Journal Home > Volume 16 , Issue 1

Constructing piezoelectret based on foamed plastic garbage is an advisable strategy for obtaining self-powered flexible electromechanical sensors with good performances. Herein, a self-powered piezoelectret sensor with basic material of low density polyethylene (LDPE) foamed plastic garbage is proposed, with characteristics of easy fabrication, excellent flexibility, and high equivalent piezoelectric coefficient d33 value up to ~ 1,100 pC/N. The output stability is verified by continuously stimulating a sensor for ~ 180,000 cycles under low and high applied pressure, and the variations of peak outputs are less than 5.5%. Applications for measuring low- and high-pressure signals from human body are achieved. Assembled with a wristband, a sensor is demonstrated for detecting the human pulse waves. Moreover, real time human sitting information is wirelessly monitored with a smart chair based on 4 pixels sensors array.


menu
Abstract
Full text
Outline
Electronic supplementary material
About this article

A self-powered piezoelectret sensor based on foamed plastic garbage for monitoring human motions

Show Author's information Yujun Shi1Kaijun Zhang1Sen Ding2Zhaoyang Li1Yuhao Huang1Yucong Pi1Dazhe Zhao1Yaowen Zhang1Renkun Wang1Binpu Zhou2Zhi-Xin Yang3( )Junwen Zhong1( )
Department of Electromechanical Engineering and Centre for Artificial Intelligence and Robotics, University of Macau, Macau 999078, China
Joint Key Laboratory of the Ministry of Education, Institute of Applied Physics and Materials Engineering, University of Macau, Avenida da Universidade, Macau 999078, China
State Key Laboratory of Internet of Things for Smart City and Department of Electromechanical Engineering, University of Macau, Macau 999078, China

Abstract

Constructing piezoelectret based on foamed plastic garbage is an advisable strategy for obtaining self-powered flexible electromechanical sensors with good performances. Herein, a self-powered piezoelectret sensor with basic material of low density polyethylene (LDPE) foamed plastic garbage is proposed, with characteristics of easy fabrication, excellent flexibility, and high equivalent piezoelectric coefficient d33 value up to ~ 1,100 pC/N. The output stability is verified by continuously stimulating a sensor for ~ 180,000 cycles under low and high applied pressure, and the variations of peak outputs are less than 5.5%. Applications for measuring low- and high-pressure signals from human body are achieved. Assembled with a wristband, a sensor is demonstrated for detecting the human pulse waves. Moreover, real time human sitting information is wirelessly monitored with a smart chair based on 4 pixels sensors array.

Keywords: wearable electronics, mobile health, self-powered, pressure sensor, piezoelectret

References(38)

[1]

Borrelle, S. B.; Ringma, J.; Law, K. L.; Monnahan, C. C.; Lebreton, L.; McGivern, A.; Murphy, E.; Jambeck, J.; Leonard, G. H.; Hilleary, M. A. et al. Predicted growth in plastic waste exceeds efforts to mitigate plastic pollution. Science 2020, 369, 1515–1518.

[2]

Law, K. L.; Narayan, R. Reducing environmental plastic pollution by designing polymer materials for managed end-of-life. Nat. Rev. Mater. 2022, 7, 104–116.

[3]

Worm, B.; Lotze, H. K.; Jubinville, I.; Wilcox, C.; Jambeck, J. Plastic as a persistent marine pollutant. Annu. Rev. Environ. Resour. 2017, 42, 1–26.

[4]

Bauer, S.; Gerhard-Multhaupt, R.; Sessler, G. M. Ferroelectrets: Soft electroactive foams for transducers. Phys. Today 2004, 57, 37–43.

[5]
The Guardian. Amazon’s Plastic Waste Soars by A Third During Pandemic, Oceana Report Finds [Online]. 2021. https://www.theguardian.com/environment/2021/dec/15/amazon-plastic-waste-soars-by-a-third-amid-pandemic-finds-oceana-report (accessed Jun 20, 2022).
[6]

Chen, H. L.; Nath, T. K.; Chong, S.; Foo, V.; Gibbins, C.; Lechner, A. M. The plastic waste problem in Malaysia: Management, recycling and disposal of local and global plastic waste. SN Appl. Sci. 2021, 3, 437.

[7]

Hu, H.; Zhu, W. J.; Li, D. S.; Qu, Y. Waterproof and low-cost piezoelectrets with high piezoelectric responses. J. Phys. D: Appl. Phys. 2021, 54, 415502.

[8]

Ma, X. C.; Zhang, X. Q.; Fang, P. Flexible film-transducers based on polypropylene piezoelectrets: Fabrication, properties, and applications in wearable devices. Sens. Actuat. A:Phys. 2017, 256, 35–42.

[9]

Moreira, M. M. A. C.; Soares, I. N.; Assagra, Y. A. O.; Sousa, F. S. I.; Nordi, T. M.; Dourado, D. M.; Gounella, R. H.; Carmo, J. P.; Altafim, R. A. C.; Altafim, R. A. P. Piezoelectrets: A brief introduction. IEEE Sens. J. 2021, 21, 22317–22328.

[10]

Zhang, M.; Zuo, X.; Yang, T. Q.; Zhang, X. Q. Research progress of piezoelectrets based micro-energy harvesting. Acta Phys. Sin. 2020, 69, 247701.

[11]

Chen, L.; Cao, J. L.; Li, G. L.; Fang, P.; Gong, X. S.; Zhang, X. Q. Property assessment and application exploration for layered polytetrafluoroethylene piezoelectrets. IEEE Sens. J. 2019, 19, 11262–11271.

[12]

Mo, X. W.; Zhou, H.; Li, W. B.; Xu, Z. S.; Duan, J. J.; Huang, L.; Liu, B.; Zhou, J. Piezoelectrets for wearable energy harvesters and sensors. Nano Energy 2019, 65, 104033.

[13]

Wang, B.; Liu, C.; Xiao, Y. J.; Zhong, J. W.; Li, W. B.; Cheng, Y. L.; Hu, B.; Huang, L.; Zhou, J. Ultrasensitive cellular fluorocarbon piezoelectret pressure sensor for self-powered human physiological monitoring. Nano Energy 2017, 32, 42–49.

[14]

Baek, S.; Lee, Y.; Baek, J.; Kwon, J.; Kim, S. Lee, S.; Strunk, K. P.; Stehlin, S.; Melzer, C.; Park, S. M. et al. Spatiotemporal measurement of arterial pulse waves enabled by wearable active-matrix pressure sensor arrays. ACS Nano 2022, 16, 368–377.

[15]

Feng, H. Q.; Zhao, C. C.; Tan, P. C.; Liu, R. P.; Chen, X.; Li, Z. Nanogenerator for biomedical applications. Adv. Heal. Mater. 2018, 7, 1701298.

[16]

Persano, L.; Dagdeviren, C.; Su, Y. W.; Zhang, Y. H.; Girardo, S.; Pisignano, D.; Huang, Y. G.; Rogers, J. A. High performance piezoelectric devices based on aligned arrays of nanofibers of poly(vinylidenefluoride-co-trifluoroethylene). Nat. Commun. 2013, 4, 1633.

[17]

Chang, C.; Tran, V. H.; Wang, J. B.; Fuh, Y. K.; Lin, L. W. Direct-write piezoelectric polymeric nanogenerator with high energy conversion efficiency. Nano Lett. 2010, 10, 726–731.

[18]

Zhang, P. P.; Chen, Y. H.; Guo, Z. H.; Guo, W. B.; Pu, X.; Wang, Z. L. Stretchable, transparent, and thermally stable triboelectric nanogenerators based on solvent-free ion-conducting elastomer electrodes. Adv. Funct. Mater. 2020, 30, 1909252.

[19]

Zhu, G.; Yang, W. Q.; Zhang, T. J.; Jing, Q. S.; Chen, J.; Zhou, Y. S.; Bai, P.; Wang, Z. L. Self-powered, ultrasensitive, flexible tactile sensors based on contact electrification. Nano Lett. 2014, 14, 3208–3213.

[20]

Das, P. S.; Chhetry, A.; Maharjan, P.; Rasel, M. S.; Park, J. Y. A laser ablated graphene-based flexible self-powered pressure sensor for human gestures and finger pulse monitoring. Nano Res. 2019, 12, 1789–1795.

[21]

Lei, H.; Xiao, J.; Chen, Y. F.; Jiang, J. W.; Xu, R. J.; Wen, Z.; Dong, B.; Sun, X. H. Bamboo-inspired self-powered triboelectric sensor for touch sensing and sitting posture monitoring. Nano Energy 2022, 91, 106670.

[22]

Cao, R.; Wang, J. N.; Zhao, S. Y.; Yang, W.; Yuan, Z. Q.; Yin, Y. Y.; Du, X. Y.; Li, N. W.; Zhang, X. L.; Li, X. Y. et al. Self-powered nanofiber-based screen-print triboelectric sensors for respiratory monitoring. Nano Res. 2018, 11, 3771–3779.

[23]

Zhang, M. C.; Zhao, M. Y.; Jian, M. Q.; Wang, C. Y.; Yu, A. F.; Yin, Z.; Liang, X. P.; Wang, H. M.; Xia, K. L.; Liang, X. et al. Printable smart pattern for multifunctional energy-management E-textile. Matter 2019, 1, 168–179.

[24]

Kim, H. J.; Kim, J. H.; Jun, K. W.; Kim, J. H.; Seung, W. C.; Kwon, O. H.; Park, J. Y.; Kim, S. W.; Oh, I. K. Silk nanofiber-networked bio-triboelectric generator: Silk Bio-TEG. Adv. Energy Mater. 2016, 6, 1502329.

[25]

Guo, Y. B.; Zhang, X. S.; Wang, Y.; Gong, W.; Zhang, Q. H.; Wang, H. Z.; Brugger, J. All-fiber hybrid piezoelectric-enhanced triboelectric nanogenerator for wearable gesture monitoring. Nano Energy 2018, 48, 152–160.

[26]

Li, S.; Zhang, Y.; Wang, Y. L.; Xia, K. L.; Yin, Z.; Wang, H. M.; Zhang, M. C.; Liang, X. P.; Lu, H. J.; Zhu, M. J. et al. Physical sensors for skin-inspired electronics. InfoMat 2020, 2, 184–211.

[27]

Shi, Y. X.; Wang, F.; Tian, J. W.; Li, S. Y.; Fu, E. G.; Nie, J. H.; Lei, R.; Ding, Y. F.; Chen, X. Y.; Wang, Z. L. Self-powered electro-tactile system for virtual tactile experiences. Sci. Adv. 2021, 7, eabe2943.

[28]

Yang, P.; Shi, Y. X.; Li, S. Y.; Tao, X. L.; Liu, Z. Q.; Wang, X. L.; Wang, Z. L.; Chen, X. Y. Monitoring the degree of comfort of shoes in-motion using triboelectric pressure sensors with an ultrawide detection range. ACS Nano 2022, 16, 4654–4665.

[29]

Wang, X. L.; Shi, Y. X.; Yang, P.; Tao, X. L.; Li, S. Y.; Lei, R.; Liu, Z. Q.; Wang, Z. L.; Chen, X. Y. Fish-wearable data snooping platform for underwater energy harvesting and fish behavior monitoring. Small 2022, 18, 2107232.

[30]

Zhong, J. W.; Zhong, Q. Z.; Zang, X. N.; Wu, N.; Li, W. B.; Chu, Y.; Lin, L. W. Flexible PET/EVA-based piezoelectret generator for energy harvesting in harsh environments. Nano Energy 2017, 37, 268–274.

[31]

Wu, N.; Cheng, X. F.; Zhong, Q. Z.; Zhong, J. W.; Li, W. B.; Wang, B.; Hu, B.; Zhou, J. Cellular polypropylene piezoelectret for human body energy harvesting and health monitoring. Adv. Funct. Mater. 2015, 25, 4788–4794.

[32]

Chu, Y.; Zhong, J. W.; Liu, H. L.; Ma, Y.; Liu, N.; Song, Y.; Liang, J. M.; Shao, Z. C.; Sun, Y.; Dong, Y. et al. Human pulse diagnosis for medical assessments using a wearable piezoelectret sensing system. Adv. Funct. Mater. 2018, 28, 1803413.

[33]

Zhong, J. W.; Ma, Y.; Song, Y.; Zhong, Q. Z.; Chu, Y.; Karakurt, I.; Bogy, D. B.; Lin, L. W. A flexible piezoelectret actuator/sensor patch for mechanical human-machine interfaces. ACS Nano 2019, 13, 7107–7116.

[34]

Fang, P.; Ma, X. C.; Li, X. X.; Qiu, X. L.; Gerhard, R.; Zhang, X. Q.; Li, G. L. Fabrication, structure characterization, and performance testing of piezoelectret-film sensors for recording body motion. IEEE Sens. J. 2018, 18, 401–412.

[35]
Li, X. X.; Zhuo, Q. F.; Zhang, X.; Samuel, O. W.; Xia, Z. Y.; Zhang, X. Q.; Fang, P.; Li, G. L. FMG-based body motion registration using piezoelectret sensors. In Proceedings of the 38th Annual International Conference of the IEEE Engineering in Medicine and Biology Society (EMBC), Orlando, FL, USA, 2016, pp 4626–4629.
[36]

Chen, S. W.; Wu, N.; Ma, L.; Lin, S. Z.; Yuan, F.; Xu, Z. S.; Li, W. B.; Wang, B.; Zhou, J. Noncontact heartbeat and respiration monitoring based on a hollow microstructured self-powered pressure sensor. ACS Appl. Mater. Interfaces 2018, 10, 3660–3667.

[37]

Zhong, J. W.; Li, Z. Y.; Takakuwa, M.; Inoue, D.; Hashizume, D.; Jiang, Z.; Shi, Y. J.; Ou, L. X.; Nayeem, O. G.; Umezu, S. et al. Smart face mask based on an ultrathin pressure sensor for wireless monitoring of breath conditions. Adv. Mater. 2022, 34, 2107758.

[38]

Yang, J.; Chen, J.; Su, Y. J.; Jing, Q. S.; Li, Z. L.; Yi, F.; Wen, X. N.; Wang, Z. N.; Wang, Z. L. Eardrum-inspired active sensors for self-powered cardiovascular system characterization and throat-attached anti-interference voice recognition. Adv. Mater. 2015, 27, 1316–1326.

Video
12274_2022_4766_MOESM2_ESM.mp4
12274_2022_4766_MOESM3_ESM.mp4
File
12274_2022_4766_MOESM1_ESM.pdf (2.5 MB)
Publication history
Copyright
Acknowledgements

Publication history

Received: 12 April 2022
Revised: 21 June 2022
Accepted: 12 July 2022
Published: 30 August 2022
Issue date: January 2023

Copyright

© Tsinghua University Press 2022

Acknowledgements

Acknowledgements

We acknowledge the funding support from the Science and Technology Development Fund, Macau SAR (FDCT) (Nos. 0059/2021/AFJ, 0040/2021/A1, 0018/2019/AKP, and SKL-IOTSC(UM)-2021-2023), and the Start Research Grant from University of Macau (No. SRG2021-00001-FST).

Return