Journal Home > Volume 16 , Issue 1

The development of inexpensive metal-nitrogen-carbon (M-N-C) catalysts for electrochemical CO2 reduction reaction (CO2RR) on an industrial scale has come to a standstill. Although the number of related studies and reviews has grown fast, the complexity of the M-N-C composite has limited researchers to focus on only a few variables and carry out sluggish trial-and-error optimizations in their studies. As a result, the conclusions are drawn only by artificial analysis based on a few orthogonal experimental results. To obtain more general design strategies, we have innovatively introduced machine learning (ML) into this field to address this bottleneck. A standard workflow that comprehensively utilizes different ML algorithms and black-box interpretation methods is proposed for this purpose. Besides predicting CO2RR performance metrics for M-N-C catalysts, such as maximum faradaic efficiency with great accuracy, the ML models have also indicated simple and clear design strategies that would guide future exploration from a data science perspective. Besides, we have also demonstrated the potential of the models in guiding the development of new material systems. We thereby believe that the new research paradigm proposed may accelerate the development of this field soon.


menu
Abstract
Full text
Outline
Electronic supplementary material
About this article

Inspecting design rules of metal-nitrogen-carbon catalysts for electrochemical CO2 reduction reaction: From a data science perspective

Show Author's information Rui Ding1Meng Ma1Yawen Chen1Xuebin Wang1Jia Li1( )Guoxiong Wang2( )Jianguo Liu1( )
National Laboratory of Solid State Microstructures, College of Engineering and Applied Sciences, Nanjing University, 22 Hankou Road, Nanjing 210093, China
State Key Laboratory of Catalysis, Dalian National Laboratory for Clean Energy, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian 116023, China

Abstract

The development of inexpensive metal-nitrogen-carbon (M-N-C) catalysts for electrochemical CO2 reduction reaction (CO2RR) on an industrial scale has come to a standstill. Although the number of related studies and reviews has grown fast, the complexity of the M-N-C composite has limited researchers to focus on only a few variables and carry out sluggish trial-and-error optimizations in their studies. As a result, the conclusions are drawn only by artificial analysis based on a few orthogonal experimental results. To obtain more general design strategies, we have innovatively introduced machine learning (ML) into this field to address this bottleneck. A standard workflow that comprehensively utilizes different ML algorithms and black-box interpretation methods is proposed for this purpose. Besides predicting CO2RR performance metrics for M-N-C catalysts, such as maximum faradaic efficiency with great accuracy, the ML models have also indicated simple and clear design strategies that would guide future exploration from a data science perspective. Besides, we have also demonstrated the potential of the models in guiding the development of new material systems. We thereby believe that the new research paradigm proposed may accelerate the development of this field soon.

Keywords: artificial intelligence, machine learning, electrochemical CO2 reduction reaction, data science, metal-nitrogen-carbon catalyst

References(76)

[1]

Ahmad, T.; Liu, S.; Sajid, M.; Li, K. Ali, M.; Liu, L.; Chen, W. Electrochemical CO2 reduction to C2+ products using Cu-based electrocatalysts: A review. Nano Res. Energy 2022, 1: e9120021.

[2]
ZhangS. L. SunL. Fan Q. N.Zhang F. L.WangZ. J.Zou J. S.Zhao S. Y.MaoJ. F. GuoZ. P. Challenges and prospects of lithium−CO2 batteriesNano Res. Energy20221: e912000110.26599/NRE.2022.9120001

Zhang, S. L.; Sun, L.; Fan, Q. N.; Zhang, F. L.; Wang, Z. J.; Zou, J. S.; Zhao, S. Y.; Mao, J. F.; Guo, Z. P. Challenges and prospects of lithium−CO2 batteries. Nano Res. Energy 2022, 1: e9120001.

[3]

Xie, H.; Wang, T. Y.; Liang, J. S.; Li, Q.; Sun, S. H. Cu-based nanocatalysts for electrochemical reduction of CO2. Nano Today 2018, 21, 41–54.

[4]

Li, M. H.; Wang, H. F.; Luo, W.; Sherrell, P. C.; Chen, J.; Yang, J. P. Heterogeneous single-atom catalysts for electrochemical CO2 reduction reaction. Adv. Mater. 2020, 32, 2001848.

[5]

Wu, Z. Z.; Gao, F. Y.; Gao, M. R. Regulating the oxidation state of nanomaterials for electrocatalytic CO2 reduction. Energy Environ. Sci. 2021, 14, 1121–1139.

[6]

Ju, W.; Bagger, A.; Hao, G. P.; Varela, A. S.; Sinev, I.; Bon, V.; Roldan Cuenya, B.; Kaskel, S.; Rossmeisl, J.; Strasser, P. Understanding activity and selectivity of metal-nitrogen-doped carbon catalysts for electrochemical reduction of CO2. Nat. Commun. 2017, 8, 944.

[7]

Fan, Q.; Hou, P. F.; Choi, C.; Wu, T. S.; Hong, S.; Li, F.; Soo, Y. L.; Kang, P.; Jung, Y.; Sun, Z. Y. Activation of Ni particles into single Ni-N atoms for efficient electrochemical reduction of CO2. Adv. Energy Mater. 2020, 10, 1903068.

[8]

Zhang, C.; Fu, Z. H.; Zhao, Q.; Du, Z. G.; Zhang, R. F.; Li, S. M. Single-atom-Ni-decorated, nitrogen-doped carbon layers for efficient electrocatalytic CO2 reduction reaction. Electrochem. Commun. 2020, 116, 106758.

[9]

Zhao, C. M.; Wang, Y.; Li, Z. J.; Chen, W. X.; Xu, Q.; He, D. S.; Xi, D. S.; Zhang, Q. H.; Yuan, T. W.; Qu, Y. T. et al. Solid-diffusion synthesis of single-atom catalysts directly from bulk metal for efficient CO2 reduction. Joule 2019, 3, 584–594.

[10]

Jiang, K.; Siahrostami, S.; Zheng, T. T.; Hu, Y. F.; Hwang, S.; Stavitski, E.; Peng, Y. D.; Dynes, J.; Gangisetty, M.; Su, D.; Attenkofer, K.; Wang, H. T. Isolated Ni single atoms in graphene nanosheets for high-performance CO2 reduction. Energy Environ. Sci. 2018, 11, 893–903.

[11]

Yan, C. C.; Li, H. B.; Ye, Y. F.; Wu, H. H.; Cai, F.; Si, R.; Xiao, J. P.; Miao, S.; Xie, S. H.; Yang, F. et al. Coordinatively unsaturated nickel-nitrogen sites towards selective and high-rate CO2 electroreduction. Energy Environ. Sci. 2018, 11, 1204–1210.

[12]

Lin, L.; Li, H. B.; Yan, C. C.; Li, H. F.; Si, R.; Li, M. R.; Xiao, J. P.; Wang, G. X.; Bao, X. H. Synergistic catalysis over iron-nitrogen sites anchored with cobalt phthalocyanine for efficient CO2 electroreduction. Adv. Mater. 2019, 31, 1903470.

[13]

Lin, L.; Li, H. B.; Wang, Y.; Li, H. F.; Wei, P. F.; Nan, B.; Si, R.; Wang, G. X.; Bao, X. H. Temperature-dependent CO2 electroreduction over Fe-N-C and Ni-N-C single-atom catalysts. Angew. Chem., Int. Ed. 2021, 60, 26582–26586.

[14]

Qu, Q. Y.; Ji, S. F.; Chen, Y. J.; Wang, D. S.; Li, Y. D. The atomic-level regulation of single-atom site catalysts for the electrochemical CO2 reduction reaction. Chem. Sci. 2021, 12, 4201–4215.

[15]

Han, S. G.; Ma, D. D.; Zhu, Q. L. Atomically structural regulations of carbon-based single-atom catalysts for electrochemical CO2 reduction. Small Methods 2021, 5, 2100102.

[16]

Zhang, J. C.; Cai, W. Z.; Hu, F. X.; Yang, H. B.; Liu, B. Recent advances in single atom catalysts for the electrochemical carbon dioxide reduction reaction. Chem. Sci. 2021, 12, 6800–6819.

[17]

Gao, D. F.; Liu, T. F.; Wang, G. X.; Bao, X. H. Structure sensitivity in single-atom catalysis toward CO2 electroreduction. ACS Energy Lett. 2021, 6, 713–727.

[18]

Attia, P. M.; Grover, A.; Jin, N.; Severson, K. A.; Markov, T. M.; Liao, Y. H.; Chen, M. H.; Cheong, B.; Perkins, N.; Yang, Z. et al. Closed-loop optimization of fast-charging protocols for batteries with machine learning. Nature 2020, 578, 397–402.

[19]

Zhang, Y. W.; Tang, Q. C.; Zhang, Y.; Wang, J. B.; Stimming, U.; Lee, A. A. Identifying degradation patterns of lithium ion batteries from impedance spectroscopy using machine learning. Nat. Commun. 2020, 11, 1706.

[20]

Ding, R.; Wang, R.; Ding, Y. Q.; Yin, W. J.; Liu, Y. D.; Li, J.; Liu, J. G. Designing AI-aided analysis and prediction models for nonprecious metal electrocatalyst-based proton-exchange membrane fuel cells. Angew. Chem., Int. Ed. 2020, 59, 19175–19183.

[21]

Liu, Y.; Wang, X.; Zhao, Y. J.; Wu, Q. Y.; Nie, H. D.; Si, H. L.; Huang, H.; Liu, Y.; Shao, M. W.; Kang, Z. H. Highly efficient metal-free catalyst from cellulose for hydrogen peroxide photoproduction instructed by machine learning and transient photovoltage technology. Nano Res. 2022, 15, 4000–4007.

[22]

Ding, R.; Yin, W. J.; Cheng, G.; Chen, Y. W.; Wang, J. K.; Wang, R.; Rui, Z. Y.; Li, J.; Liu, J. G. Boosting the optimization of membrane electrode assembly in proton exchange membrane fuel cells guided by explainable artificial intelligence. Energy AI 2021, 5, 100098.

[23]

Ding, R.; Chen, Y. W.; Chen, P.; Wang, R.; Wang, J. K.; Ding, Y. Q.; Yin, W. J.; Liu, Y. D.; Li, J.; Liu, J. G. Machine learning-guided discovery of underlying decisive factors and new mechanisms for the design of nonprecious metal electrocatalysts. ACS Catal. 2021, 11, 9798–9808.

[24]

Palkovits, R.; Palkovits, S. Using artificial intelligence to forecast water oxidation catalysts. ACS Catal. 2019, 9, 8383–8387.

[25]

Malek, A.; Wang, Q. P.; Baumann, S.; Guillon, O.; Eikerling, M.; Malek, K. A data-driven framework for the accelerated discovery of CO2 reduction electrocatalysts. Front. Energy Res. 2021, 9, 609070.

[26]

Wu, D. H.; Zhang, J. Y.; Cheng, M. J.; Lu, Q.; Zhang, H. C. Machine learning investigation of supplementary adsorbate influence on copper for enhanced electrochemical CO2 reduction performance. J. Phys. Chem. C 2021, 125, 15363–15372.

[27]

Wan, X. H.; Zhang, Z. F.; Niu, H.; Yin, Y. H.; Kuai, C. G.; Wang, J.; Shao, C.; Guo, Y. Z. Machine-learning-accelerated catalytic activity predictions of transition metal phthalocyanine dual-metal-site catalysts for CO2 reduction. J. Phys. Chem. Lett. 2021, 12, 6111–6118.

[28]

Guo, Y.; He, X. R.; Su, Y. M.; Dai, Y. H.; Xie, M. C.; Yang, S. L.; Chen, J. W.; Wang, K.; Zhou, D.; Wang, C. Machine-learning-guided discovery and optimization of additives in preparing Cu catalysts for CO2 reduction. J. Am. Chem. Soc. 2021, 143, 5755–5762.

[29]

Reddy, G. T.; Reddy, M. P. K.; Lakshmanna, K.; Kaluri, R.; Rajput, D. S.; Srivastava, G.; Baker, T. Analysis of dimensionality reduction techniques on big data. IEEE Access 2020, 8, 54776–54788.

[30]

Friedman, J. H.; Popescu, B. E. Predictive learning via rule ensembles. Ann. Appl. Stat. 2008, 2, 916–954.

[31]
Greenwell, B. M. pdp: An R package for constructing partial dependence plots. R J 2017, 9, 421–436.
DOI
[32]

Gu, Z. D.; Zhou, S. M.; Liu, J. F.; Zhou, Q. R.; Wang, D. J. Shapley distance and shapley index for some special graphs. Parallel Process. Lett. 2020, 30, 2050012.

[33]

Biecek, P. DALEX:Explainers for complex predictive models in R. J. Mach. Learn. Res. 2018, 19, 3245–3249.

[34]

Yu, F. B.; Wei, C. H.; Deng, P.; Peng, T.; Hu, X. G. Deep exploration of random forest model boosts the interpretability of machine learning studies of complicated immune responses and lung burden of nanoparticles. Sci. Adv. 2021, 7, eabf4130.

[35]

Wang, W. J.; Cao, C. S.; Wang, K. W.; Zhou, T. H. Boosting CO2 electroreduction to CO with abundant nickel single atom active sites. Inorg. Chem. Front. 2021, 8, 2542–2548.

[36]

Wu, Q.; Liang, J.; Xie, Z. L.; Huang, Y. B.; Cao, R. Spatial sites separation strategy to fabricate atomically isolated nickel catalysts for efficient CO2 electroreduction. ACS Materials Lett. 2021, 3, 454–461.

[37]

Li, Z. D.; He, D.; Yan, X. X.; Dai, S.; Younan, S.; Ke, Z. J.; Pan, X. Q.; Xiao, X. H.; Wu, H. J.; Gu, J. Size-dependent nickel-based electrocatalysts for selective CO2 reduction. Angew. Chem., Int. Ed. 2020, 59, 18572–18577.

[38]

Ding, R.; Ding, Y. Q.; Zhang, H. Y.; Wang, R.; Xu, Z. H.; Liu, Y. D.; Yin, W. J.; Wang, J. K.; Li, J.; Liu, J. G. Applying machine learning to boost the development of high-performance membrane electrode assembly for proton exchange membrane fuel cells. J. Mater. Chem. A 2021, 9, 6841–6850.

[39]
Chen, C. F.; Li, O.; Tao, C. F.; Barnett, A. J.; Rudin, C.; Su, J. This looks like that: Deep learning for interpretable image recognition. In 33rd Conference on Neural Information Processing Systems (NeurIPS), Vancouver, Canada, 2019.
[40]

Singh, G.; Yow, K. C. These do not look like those: An interpretable deep learning model for image recognition. IEEE Access 2021, 9, 41482–41493.

[41]

Hu, X. M.; Hval, H. H.; Bjerglund, E. T.; Dalgaard, K. J.; Madsen, M. R.; Pohl, M. M.; Welter, E.; Lamagni, P.; Buhl, K. B.; Bremholm, M. et al. Selective CO2 reduction to CO in water using earth-abundant metal and nitrogen-doped carbon electrocatalysts. ACS Catal. 2018, 8, 6255–6264.

[42]

Ma, Z. X.; Niu, L. J.; Jiang, W. S.; Dong, C. X.; Liu, G. H.; Qu, D.; An, L.; Sun, Z. C. Recent advances of single-atom electrocatalysts for hydrogen evolution reaction. J. Phys. Mater. 2021, 4, 042002.

[43]

Menisa, L. T.; Cheng, P.; Long, C.; Qiu, X. Y.; Zheng, Y. L.; Han, J. Y.; Zhang, Y.; Gao, Y.; Tang, Z. Y. Insight into atomically dispersed porous M-N-C single-site catalysts for electrochemical CO2 reduction. Nanoscale 2020, 12, 16617–16626.

[44]

Liang, S. Y.; Huang, L.; Gao, Y. S.; Wang, Q.; Liu, B. Electrochemical reduction of CO2 to CO over transition metal/N-doped carbon catalysts: The active sites and reaction mechanism. Adv Sci (Weinh) 2021, 8, 2102886.

[45]

Jiao, L.; Yang, W. J.; Wan, G.; Zhang, R.; Zheng, X. S.; Zhou, H.; Yu, S. H.; Jiang, H. L. Single-atom electrocatalysts from multivariate metal-organic frameworks for highly selective reduction of CO2 at low pressures. Angew. Chem., Int. Ed. 2020, 59, 20589–20595.

[46]

Li, J. K.; Pršlja, P.; Shinagawa, T.; Martín Fernández, A. J.; Krumeich, F.; Artyushkova, K.; Atanassov, P.; Zitolo, A.; Zhou, Y. C.; García-Muelas, R. et al. Volcano trend in electrocatalytic CO2 reduction activity over atomically dispersed metal sites on nitrogen-doped carbon. ACS Catal. 2019, 9, 10426–10439.

[47]

Yang, H. P.; Lin, Q.; Zhang, C.; Yu, X. Y.; Cheng, Z.; Li, G. D.; Hu, Q.; Ren, X. Z.; Zhang, Q. L.; Liu, J. et al. Carbon dioxide electroreduction on single-atom nickel decorated carbon membranes with industry compatible current densities. Nat. Commun. 2020, 11, 593.

[48]

Cheng, H. Y.; Wu, X. M.; Li, X. C.; Nie, X. W.; Fan, S.; Feng, M. M.; Fan, Z. H.; Tan, M. Q.; Chen, Y. G.; He, G. H. Construction of atomically dispersed Cu-N4 sites via engineered coordination environment for high-efficient CO2 electroreduction. Chem. Eng. J. 2021, 407, 126842.

[49]

Yang, H. P.; Lin, Q.; Wu, Y.; Li, G. D.; Hu, Q.; Chai, X. Y.; Ren, X. Z.; Zhang, Q. L.; Liu, J. H.; He, C. X. Highly efficient utilization of single atoms via constructing 3D and free-standing electrodes for CO2 reduction with ultrahigh current density. Nano Energy 2020, 70, 104454.

[50]

Zhang, Y.; Jiao, L.; Yang, W. J.; Xie, C. F.; Jiang, H. L. Rational fabrication of low-coordinate single-atom Ni electrocatalysts by MOFs for highly selective CO2 reduction. Angew. Chem., Int. Ed. 2021, 60, 7607–7611.

[51]

Chen, H. H.; Guo, X.; Kong, X. D.; Xing, Y. L.; Liu, Y.; Yu, B. L.; Li, Q. X.; Geng, Z. G.; Si, R.; Zeng, J. Tuning the coordination number of Fe single atoms for the efficient reduction of CO2. Green Chem. 2020, 22, 7529–7536.

[52]

Hu, C.; Mu, Y.; Bai, S. L.; Yang, J.; Gao, L. J.; Cheng, S. D.; Mi, S. B.; Qiu, J. S. Polyvinyl pyrrolidone mediated fabrication of Fe, N-codoped porous carbon sheets for efficient electrocatalytic CO2 reduction. Carbon 2019, 153, 609–616.

[53]

Zhao, S. Y.; Wang, T. S.; Zhou, G. M.; Zhang, L. J.; Lin, C.; Veder, J. P.; Johannessen, B.; Saunders, M.; Yin, L. C.; Liu, C. et al. Controlled one-pot synthesis of nickel single atoms embedded in carbon nanotube and graphene supports with high loading. ChemNanoMat 2020, 6, 1063–1074.

[54]

Shen, S. J.; Han, C.; Wang, B.; Du, Y. A.; Wang, Y. D. Dual active sites-dependent syngas proportions from aqueous CO2 electroreduction. Appl. Catal. B Environ. 2020, 279, 119380.

[55]
Miao, Z. C.; Meng, J.; Liang, M. F.; Li, Z. B.; Zhao, Y. Z.; Wang, F. Y.; Xu, L. L.; Mu, J. L.; Zhuo, S. P.; Zhou, J. In-situ CVD synthesis of Ni@N-CNTs/carbon paper electrode for electro-reduction of CO2. Carbon 2021, 172, 324–333.
DOI
[56]

Zhu, W. L.; Fu, J. J.; Liu, J.; Chen, Y.; Li, X.; Huang, K. K.; Cai, Y. M.; He, Y. M.; Zhou, Y.; Su, D. et al. Tuning single atom-nanoparticle ratios of Ni-based catalysts for synthesis gas production from CO2. Appl. Catal. B Environ. 2020, 264, 118502.

[57]

Zhang, T. Y.; Han, X.; Yang, H. B.; Han, A. J.; Hu, E. Y.; Li, Y. P.; Yang, X. Q.; Wang, L.; Liu, J. F.; Liu, B. Atomically dispersed nickel(I) on an alloy-encapsulated nitrogen-doped carbon nanotube array for high-performance electrochemical CO2 reduction reaction. Angew. Chem., Int. Ed. 2020, 59, 12055–12061.

[58]

He, Y.; Li, Y. X.; Zhang, J. F.; Wang, S. Y.; Huang, D. K.; Yang, G. L.; Yi, X. L.; Lin, H. W.; Han, X. P.; Hu, W. B. et al. Low-temperature strategy toward Ni-NC@Ni core-shell nanostructure with Single-Ni sites for efficient CO2 electroreduction. Nano Energy 2020, 77, 105010.

[59]

Gong, Y. N.; Jiao, L.; Qian, Y. Y.; Pan, C. Y.; Zheng, L. R.; Cai, X. C.; Liu, B.; Yu, S. H.; Jiang, H. L. Regulating the coordination environment of MOF-templated single-atom nickel electrocatalysts for boosting CO2 reduction. Angew. Chem., Int. Ed. 2020, 59, 2705–2709.

[60]

Zhang, H. N.; Li, J.; Xi, S. B.; Du, Y. H.; Hai, X.; Wang, J. Y.; Xu, H. M.; Wu, G.; Zhang, J.; Lu, J. et al. A graphene-supported single-atom FeN5 catalytic site for efficient electrochemical CO2 reduction. Angew. Chem., Int. Ed. 2019, 58, 14871–14876.

[61]

Jin, S.; Ni, Y. X.; Hao, Z. M.; Zhang, K.; Lu, Y.; Yan, Z. H.; Wei, Y. J.; Lu, Y. R.; Chan, T. S.; Chen, J. A universal graphene quantum dot tethering design strategy to synthesize single-atom catalysts. Angew. Chem., Int. Ed. 2020, 59, 21885–21889.

[62]

Wang, X. Y.; Wang, Y.; Sang, X. H.; Zheng, W. Z.; Zhang, S.; Shuai, L.; Yang, B.; Li, Z. J.; Chen, J. M.; Lei, L. C. et al. Dynamic activation of adsorbed intermediates via axial traction for the promoted electrochemical CO2 reduction. Angew. Chem., Int. Ed. 2021, 60, 4192–4198.

[63]

Chen, Z. C.; Huang, A. J.; Yu, K.; Cui, T. T.; Zhuang, Z. W.; Liu, S. J.; Li, J. Z.; Tu, R. Y.; Sun, K. A.; Tan, X. et al. Fe1N4-O1 site with axial Fe-O coordination for highly selective CO2 reduction over a wide potential range. Energy Environ. Sci. 2021, 14, 3430–3437.

[64]

He, C.; Zhang, Y.; Zhang, Y.; Zhao, L.; Yuan, L. P.; Zhang, J. N.; Ma, J. M.; Hu, J. S. Molecular evidence for metallic cobalt boosting CO2 electroreduction on pyridinic nitrogen. Angew. Chem., Int. Ed. 2020, 59, 4914–4919.

[65]

Guo, Y.; Yang, H. J.; Zhou, X.; Liu, K. L.; Zhang, C.; Zhou, Z. Y.; Wang, C.; Lin, W. B. Electrocatalytic reduction of CO2to CO with 100% faradaic efficiency by using pyrolyzed zeolitic imidazolate frameworks supported on carbon nanotube networks. J. Mater. Chem. A 2017, 5, 24867–24873.

[66]

Wang, X. P.; Ding, S. S.; Yue, T.; Zhu, Y.; Fang, M. W.; Li, X. Y.; Xiao, G. Z.; Zhu, Y.; Dai, L. M. Universal domino reaction strategy for mass production of single-atom metal-nitrogen catalysts for boosting CO2 electroreduction. Nano Energy 2021, 82, 105689.

[67]

Gu, J.; Hsu, C. S.; Bai, L. C.; Chen, H. M.; Hu, X. L. Atomically dispersed Fe3+ sites catalyze efficient CO2 electroreduction to CO. Science 2019, 364, 1091–1094.

[68]

Wang, X. W.; Wu, D.; Dai, C. Z.; Xu, C. Y.; Sui, P.; Feng, R. F.; Wei, Y. P.; Fu, X. Z.; Luo, J. L. Novel folic acid complex derived nitrogen and nickel co-doped carbon nanotubes with embedded Ni nanoparticles as efficient electrocatalysts for CO2 reduction. J. Mater. Chem. A 2020, 8, 5105–5114.

[69]

Li, L. L.; Hasan, I.; Farwa; He, R. N. Peng, L. W.; Xu, N. N.; Niazi, N. K.; Zhang, J. N.; Qiao, J. L. Copper as a single metal atom based photo-, electro- and photoelectrochemical catalyst decorated on carbon nitride surface for efficient CO2 reduction: A review. Nano Res. Energy 2022, 1: e9120015.

[70]

Zhu, S.; Wan, K. W.; Wang, H.; Guo, L. J.; Shi, X. H. The role of supported dual-atom on graphitic carbon nitride for selective and efficient CO2 electrochemical reduction. Nanotechnology 2021, 32, 385404.

[71]
Cui, X. D.; An, W.; Liu, X. Y.; Wang, H.; Men, Y.; Wang, J. G. C2N-graphene supported single-atom catalysts for CO2 electrochemical reduction reaction: Mechanistic insight and catalyst screening. Nanoscale 2018, 10, 15262–15272.
DOI
[72]

Lambie, S.; Low, J. L.; Gaston, N.; Paulus, B. Catalytic potential of post-transition metal doped graphene-based single-atom catalysts for the CO2 electroreduction reaction. ChemPhysChem 2022, 23, e202200024.

[73]

Copelli, M.; Eichhorn, R.; Kinouchi, O.; Biehl, M.; Simonetti, R.; Riegler, P.; Caticha, N. Noise robustness in multilayer neural networks. Europhys. Lett. 1997, 37, 427–432.

[74]

Takenouchi, T.; Eguchi, S.; Murata, N.; Kanamori, T. Robust boosting algorithm against mislabeling in multiclass problems. Neural Comput. 2008, 20, 1596–1630.

[75]

Pedregosa, F.; Varoquaux, G.; Gramfort, A.; Michel, V.; Thirion, B.; Grisel, O.; Blondel, M.; Prettenhofer, P.; Weiss, R.; Dubourg, V. et al. Scikit-learn: Machine learning in python. J. Mach. Learn. Res. 2011, 12, 2825–2830.

[76]

Martín, A. J.; Larrazábal, G. O.; Pérez-Ramírez, J. Towards sustainable fuels and chemicals through the electrochemical reduction of CO2: Lessons from water electrolysis. Green Chem. 2015, 17, 5114–5130.

File
12274_2022_4763_MOESM1_ESM.pdf (74.5 MB)
Publication history
Copyright
Acknowledgements

Publication history

Received: 17 May 2022
Revised: 26 June 2022
Accepted: 11 July 2022
Published: 31 August 2022
Issue date: January 2023

Copyright

© Tsinghua University Press 2022

Acknowledgements

Acknowledgements

This work was partially supported by the National Natural Science Foundation of China (Nos. 22125205 and 92045302). Part of the computational work is done in the Collaborative Innovation Center of Advanced Microstructures, Nanjing University, Nanjing 210093, China.

Return