalent organic frameworks for hydrogen fuel cell applications. Nat. Commun. 2021, 12, 1982.

[36]

Shao, P. P.; Li, J.; Chen, F.; Ma, L.; Li, Q. B.; Zhang, M. X.; Zhou, J. W.; Yin, A. X.; Feng, X.; Wang, B. Flexible films of covalent organic frameworks with ultralow dielectric constants under high humidity. Angew. Chem., Int. Ed. 2018, 57, 16501–16505.

[37]

Martínez-Abadía, M.; Mateo-Alonso, A. Structural approaches to control interlayer interactions in 2D covalent organic frameworks. Adv. Mater. 2020, 32, 2002366.

[38]

Emmerling, S. T.; Schuldt, R.; Bette, S.; Yao, L.; Dinnebier, R. E.; Kastner, J.; Lotsch, B. V. Interlayer interactions as design tool for large-pore COFs. J. Am. Chem. Soc. 2021, 143, 15711–15722.

[39]

Chen, X.; Addicoat, M.; Irle, S.; Nagai, A.; Jiang, D. L. Control of crystallinity and porosity of covalent organic frameworks by managing interlayer interactions based on self-complementary π-electronic force. J. Am. Chem. Soc. 2013, 135, 546–549.

[40]

Hansch, C.; Leo, A.; Taft, R. W. A survey of hammett substituent constants and resonance and field parameters. Chem. Rev. 1991, 91, 165–195.

[41]

Magnusson, A. O.; Takwa, M.; Hamberg, A.; Hult, K. An S-selective lipase was created by rational redesign and the enantioselectivity increased with temperature. Angew. Chem., Int. Ed. 2005, 44, 4582–4585.

[42]

Voss, C. V.; Gruber, C. C.; Kroutil, W. Deracemization of secondary alcohols through a concurrent tandem biocatalytic oxidation and reduction. Angew. Chem., Int. Ed. 2008, 47, 741–745.

[43]

Wikmark, Y.; Humble, M. S.; Bäckvall, J. E. Combinatorial library based engineering of Candida antarctica lipase A for enantioselective transacylation of sec-alcohols in organic solvent. Angew. Chem., Int. Ed. 2015, 54, 4284–4288.

[44]

Zhu, W.; Chen, Z.; Pan, Y.; Dai, R. Y.; Wu, Y.; Zhuang, Z. B.; Wang, D. S.; Peng, Q.; Chen, C.; Li, Y. D. Functionalization of hollow nanomaterials for catalytic applications: Nanoreactor construction. Adv. Mater. 2019, 31, 1800426.

[45]

Au, S. K.; Bommarius, B. R.; Bommarius, A. S. Biphasic reaction system allows for conversion of hydrophobic substrates by amine dehydrogenases. ACS Catal. 2014, 4, 4021–4026.

[46]

Klibanov, A. M. Improving enzymes by using them in organic solvents. Nature 2001, 409, 241–246.

File
12274_2022_4769_MOESM1_ESM.pdf (7.7 MB)
Publication history
Copyright
Acknowledgements

Publication history

Received: 31 May 2022
Revised: 09 July 2022
Accepted: 13 July 2022
Published: 27 August 2022
Issue date: January 2023

Copyright

© Tsinghua University Press 2022

Acknowledgements

Acknowledgements

This work was supported by the National Natural Science Foundation of China (Nos. 22078081, 21908040, 21901058, and 22178083); the Natural Science Foundation of Hebei Province (Nos. B2020202021 and B2019202216); Key Research and Development Program of Hebei Province (No. 20372802D); Open Project Funding of the State Key Laboratory of Biocatalysis and Enzyme Engineering (No. SKLBEE2020011), and the Natural Science Foundation of Tianjin (No. 20JCYBJC00530).

Return