Journal Home > Volume 16 , Issue 5

Nickel rich LiNixCoyMn1−xyO2 cathode materials have been studied extensively to increase the energy density of lithium-ion batteries (LIBs) due to their advantages of high capacity and low cost. However, the anisotropic crystal expansion and contraction inside the secondary particles would cause detrimental micro-cracks and severe parasitic reactions at the electrode/electrolyte interface during cycling, which severely decreases the stability of crystalline structure and cathode-electrolyte interphase and ultimately affects the calendar life of batteries. Herein, a thermodynamically stabilized interface is constructed on the surface of single-crystalline Ni-rich cathode materials (SC811@RS) via a facile molten-salt route to suppress the generation of microcracks and interfacial parasitic side reactions simultaneously. Density functional theory calculations show that the formation energy of interface layer (−1.958 eV) is more negative than that of bulk layered structure (−1.421 eV). Such a thermodynamically stable protective layer can not only prevent the direct contact between highly reactive LiNixCoyMn1−xyO2 and electrolyte, but also mitigate deformation of structure caused by stress thus strengthening the mechanical properties. Raman spectra further confirm the excellent structural reversibility and reaction homogeneity of SC811@RS at particle, electrode, and time scales. Consequently, SC811@RS cathode material delivers significantly improved cycling stability (high capacity retention of 92% after 200 cycles at 0.5 C) compared with polycrystalline LiNi0.8Co0.1Mn0.1O2 (82%).


menu
Abstract
Full text
Outline
Electronic supplementary material
About this article

In-situ construction of a thermodynamically stabilized interface on the surface of single crystalline Ni-rich cathode materials via a one-step molten-salt route

Show Author's information Huiya YangXiangbang KongJiyang LiPengpeng DaiJing ZengYang Yang( )Jinbao Zhao( )
State Key Laboratory of Physical Chemistry of Solid Surfaces, Collaborative Innovation Centre of Chemistry for Energy Materials, State-Province Joint Engineering Laboratory of Power Source Technology for New Energy Vehicle, Engineering Research Center of Electrochemical Technology, Ministry of Education, College of Chemistry and Chemical Engineering, Xiamen University, Xiamen 361005, China

Abstract

Nickel rich LiNixCoyMn1−xyO2 cathode materials have been studied extensively to increase the energy density of lithium-ion batteries (LIBs) due to their advantages of high capacity and low cost. However, the anisotropic crystal expansion and contraction inside the secondary particles would cause detrimental micro-cracks and severe parasitic reactions at the electrode/electrolyte interface during cycling, which severely decreases the stability of crystalline structure and cathode-electrolyte interphase and ultimately affects the calendar life of batteries. Herein, a thermodynamically stabilized interface is constructed on the surface of single-crystalline Ni-rich cathode materials (SC811@RS) via a facile molten-salt route to suppress the generation of microcracks and interfacial parasitic side reactions simultaneously. Density functional theory calculations show that the formation energy of interface layer (−1.958 eV) is more negative than that of bulk layered structure (−1.421 eV). Such a thermodynamically stable protective layer can not only prevent the direct contact between highly reactive LiNixCoyMn1−xyO2 and electrolyte, but also mitigate deformation of structure caused by stress thus strengthening the mechanical properties. Raman spectra further confirm the excellent structural reversibility and reaction homogeneity of SC811@RS at particle, electrode, and time scales. Consequently, SC811@RS cathode material delivers significantly improved cycling stability (high capacity retention of 92% after 200 cycles at 0.5 C) compared with polycrystalline LiNi0.8Co0.1Mn0.1O2 (82%).

Keywords: lithium-ion battery, cathode, single crystalline, LiNixCoyMn1−xyO2, polycrystalline

References(52)

[1]

Mizushima, K.; Jones, P. C.; Wiseman, P. J.; Goodenough, J. B. LixCoO2 (0 < x < −1): A new cathode material for batteries of high energy density. Mater. Res. Bull. 1980, 15, 783–789.

[2]

Megahed, S.; Scrosati, B. Lithium-ion rechargeable batteries. J. Power Sources 1994, 51, 79–104.

[3]

Manthiram, A. An outlook on lithium ion battery technology. ACS Cent. Sci. 2017, 3, 1063–1069.

[4]

Li, W. D.; Erickson, E. M.; Manthiram, A. High-nickel layered oxide cathodes for lithium-based automotive batteries. Nat. Energy 2020, 5, 26–34.

[5]

Kempton, W. Electric vehicles: Driving range. Nat. Commun. 2016, 1, 16131.

[6]

Schmuch, R.; Wagner, R.; Hörpel, G.; Placke, T.; Winter, M. Performance and cost of materials for lithium-based rechargeable automotive batteries. Nat. Commun. 2018, 3, 267–278.

[7]

Su, X.; Wu, Q. L.; Li, J. C.; Xiao, X. C.; Lott, A.; Lu, W. Q.; Sheldon, B. W.; Wu, J. Silicon-based nanomaterials for lithium-ion batteries: A review. Adv. Energy Mater. 2014, 4, 1300882.

[8]

Yin, S. Y.; Deng, W. T.; Chen, J.; Gao, X.; Zou, G. Q.; Hou, H. S.; Ji, X. B. Fundamental and solutions of microcrack in Ni-rich layered oxide cathode materials of lithium-ion batteries. Nano Energy 2021, 83, 105854.

[9]

Manthiram, A.; Song, B. H.; Li, W. D. A perspective on nickel-rich layered oxide cathodes for lithium-ion batteries. Energy Storage Mater. 2017, 6, 125–139.

[10]

Chen, R. S.; Li, Q. H.; Yu, X. Q.; Chen, L. Q.; Li, H. Approaching practically accessible solid-state batteries: Stability issues related to solid electrolytes and interfaces. Chem. Rev. 2020, 120, 6820–6877.

[11]

Noh, H. J.; Youn, S.; Yoon, C. S.; Sun, Y. K. Comparison of the structural and electrochemical properties of layered Li[NixCoyMnz]O2 (x = 1/3, 0.5, 0.6, 0.7, 0.8 and 0.85) cathode material for lithium-ion batteries. J. Power Sources 2013, 233, 121–130.

[12]

Zou, L. F.; Zhao, W. G.; Jia, H. P.; Zheng, J. M.; Li, L. Z.; Abraham, D. P.; Chen, G. Y.; Croy, J. R.; Zhang, J. G.; Wang, C. M. The role of secondary particle structures in surface phase transitions of Ni-rich cathodes. Chem. Mater. 2020, 32, 2884–2892.

[13]

Zhang, S.; Ma, J.; Hu, Z. L.; Cui, G. L.; Chen, L. Q. Identifying and addressing critical challenges of high-voltage layered ternary oxide cathode materials. Chem. Mater. 2019, 31, 6033–6065.

[14]

Xie, Q.; Li, W. D.; Manthiram, A. A Mg-doped high-nickel layered oxide cathode enabling safer, high-energy-density Li-ion batteries. Chem. Mater. 2019, 31, 938–946.

[15]

Han, B. H.; Key, B.; Lapidus, S. H.; Garcia, J. C.; Iddir, H.; Vaughey, J. T.; Dogan, F. From coating to dopant: How the transition metal composition affects alumina coatings on Ni-rich cathodes. ACS Appl. Mater. Interfaces 2017, 9, 41291–41302.

[16]

Bianchini, M.; Roca-Ayats, M.; Hartmann, P.; Brezesinski, T.; Janek, J. There and back again-the journey of LiNiO2 as a cathode active material. Angew. Chem., Int. Ed. 2019, 58, 10434–10458.

[17]

Yang, H. P.; Wu, H. H.; Ge, M. Y.; Li, L. J.; Yuan, Y. F.; Yao, Q.; Chen, J.; Xia, L. F.; Zheng, J. M.; Chen, Z. Y. et al. Simultaneously dual modification of Ni-rich layered oxide cathode for high-energy lithium-ion batteries. Adv. Funct. Mater. 2019, 29, 1808825.

[18]

Gao, S.; Zhan, X. W.; Cheng, Y. T. Structural, electrochemical and Li-ion transport properties of Zr-modified LiNi0.8Co0.1Mn0.1O2 positive electrode materials for Li-ion batteries. J. Power Sources 2019, 410–411, 45–52.

[19]

Liu, W.; Li, X. F.; Hao, Y. C.; Xiong, D. B.; Shan, H.; Wang, J. J.; Xiao, W.; Yang, H. J.; Yang, H.; Kou, L. et al. Functional passivation interface of LiNi0.8Co0.1Mn0.1O2 toward superior lithium storage. Adv. Funct. Mater. 2021, 31, 2008301.

[20]

Zhang, C. F.; Zhao, W. G.; Zheng, S. Y.; Li, Y. X.; Gong, Z. L.; Zhang, Z. R.; Yang, Y. Research progresses in Ni-Co-Mn/Al ternary concentration gradient cathode materials for Li-ion batteries. J. Electrochem. 2020, 26, 73–83.

[21]

Kim, J.; Lee, H.; Cha, H.; Yoon, M.; Park, M.; Cho, J. Prospect and reality of Ni-rich cathode for commercialization. Adv. Energy Mater. 2018, 8, 1702028.

[22]

Li, J.; Li, H. Y.; Stone, W.; Weber, R.; Hy, S.; Dahn, J. R. Synthesis of single crystal LiNi0.5Mn0.3Co0.2O2 for lithium ion batteries. J. Electrochem. Soc. 2017, 164, A3529–A3537.

[23]

Langdon, J.; Manthiram, A. A perspective on single-crystal layered oxide cathodes for lithium-ion batteries. Energy Storage Mater. 2021, 37, 143–160.

[24]

Kim, Y. Lithium nickel cobalt manganese oxide synthesized using alkali chloride flux: Morphology and performance As a cathode material for lithium ion batteries. ACS Appl. Mater. Interfaces 2012, 4, 2329–2333.

[25]

Tu, W. Q.; Wang, X. S.; Tian, W. Y.; Zhou, Y. N.; Han, C. P.; Li, C.; Kang, F. Y.; Li, B. H. A green water-induced spinel heterostructure interface enabling high performance lithium and manganese rich oxides. J. Mater. Chem. A 2021, 9, 20576–20584.

[26]

Zhang, Q. Q.; Liu, K.; Li, C.; Li, L.; Liu, X. J.; Li, W.; Zhang, J. L. In situ induced surface reconstruction of single-crystal lithium-ion cathode toward effective interface compatibility. ACS Appl. Mater. Interfaces 2021, 13, 13771–13780.

[27]

Wu, F.; Li, N.; Su, Y. F.; Shou, H. F.; Bao, L. Y.; Yang, W.; Zhang, L. J.; An, R.; Chen, S. Spinel/layered heterostructured cathode material for high-capacity and high-rate Li-ion batteries. Adv. Mater. 2013, 25, 3722–3726.

[28]

Kresse, G.; Furthmüller, J. Efficient iterative schemes for ab initio total-energy calculations using a plane-wave basis set. Phys. Rev. B 1996, 54, 11169–11186.

[29]

Perdew, J. P.; Burke, K.; Ernzerhof, M. Generalized gradient approximation made simple. Phys. Rev. Lett. 1996, 77, 3865–3868.

[30]

Kresse, G.; Joubert, D. From ultrasoft pseudopotentials to the projector augmented-wave method. Phys. Rev. B 1999, 59, 1758–1775.

[31]

Blöchl, P. E. Projector augmented-wave method. Phys. Rev. B 1994, 50, 17953–17979.

[32]

Grimme, S.; Antony, J.; Ehrlich, S.; Krieg, H. A consistent and accurate ab initio parametrization of density functional dispersion correction (DFT-D) for the 94 elements H-Pu. J. Chem. Phys. 2010, 132, 154104.

[33]
LiOH-Li2SO4 Phase Diagram [Online]. https://www.crct.polymtl.ca/fact/phase_diagram.php?file=LiOH-Li2SO4.jpg&dir=FTsalt (accessed Aug 7, 2021).
[34]

Park, J. H.; Choi, B.; Kang, Y. S.; Park, S. Y.; Yun, D. J.; Park, I.; Shim, J. H.; Park, J. H.; Han, H. N.; Park, K. Effect of residual lithium rearrangement on Ni-rich layered oxide cathodes for lithium-ion batteries. Energy Technol. 2018, 6, 1361–1369.

[35]

Sharifi-Asl, S.; Lu, J.; Amine, K.; Shahbazian-Yassar, R. Oxygen release degradation in Li-ion battery cathode materials: Mechanisms and mitigating approaches. Adv. Energy Mater. 2019, 9, 1900551.

[36]

Min, K.; Cho, E. Intrinsic origin of intra-granular cracking in Ni-rich layered oxide cathode materials. Phys. Chem. Chem. Phys. 2018, 20, 9045–9052.

[37]

Li, J. Y.; Huang, J. X.; Li, H. Y.; Kong, X. B.; Li, X.; Zhao, J. B. Insight into the redox reaction heterogeneity within secondary particles of nickel-rich layered cathode materials. ACS Appl. Mater. Interfaces 2021, 13, 27074–27084.

[38]

Ryu, H. H.; Namkoong, B.; Kim, J. H.; Belharouak, I.; Yoon, C. S.; Sun, Y. K. Capacity fading mechanisms in Ni-rich single-crystal NCM cathodes. ACS Energy Lett. 2021, 6, 2726–2734.

[39]

Fan, X. M.; Hu, G. R.; Zhang, B.; Ou, X.; Zhang, J. F.; Zhao, W. G.; Jia, H. P.; Zou, L. F.; Li, P.; Yang, Y. Crack-free single-crystalline Ni-rich layered NCM cathode enable superior cycling performance of lithium-ion batteries. Nano Energy 2020, 70, 104450.

[40]

Zou, Y. G.; Mao, H. C.; Meng, X. H.; Du, Y. H.; Sheng, H.; Yu, X. Q.; Shi, J. L.; Guo, Y. G. Mitigating the kinetic hindrance of single-crystalline Ni-rich cathode via surface gradient penetration of tantalum. Angew. Chem., Int. Ed. 2021, 60, 26535–26539.

[41]

Zhu, J.; Zheng, J. C.; Cao, G. L.; Li, Y. J.; Zhou, Y.; Deng, S. Y.; Hai, C. X. Flux-free synthesis of single-crystal LiNi0.8Co0.1Mn0.1O2 boosts its electrochemical performance in lithium batteries. J. Power Sources 2020, 464, 228207.

[42]

Kong, X. B.; Zhang, Y. G.; Peng, S. Y.; Zeng, J.; Zhao, J. B. Superiority of single-crystal to polycrystalline LiNixCoyMn1−xyO2 cathode materials in storage behaviors for lithium-ion batteries. ACS Sustainable Chem. Eng. 2020, 8, 14938–14948.

[43]

Bi, Y. J.; Tao, J. H.; Wu, Y. Q.; Li, L. Z.; Xu, Y. B.; Hu, E. Y.; Wu, B. B.; Hu, J. T.; Wang, C. M.; Zhang, J. G. et al. Reversible planar gliding and microcracking in a single-crystalline Ni-rich cathode. Science 2020, 370, 1313–1317.

[44]

Kong, X. B.; Peng, S. Y.; Li, J. Y.; Chen, Z. J.; Chen, Z. Q.; Wang, J.; Zhao, J. B. Pre-blended conductive agent to effectively improve the storage properties of LiNi0.6Co0.2Mn0.2O2 cathode materials. J. Power Sources 2020, 448, 227445.

[45]

Li, W. D.; Song, B. H.; Manthiram, A. High-voltage positive electrode materials for lithium-ion batteries. Chem. Soc. Rev. 2017, 46, 3006–3059.

[46]

Lin, R. Q.; Bak, S. M.; Shin, Y.; Zhang, R.; Wang, C. Y.; Kisslinger, K.; Ge, M. Y.; Huang, X. J.; Shadike, Z.; Pattammattel, A. et al. Hierarchical nickel valence gradient stabilizes high-nickel content layered cathode materials. Nat. Commun. 2021, 12, 2350.

[47]

Chen, Z.; Wang, J.; Chao, D. L.; Baikie, T.; Bai, L. Y.; Chen, S.; Zhao, Y. L.; Sum, T. C.; Lin, J. Y.; Shen, Z. X. Hierarchical porous LiNi1/3Co1/3Mn1/3O2 nano-/micro spherical cathode material: Minimized cation mixing and improved Li+ mobility for enhanced electrochemical performance. Sci. Rep. 2016, 6, 25771.

[48]

Li, J. Y.; Huang, J. X.; Kong, X. B.; Zeng, J.; Zhao, J. B. The apparent capacity decay by kinetic degradation of LiNi0.5Co0.2Mn0.3O2 during cycling under the high upper-limit charging potential. J. Power Sources 2021, 496, 229856.

[49]

Li, J. Y.; Hua, H. M.; Kong, X. B.; Yang, H. Y.; Dai, P. P.; Zeng, J.; Zhao, J. B. In-situ probing the near-surface structural thermal stability of high-nickel layered cathode materials. Adv. Energy Mater. 2022, 46, 90–99.

[50]

Kasnatscheew, J.; Evertz, M.; Streipert, B.; Wagner, R.; Klöpsch, R.; Vortmann, B.; Hahn, H.; Nowak, S.; Amereller, M.; Gentschev, A. C. et al. The truth about the 1st cycle coulombic efficiency of LiNi1/3Co1/3Mn1/3O2 (NCM) cathodes. Phys. Chem. Chem. Phys. 2016, 18, 3956–3965.

[51]

Ghanty, C.; Markovsky, B.; Erickson, E. M.; Talianker, M.; Haik, O.; Tal-Yossef, Y.; Mor, A.; Aurbach, D.; Lampert, J.; Volkov, A. et al. Li+-ion extraction/insertion of Ni-rich Li1+x(NiyCozMnz)wO2 (0.005 < x < 0.03; y:z = 8:1, w ≈ 1) electrodes: In situ XRD and Raman spectroscopy study. ChemElectroChem 2015, 2, 1479–1486.

[52]

Cha, H.; Kim, J.; Lee, H.; Kim, N.; Hwang, J.; Sung, J.; Yoon, M.; Kim, K.; Cho, J. Boosting reaction homogeneity in high-energy lithium-ion battery cathode materials. Adv. Mater. 2020, 32, 2003040.

File
12274_2022_4768_MOESM1_ESM.pdf (2.8 MB)
Publication history
Copyright
Acknowledgements

Publication history

Received: 10 May 2022
Revised: 15 June 2022
Accepted: 13 July 2022
Published: 20 August 2022
Issue date: May 2023

Copyright

© Tsinghua University Press 2022

Acknowledgements

Acknowledgements

We gratefully acknowledge the financial support of the Key Project of Science and Technology of Xiamen (No. 3502Z20201013) and the National Natural Science Foundation of China (Nos. 21875198, 21875195, and 22021001). We also acknowledge the help of Tan Kah Kee Innovation Laboratory on the scientific tests.

Return