Journal Home > Volume 16 , Issue 4

N2 electroreduction reaction (NRR) offers a feasible and promising alternative for NH3 production by using clean energy sources. However, it is still obstructed by the pretty low NH3 yield rate and Faradaic efficiency (FE) primarily due to the undesired competing hydrogen evolution reaction and the extremely stable N≡N bond. Herein, bismuth nanoparticles were successfully embedded in N and P co-doped carbon nanoflakes (Bi/NPC) by high-temperature pyrolyzation of Bi-zeolitic imidazole frameworks (ZIF) followed by phosphorization, and used as a high-efficiency catalyst toward N2 electroreduction to NH3. In 0.1 M KHCO3 electrolyte, Bi/NPC exhibits excellent NRR performances, including a high NH3 yield rate of 3.12 µg·h−1·cm−2 (−0.6 V vs. reversible hydrogen electrode (RHE)), an outstanding FE of 13.58% (−0.4 V vs. RHE), and a remarkable stability up to 36 h under ambient conditions. This outstanding NRR catalytic activity is mainly attributed to the intrinsic electrocatalytic NRR activity combined with the inert hydrogen evolution reaction (HER) activity of Bi, the adsorption and activation of N2 facilitated by N dopants, as well as the superior conductivity and the large specific surface area of the two-dimensional layered carbon matrix. Notably, the hydrogen source provided by P dopant promotes the hydrogenation of the adsorbed N, which further boosts the NRR performance in alkaline electrolyte. The ultralong durability of Bi/NPC is attributed to the highly dispersed bismuth catalytic active centers confined in the skeleton of N and P co-doped carbon nanoflakes, which inhibits the agglomeration of bismuth centers. This work presents a novel avenue for designation and fabrication of high-performance Bi-based electrocatalysts for NRR.


menu
Abstract
Full text
Outline
Electronic supplementary material
About this article

Bismuth stabilized by ZIF derivatives for electrochemical ammonia production: Proton donation effect of phosphorus dopants

Show Author's information Qiaoling Wu1Ying Sun1( )Qin Zhao1Hui Li2Zhengnan Ju1Yu Wang1Xiaodong Sun1Baohua Jia2Jieshan Qiu3Tianyi Ma2( )
Institute of Clean Energy Chemistry, Key Laboratory for Green Synthesis and Preparative Chemistry of Advanced Materials of Liaoning Province, College of Chemistry, Liaoning University, Shenyang 110036, China
School of Science, RMIT University, Melbourne, VIC 3000, Australia
College of Chemical Engineering, State Key Laboratory of Chemical Resource Engineering, Beijing University of Chemical Technology, Beijing 100029, China

Abstract

N2 electroreduction reaction (NRR) offers a feasible and promising alternative for NH3 production by using clean energy sources. However, it is still obstructed by the pretty low NH3 yield rate and Faradaic efficiency (FE) primarily due to the undesired competing hydrogen evolution reaction and the extremely stable N≡N bond. Herein, bismuth nanoparticles were successfully embedded in N and P co-doped carbon nanoflakes (Bi/NPC) by high-temperature pyrolyzation of Bi-zeolitic imidazole frameworks (ZIF) followed by phosphorization, and used as a high-efficiency catalyst toward N2 electroreduction to NH3. In 0.1 M KHCO3 electrolyte, Bi/NPC exhibits excellent NRR performances, including a high NH3 yield rate of 3.12 µg·h−1·cm−2 (−0.6 V vs. reversible hydrogen electrode (RHE)), an outstanding FE of 13.58% (−0.4 V vs. RHE), and a remarkable stability up to 36 h under ambient conditions. This outstanding NRR catalytic activity is mainly attributed to the intrinsic electrocatalytic NRR activity combined with the inert hydrogen evolution reaction (HER) activity of Bi, the adsorption and activation of N2 facilitated by N dopants, as well as the superior conductivity and the large specific surface area of the two-dimensional layered carbon matrix. Notably, the hydrogen source provided by P dopant promotes the hydrogenation of the adsorbed N, which further boosts the NRR performance in alkaline electrolyte. The ultralong durability of Bi/NPC is attributed to the highly dispersed bismuth catalytic active centers confined in the skeleton of N and P co-doped carbon nanoflakes, which inhibits the agglomeration of bismuth centers. This work presents a novel avenue for designation and fabrication of high-performance Bi-based electrocatalysts for NRR.

Keywords: electrocatalysis, carbon nanoflakes, bismuth, N, N2 reduction, P co-doped

References(58)

[1]

Li, Y. X.; Liu, Y. X.; Liu, X.; Liu, Y. L.; Cheng, Y. Y.; Zhang, P.; Deng, P. J.; Deng, J. J.; Kang, Z. H.; Li, H. T. Fe-doped SnO2 nanosheet for ambient electrocatalytic nitrogen reduction reaction. Nano Res. 2022, 15, 6026–6035.

[2]

Chen, G. F.; Yuan, Y. F.; Jiang, H. F.; Ren, S. Y.; Ding, L. X.; Ma, L.; Wu, T. P.; Lu, J.; Wang, H. H. Electrochemical reduction of nitrate to ammonia via direct eight-electron transfer using a copper-molecular solid catalyst. Nat. Energy 2020, 5, 605–613.

[3]

Bao, D.; Zhang, Q.; Meng, F. L.; Zhong, H. X.; Shi, M. M.; Zhang, Y.; Yan, J. M.; Jiang, Q.; Zhang, X. B. Electrochemical reduction of N2 under ambient conditions for artificial N2 fixation and renewable energy storage using N2/NH3 cycle. Adv. Mater. 2017, 29, 1604799.

[4]

Du, Y. Q.; Jiang, C.; Song, L.; Gao, B.; Gong, H.; Xia, W.; Sheng, L.; Wang, T.; He, J. P. Regulating surface state of WO3 nanosheets by gamma irradiation for suppressing hydrogen evolution reaction in electrochemical N2 fixation. Nano Res. 2020, 13, 2784–2790.

[5]

Lv, X. W.; Weng, C. C.; Yuan, Z. Y. Ambient ammonia electrosynthesis: Current status, challenges, and perspectives. ChemSusChem 2020, 13, 3061–3078.

[6]

Cao, N.; Zheng, G. F. Aqueous electrocatalytic N2 reduction under ambient conditions. Nano Res. 2018, 11, 2992–3008.

[7]

Liu, D.; Chen, M. P.; Du, X. Y.; Ai, H. Q.; Lo, K. H.; Wang, S. P.; Chen, S.; Xing, G. C.; Wang, X. S.; Pan, H. Development of electrocatalysts for efficient nitrogen reduction reaction under ambient condition. Adv. Funct. Mater. 2020, 31, 2008983.

[8]

Chen, S. M.; Perathoner, S.; Ampelli, C.; Mebrahtu, C.; Su, D. S.; Centi, G. Electrocatalytic synthesis of ammonia at room temperature and atmospheric pressure from water and nitrogen on a carbon-nanotube-based electrocatalyst. Angew. Chem., Int. Ed. 2017, 56, 2699–2703.

[9]

Sun, Y.; Wu, Q. L.; Li, H.; Jiang, S. Y.; Wang, J. G.; Zhang, W.; Song, X. M.; Jia, B. H.; Qiu, J. S.; Ma, T. Y. Engineering local environment of ruthenium by defect-tuned SnO2 over carbon cloth for neutral-media N2 electroreduction. Carbon 2022, 195, 199–206.

[10]

Liu, G. H.; Niu, L. J.; Ma, Z. X.; An, L.; Qu, D.; Wang, D. D.; Wang, X. Y.; Sun, Z. C. Fe2Mo3O8/XC-72 electrocatalyst for enhanced electrocatalytic nitrogen reduction reaction under ambient conditions. Nano Res. 2022, 15, 5940–5945.

[11]

Zheng, X. B.; Li, P.; Dou, S. X.; Sun, W. P.; Pan, H. G.; Wang, D. S.; Li, Y. D. Non-carbon-supported single-atom site catalysts for electrocatalysis. Energy Environ. Sci. 2021, 14, 2809–2858.

[12]

Yang, Q.; Guo, Y.; Gu, J. X.; Li, N.; Wang, C. D.; Liu, Z. X.; Li, X. L.; Huang, Z. D.; Wei, S. Q.; Xu, S. Y. et al. Scalable synthesis of 2D hydrogen-substituted graphdiyne on Zn substrate for high-yield N2 fixation. Nano Energy 2020, 78, 105283.

[13]

Fu, Y.; Li, K. K.; Batmunkh, M.; Yu, H.; Donne, S.; Jia, B. H.; Ma, T. Y. Unsaturated p-metal-based metal–organic frameworks for selective nitrogen reduction under ambient conditions. ACS Appl. Mater. Interfaces 2020, 12, 44830–44839.

[14]

Xu, W. C.; Fan, G. L.; Chen, J. L.; Li, J. H.; Zhang, L.; Zhu, S. L.; Su, X. C.; Cheng, F. Y.; Chen, J. Nanoporous palladium hydride for electrocatalytic N2 reduction under ambient conditions. Angew. Chem., Int. Ed. 2020, 59, 3511–3516.

[15]

Ren, Y. W.; Yu, C.; Tan, X. Y.; Huang, H. L.; Wei, Q. B.; Qiu, J. H. Strategies to suppress hydrogen evolution for highly selective electrocatalytic nitrogen reduction: Challenges and perspectives. Energy Environ. Sci. 2021, 14, 1176–1193.

[16]

Chen, G. F.; Ren, S. Y.; Zhang, L. L.; Cheng, H.; Luo, Y. R.; Zhu, K. H.; Ding, L. X.; Wang, H. H. Advances in electrocatalytic N2 reduction-strategies to tackle the selectivity challenge. Small Methods 2019, 3, 1800337.

[17]

Li, S. J.; Bao, D.; Shi, M. M.; Wulan, B. R.; Yan, J. M.; Jiang, Q. Amorphizing of Au Nanoparticles by CeOx-RGO hybrid support towards highly efficient electrocatalyst for N2 reduction under ambient conditions. Adv. Mater., 2017, 29, 1700001.

[18]

Huang, B.; Wu, Y. F.; Chen, B. B.; Qian, Y.; Zhou, N. G.; Li, N. Transition-metal-atom-pairs deposited on g-CN monolayer for nitrogen reduction reaction: Density functional theory calculations. Chin. J. Catal. 2021, 42, 1160–1167.

[19]

Wang, H. F.; Lin, M. Y.; Murayama, T.; Feng, S. X.; Haruta, M.; Miura, H.; Shishido, T. Selective catalytic oxidation of ammonia to nitrogen over zeolite-supported Pt-Au catalysts: Effects of alloy formation and acid sites. J. Catal. 2021, 402, 101–113.

[20]

Shu, Z.; Cai, Y. Q. Activation of phosphorene-like two-dimensional GeSe for efficient electrocatalytic nitrogen reduction via states filtering of Ru. J. Mater. Chem. A 2021, 9, 16056–16064.

[21]

Lan, R.; Irvine, J. T. S.; Tao, S. W. Synthesis of ammonia directly from air and water at ambient temperature and pressure. Sci. Rep. 2013, 3, 1145.

[22]

Chu, K.; Liu, Y. P.; Wang, J.; Zhang, H. NiO nanodots on graphene for efficient electrochemical N2 reduction to NH3. ACS Appl. Energy Mater. 2019, 2, 2288–2295.

[23]

Du, H. T.; Guo, X. X.; Kong, R. M.; Qu, F. L. Cr2O3 nanofiber: A high-performance electrocatalyst toward artificial N2 fixation to NH3 under ambient conditions. Chem. Commun. 2018, 54, 12848–12851.

[24]

Han, Z. S.; Choi, C.; Hong, S.; Wu, T. S.; Soo, Y. L.; Jung, Y.; Qiu, J. S.; Sun, Z. Y. Activated TiO2 with tuned vacancy for efficient electrochemical nitrogen reduction. Appl. Catal. B 2019, 257, 117896.

[25]

Jin, H.; Li, L.; Liu, X.; Tang, C.; Xu, W.; Chen, S.; Song, L.; Zheng, Y.; Qiao, S. Z. Nitrogen vacancies on 2D layered W2N3: A stable and efficient active site for nitrogen reduction reaction. Adv. Mater. 2019, 31, 1902709.

[26]

Yu, G. S.; Guo, H. R.; Kong, W. H.; Wang, T.; Luo, Y. L.; Shi, X. F.; Asiri, A. M.; Li, T. S.; Sun, X. P. Electrospun TiC/C nanofibers for ambient electrocatalytic N2 reduction. J. Mater. Chem. A 2019, 7, 19657–19661.

[27]

Li, X. H.; Ren, X.; Liu, X. J.; Zhao, J. X.; Sun, X.; Zhang, Y.; Kuang, X.; Yan, T.; Wei, Q.; Wu, D. A MoS2 nanosheet-reduced graphene oxide hybrid: An efficient electrocatalyst for electrocatalytic N2 reduction to NH3 under ambient conditions. J. Mater. Chem. A 2019, 7, 2524–2528.

[28]

Mao, H.; Yang, H. R.; Liu, J. C.; Zhang, S.; Liu, D. L.; Wu, Q.; Sun, W. P.; Song, X. M.; Ma, T. Y. Improved nitrogen reduction electroactivity by unique MoS2-SnS2 heterogeneous nanoplates supported on poly(zwitterionic liquids) functionalized polypyrrole/graphene oxide. Chin. J. Catal. 2022, 43, 1341–1350.

[29]

Mao, H.; Fu, Y. Y.; Yang, H. R.; Zhang, S.; Liu, J. C.; Wu, S. Y.; Wu, Q.; Ma, T. Y.; Song, X. M. Structure-activity relationship toward electrocatalytic nitrogen reduction of MoS2 growing on polypyrrole/graphene oxide affected by pyridinium-type ionic liquids. Chem. Eng. J. 2021, 425, 131769.

[30]

Wang, S. Y.; Ichihara, F.; Pang, H.; Chen, H.; Ye, J. H. Nitrogen fixation reaction derived from nanostructured catalytic materials. Adv. Funct. Mater. 2018, 28, 1803309.

[31]

Yu, X. M.; Han, P.; Wei, Z. X.; Huang, L. S.; Gu, Z. X.; Peng, S. J.; Ma, J. M.; Zheng, G. F. Boron-doped graphene for electrocatalytic N2 reduction. Joule 2018, 2, 1610–1622.

[32]

Zhang, L. L.; Ding, L. X.; Chen, G. F.; Yang, X. F.; Wang, H. H. Ammonia synthesis under ambient conditions: Selective electroreduction of dinitrogen to ammonia on black phosphorus nanosheets. Angew. Chem. 2019, 131, 2638–2642.

[33]

Sun, T.; Mitchell, S.; Li, J.; Lyu, P.; Wu, X. B.; Pérez-Ramírez, J.; Lu, J. Design of local atomic environments in single-atom electrocatalysts for renewable energy conversions. Adv. Mater. 2021, 33, 2003075.

[34]

Hao, Y. C.; Guo, Y.; Chen, L. W.; Shu, M.; Wang, X. Y.; Bu, T. A.; Gao, W. Y.; Zhang, N.; Su, X.; Feng, X. et al. Promoting nitrogen electroreduction to ammonia with bismuth nanocrystals and potassium cations in water. Nat. Catal. 2019, 2, 448–456.

[35]

Wang, Y.; Shi, M. M.; Bao, D.; Meng, F. L.; Zhang, Q.; Zhou, Y. T.; Liu, K. H.; Zhang, Y.; Wang, J. Z.; Chen, Z. W. et al. Generating defect-rich bismuth for enhancing the rate of nitrogen electroreduction to ammonia. Angew. Chem., Int. Ed. 2019, 58, 9464–9469.

[36]

Yao, D. Z.; Tang, C.; Li, L. Q.; Xia, B. Q.; Vasileff, A.; Jin, H. Y.; Zhang, Y. Z.; Qiao, S. Z. In situ fragmented bismuth nanoparticles for electrocatalytic nitrogen reduction. Adv. Energy Mater. 2020, 10, 2001289.

[37]

Zhang, R.; Ji, L.; Kong, W. H.; Wang, H. B.; Zhao, R. B.; Chen, H. Y.; Li, T. S.; Li, B. H.; Luo, Y. L.; Sun, X. P. Electrocatalytic N2-to-NH3 conversion with high faradaic efficiency enabled using a Bi nanosheet array. ChemComm 2019, 55, 5263–5266.

[38]

Yao, J. X.; Bao, D.; Zhang, Q.; Shi, M. M.; Wang, Y.; Gao, R.; Yan, J. M.; Jiang, Q. Tailoring oxygen vacancies of BiVO4 toward highly efficient noble-metal-free electrocatalyst for artificial N2 fixation under ambient conditions. Small Methods 2019, 3, 1800333.

[39]

Sun, Y.; Deng, Z. Z.; Song, X. M.; Li, H.; Huang, Z. H.; Zhao, Q.; Feng, D. M.; Zhang, W.; Liu, Z. Q.; Ma, T. Y. Bismuth-based free-standing electrodes for ambient-condition ammonia production in neutral media. Nano-Micro Lett. 2020, 12, 133.

[40]

Wu, Q. L.; Yu, B.; Deng, Z. Z.; Li, T. Y.; Li, H.; Jia, B. H.; Li, P.; Sun, W. P.; Song, X. M.; Sun, Y. et al. Synergy of Bi2O3 and RuO2 nanocatalysts for low-overpotential and wide pH-window electrochemical ammonia synthesis. Chem.—Eur. J. 2021, 27, 17395–17401.

[41]

Niu, L. J.; Wang, D. D.; Xu, K.; Hao, W. C.; An, L.; Kang, Z. H.; Sun, Z. C. Tuning the performance of nitrogen reduction reaction by balancing the reactivity of N2 and the desorption of NH3. Nano Res. 2021, 14, 4093–4099.

[42]

Liu, X.; Jiao, Y.; Zheng, Y.; Jaroniec, M.; Qiao, S. Z. Building up a picture of the electrocatalytic nitrogen reduction activity of transition metal single-atom catalysts. J. Am. Chem. Soc. 2019, 141, 9664–9672.

[43]

Zhang, S. B.; Jin, M.; Shi, T. F.; Han, M.; Sun, Q.; Lin, Y.; Ding, Z. H.; Zheng, L. R.; Wang, G. Z.; Zhang, Y. X. et al. Electrocatalytically Active Fe-(O-C2)4 single-atom sites for efficient reduction of nitrogen to ammonia. Angew. Chem., Int. Ed. 2020, 59, 13423–13429.

[44]

Zhao, Z. M.; Long, Y.; Chen, Y.; Zhang, F. Y.; Ma, J. T. Phosphorus doped carbon nitride with rich nitrogen vacancy to enhance the electrocatalytic activity for nitrogen reduction reaction. Chem. Eng. J. 2022, 430, 132682.

[45]

Ahmed, M. I.; Arachchige, L. J.; Su, Z.; Hibbert, D. B.; Sun, C. H.; Zhao, C. Nitrogenase-inspired atomically dispersed Fe-S-C linkages for improved electrochemical reduction of dinitrogen to ammonia. ACS Catal. 2022, 12, 1443–1451.

[46]

Sim, H. Y. F.; Chen, J. R. T.; Koh, C. S. L.; Lee, H. K.; Han, X. M.; Phan-Quang, G. C.; Pang, J. Y.; Lay, C. L.; Pedireddy, S.; Phang, I. Y. et al. ZIF-induced d-band modification in a bimetallic nanocatalyst: Achieving over 44% efficiency in the ambient nitrogen reduction reaction. Angew. Chem., Int. Ed. 2020, 59, 16997–17003.

[47]

Yang, Y. J.; Wang, S. Q.; Wen, H. M.; Ye, T.; Chen, J.; Li, C. P.; Du, M. Nanoporous gold embedded ZIF composite for enhanced electrochemical nitrogen fixation. Angew. Chem., Int. Ed. 2019, 58, 15362–15366.

[48]

Niu, S. S.; Wang, Z. Y.; Zhou, T.; Yu, M. L.; Yu, M. Z.; Qiu, J. S. A Polymetallic metal-organic framework-derived strategy toward synergistically multidoped metal oxide electrodes with ultralong cycle life and high volumetric capacity. Adv. Funct. Mater. 2017, 27, 1605332.

[49]

Zhou, L.; Zhou, P.; Zhang, Y. L.; Liu, B. Y.; Gao, P.; Guo, S. J. 3D star-like atypical hybrid MOF derived single-atom catalyst boosts oxygen reduction catalysis. J. Energy Chem. 2021, 55, 355–360.

[50]

Wan, Y. C.; Zhou, H. J.; Zheng, M. Y.; Huang, Z. H.; Kang, F. Y.; Li, J.; Lv, R. T. Oxidation state modulation of bismuth for efficient electrocatalytic nitrogen reduction to ammonia. Adv. Funct. Mater. 2021, 31, 2100300.

[51]

Grabda, M.; Oleszek-Kudlak, S.; Shibata, E.; Nakamura, T. Vaporization of zinc during thermal treatment of ZnO with tetrabromobisphenol A (TBBPA). J. Hazard. Mater. 2011, 187, 473–479.

[52]

Wang, X. W.; Cao, Z. Q.; Du, B.; Zhang, Y.; Zhang, R. B. Visible-light-driven zeolite imidazolate frameworks-8@ZnO composite for heavy metal treatment. Compos. Part B: Eng. 2020, 183, 107685.

[53]

Azzam, A. B.; El-Sheikh, S. M.; Geioushy, R. A.; Salah, B. A.; El-Dars, F. M.; Helal, A. S. Facile fabrication of a novel BiPO4 phase junction with enhanced photocatalytic performance towards aniline blue degradation. RSC Adv. 2019, 9, 17246–17253.

[54]

Guo, T. Z.; Zhou, D.; Zhang, C. F. Perspectives on electrochemical nitrogen fixation catalyzed by two-dimensional MXenes. Mater. Rep.:Energy 2022, 2, 100076.

[55]

Wang, R.; Dong, X. Y.; Du, J.; Zhao, J. Y.; Zang, S. Q. MOF-derived bifunctional Cu3P nanoparticles coated by a N, P-codoped carbon shell for hydrogen evolution and oxygen reduction. Adv. Mater. 2018, 30, 1703711.

[56]

Niu, F. E.; Yang, J.; Wang, N. N.; Zhang, D. P.; Fan, W. L.; Yang, J.; Qian, Y. T. MoSe2-covered N, P-doped carbon nanosheets as a long-life and high-rate anode material for sodium-ion batteries. Adv. Funct. Mater. 2017, 27, 1700522.

[57]

Liu, H.; Guan, J.; Yang, S.; Yu, Y.; Shao, R.; Zhang, Z.; Dou, M.; Wang, F.; Xu, Q. Metal-organic-framework-derived Co2P nanoparticle/multi-doped porous carbon as a trifunctional electrocatalyst. Adv. Mater. 2020, 32, 2003649.

[58]

Guo, L. Q.; Qin, S. X.; Yang, B. J.; Liang, D.; Qiao, L. J. Effect of hydrogen on semiconductive properties of passive film on ferrite and austenite phases in a duplex stainless steel. Sci. Rep. 2017, 7, 3317.

File
12274_2022_4765_MOESM1_ESM.pdf (2.3 MB)
Publication history
Copyright
Acknowledgements

Publication history

Received: 25 May 2022
Revised: 20 June 2022
Accepted: 11 July 2022
Published: 22 August 2022
Issue date: April 2023

Copyright

© Tsinghua University Press 2022

Acknowledgements

Acknowledgements

This work was partly supported by the National Natural Science Foundation of China (No. 52071171), Liaoning Revitalization Talents Program-Pan Deng Scholars (No. XLYC1802005), Liaoning BaiQianWan Talents Program (No. LNBQW2018B0048), the Natural Science Fund of Liaoning Province for Excellent Young Scholars (No. 2019-YQ-04), the Key Project of Scientific Research of the Education Department of Liaoning Province (No. LZD201902), Shenyang Science and Technology Project (No. 21-108-9-04), the Young Scientific and Technological Talents Project of the Department of Education of Liaoning Province (No. LQN202008), the Foundation for Young Scholars of Liaoning University (No. LDQN2019007), Australian Research Council (ARC) through Future Fellowship (Nos. FT210100298 and FT210100806), Discovery Project (No. DP220100603), Linkage Project (Nos. LP210100467, LP210200504, and LP210200345), and Industrial Transformation Training Centre (No. IC180100005) schemes, CSIRO Energy Centre and Kick-Start Project. The Study Melbourne Research Partnerships program has been made possible by funding from the Victorian Government through Study Melbourne.

Return