Discover the SciOpen Platform and Achieve Your Research Goals with Ease.
Search articles, authors, keywords, DOl and etc.
Polymer-based solid electrolytes have been extensively studied for solid-state lithium metal batteries to achieve high energy density and reliable security. But, its practical application is severely limited by low ionic conductivity and slow Li+ transference. Herein, based on the “binary electrolytes” of poly(vinylidene fluoride-chlorotrifluoroethylene) (P(VDF-CTFE)) and lithium salt (LiTFSI), a kind of eutectogel hybrid electrolytes (EHEs) with high Li+ transference number was developed via tuning the spontaneous coupling of charge and vacated space generated by Li-cation diffusion utilizing the Li6.4La3Zr1.4Ta0.6O12 (LLZTO) dopant. LLZTO doping promotes the dissociation of lithium salt, increases Li+ carrier density, and boosts ion jumping and the coordination/decoupling reactions of Li+. As a result, the optimized EHEs-10% possess a high Li-transference number of 0.86 and a high Li+ conductivity of 3.2 × 10–4 S·cm–1 at room temperature. Moreover, the prepared EHEs-10% composite solid electrolyte presents excellent lithiumphilic and compatibility, and can be tested stably for 1,200 h at 0.3 mA·cm–2 with assembled lithium symmetric batteries. Likewise, the EHEs-10% films match well with high-loading LiFePO4 and LiCoO2 cathodes (> 10 mg·cm–2) and exhibit remarkable interface stability. Particularly, the LiFePO4//EHEs-10%//Li and LiCoO2//EHEs-10%//Li cells deliver high rate performance of 118 mAh·g–1 at 1 C and 93.7 mAh·g–1 at 2 C with coulombic efficiency of 99.3% and 98.1%, respectively. This work provides an in-depth understanding and new insights into our design for polymer electrolytes with fast Li+ diffusion.
Zhao, Y.; Wang, L.; Zhou, Y. N.; Liang, Z.; Tavajohi, N.; Li, B. H.; Li, T. Solid polymer electrolytes with high conductivity and transference number of Li ions for Li-based rechargeable batteries. Adv. Sci. 2021, 8, 2003675.
Wang, J. R.; Li, S. Q.; Zhao, Q.; Song, C.; Xue, Z. G. Structure code for advanced polymer electrolyte in lithium-ion batteries. Adv. Funct. Mater. 2021, 31, 2008208.
Wang, S. Z.; Wang, Y.; Song, Y. C.; Jia, X. H.; Yang, J.; Li, Y.; Liao, J. X.; Song, H. J. Immobilizing polysulfide via multiple active sites in W18O49 for Li-S batteries by oxygen vacancy engineering. Energy Storage Mater. 2021, 43, 422–429.
Wang, S. Z.; Liao, J. X.; Yang, X. F.; Liang, J. N.; Sun, Q.; Liang, J. W.; Zhao, F. P.; Koo, A.; Kong, F. P.; Yao, Y. et al. Designing a highly efficient polysulfide conversion catalyst with paramontroseite for high-performance and long-life lithium-sulfur batteries. Nano Energy 2019, 57, 230–240.
Wang, S. Z.; Feng, S. P.; Liang, J. W.; Su, Q. M.; Zhao, F. P.; Song, H. J.; Zheng, M.; Sun, Q.; Song, Z. X.; Jia, X. H. et al. Insight into MoS2-MoN heterostructure to accelerate polysulfide conversion toward high-energy-density lithium-sulfur batteries. Adv. Energy Mater. 2021, 11, 2003314.
Lu, L. J.; Ding, W. Q.; Liu, J. Q.; Yang, B. Flexible PVDF based piezoelectric nanogenerators. Nano Energy 2020, 78, 105251.
Sun, N.; Liu, Q. S.; Cao, Y.; Lou, S. F.; Ge, M. Y.; Xiao, X. H.; Lee, W. K.; Gao, Y. Z.; Yin, G. P.; Wang, J. J. et al. Anisotropically electrochemical-mechanical evolution in solid-state batteries and interfacial tailored strategy. Angew. Chem. , Int. Ed. 2019, 58, 18647–18653.
Wang, L. G.; Dai, A.; Xu, W. Q.; Lee, S.; Cha, W.; Harder, R.; Liu, T. C.; Ren, Y.; Yin, G. P.; Zuo, P. J. et al. Structural distortion induced by manganese activation in a lithium-rich layered cathode. J. Am. Chem. Soc. 2020, 142, 14966–14973.
Yu, X. W.; Manthiram, A. A review of composite polymer-ceramic electrolytes for lithium batteries. Energy Storage Mater. 2021, 34, 282–300.
Choo, Y.; Halat, D. M.; Villaluenga, I.; Timachova, K.; Balsara, N. P. Diffusion and migration in polymer electrolytes. Prog. Polym. Sci. 2020, 103, 101220.
Lou, S. F.; Liu, Q. W.; Zhang, F.; Liu, Q. S.; Yu, Z. J.; Mu, T. S.; Zhao, Y.; Borovilas, J.; Chen, Y. J.; Ge, M. Y. et al. Insights into interfacial effect and local lithium-ion transport in polycrystalline cathodes of solid-state batteries. Nat. Commun. 2020, 11, 5700.
Wang, S. Z.; Wang, Y.; Song, Y. C.; Zhang, J. T.; Jia, X. H.; Yang, J.; Shao, D.; Li, Y.; Liao, J. X.; Song, H. J. Synergistic regulating of dynamic trajectory and lithiophilic nucleation by Heusler alloy for dendrite-free Li deposition. Energy Storage Mater. 2022, 50, 505–513.
Tang, S.; Guo, W.; Fu, Y. Z. Advances in composite polymer electrolytes for lithium batteries and beyond. Adv. Energy Mater. 2021, 11, 2000802.
Zhang, F.; Lou, S. F.; Li, S.; Yu, Z. J.; Liu, Q. S.; Dai, A.; Cao, C. T.; Toney, M. F.; Ge, M. Y.; Xiao, X. H. et al. Surface regulation enables high stability of single-crystal lithium-ion cathodes at high voltage. Nat. Commun. 2020, 11, 3050.
Doyle, M.; Fuller, T. F.; Newman, J. Modeling of galvanostatic charge and discharge of the lithium/polymer/insertion cell. J. Electrochem. Soc. 1993, 140, 1526–1533.
Lou, S. F.; Yu, Z. J.; Liu, Q. S.; Wang, H.; Chen, M.; Wang, J. J. Multi-scale imaging of solid-state battery interfaces: From atomic scale to macroscopic scale. Chem 2020, 6, 2199–2218.
Wu, Y. X.; Li, Y.; Wang, Y.; Liu, Q.; Chen, Q. G.; Chen, M. H. Advances and prospects of PVDF based polymer electrolytes. J. Energy Chem. 2022, 64, 62–84.
Chen, G. H.; Zhang, F.; Zhou, Z. M.; Li, J. R.; Tang, Y. B. A flexible dual-ion battery based on PVDF-HFP-modified gel polymer electrolyte with excellent cycling performance and superior rate capability. Adv. Energy Mater. 2018, 8, 1801219.
Wang, L. J.; Wang, Z. H.; Sun, Y.; Liang, X.; Xiang, H. F. Sb2O3 modified PVDF-CTFE electrospun fibrous membrane as a safe lithium-ion battery separator. J. Membr. Sci. 2019, 572, 512–519.
Liu, Q.; Geng, Z.; Han, C. P.; Fu, Y. Z.; Li, S.; He, Y. B.; Kang, F. Y.; Li, B. H. Challenges and perspectives of garnet solid electrolytes for all solid-state lithium batteries. J. Power Sources 2018, 389, 120–134.
Zhao, N.; Khokhar, W.; Bi, Z. J.; Shi, C.; Guo, X. X.; Fan, L. Z.; Nan, C. W. Solid garnet batteries. Joule 2019, 3, 1190–1199.
Chen, S. J.; Zhang, J. X.; Nie, L.; Hu, X. C.; Huang, Y. Q.; Yu, Y.; Liu, W. All-solid-state batteries with a limited lithium metal anode at room temperature using a garnet-based electrolyte. Adv. Mater. 2021, 33, 2002325.
Huo, H. Y.; Luo, J.; Thangadurai, V.; Guo, X. X.; Nan, C. W.; Sun, X. L. Li2CO3: A critical issue for developing solid garnet batteries. ACS Energy Lett. 2020, 5, 252–262.
Ma, C.; Rangasamy, E.; Liang, C. D.; Sakamoto, J.; More, K. L.; Chi, M. F. Excellent stability of a lithium-ion-conducting solid electrolyte upon reversible Li+/H+ exchange in aqueous solutions. Angew. Chem. , Int. Ed. 2015, 54, 129–133.
Lou, S. F.; Zhang, F.; Fu, C. K.; Chen, M.; Ma, Y. L.; Yin, G. P.; Wang, J. J. Interface issues and challenges in all-solid-state batteries: Lithium, sodium, and beyond. Adv. Mater. 2021, 33, 2000721.
Sharafi, A.; Yu, S.; Naguib, M.; Lee, M.; Ma, C.; Meyer, H. M.; Nanda, J.; Chi, M. F.; Siegel, D. J.; Sakamoto, J. Impact of air exposure and surface chemistry on Li-Li7La3Zr2O12 interfacial resistance. J. Mater. Chem. A 2017, 5, 13475–13487.
Wang, Z. Q.; Li, X. Y.; Chen, Y. M.; Pei, K.; Mai, Y. W.; Zhang, S. L.; Li, J. Creep-enabled 3D solid-state lithium-metal battery. Chem 2020, 6, 2878–2892.
Li, R. G.; Wu, D. B.; Yu, L.; Mei, Y. N.; Wang, L. B.; Li, H.; Hu, X. L. Unitized configuration design of thermally stable composite polymer electrolyte for lithium batteries capable of working over a wide range of temperatures. Adv. Eng. Mater. 2019, 21, 1900055.
Zhang, X.; Liu, T.; Zhang, S. F.; Huang, X.; Xu, B. Q.; Lin, Y. H.; Xu, B.; Li, L. L.; Nan, C. W.; Shen, Y. Synergistic coupling between Li6.75La3Zr1.75Ta0.25O12 and poly(vinylidene fluoride) induces high ionic conductivity, mechanical strength, and thermal stability of solid composite electrolytes.
Murugan, R.; Thangadurai, V.; Weppner, W. Fast lithium ion conduction in garnet-type Li7La3Zr2O12. Angew. Chem. , Int. Ed. 2007, 46, 7778–7781.
Shen, X.; Zhang, Q.; Ning, T.; Liu, T.; Luo, Y.; He, X.; Luo, Z.; Lu, A. Critical challenges and progress of solid garnet electrolytes for all-solid-state batteries. Mater. Today Chem. 2020, 18, 100368.
Huo, H. Y.; Chen, Y.; Li, R. Y.; Zhao, N.; Luo, J.; da Silva, J. G. P.; Mücke, R.; Kaghazchi, P.; Guo, X. X.; Sun, X. L. Design of a mixed conductive garnet/Li interface for dendrite-free solid lithium metal batteries. Energy Environ. Sci. 2020, 13, 127–134.
Zha, W. P.; Chen, F.; Yang, D. J.; Shen, Q.; Zhang, L. M. High-performance Li64La3Zr1. 4Ta0. 6O12/poly(ethylene oxide)/Succinonitrile composite electrolyte for solid-state lithium batteries. J. Power Sources 2018, 397, 87–94.
Thangadurai, V.; Narayanan, S.; Pinzaru, D. Garnet-type solid-state fast Li ion conductors for Li batteries: Critical review. Chem. Soc. Rev. 2014, 43, 4714–4727.
Diederichsen, K. M.; McShane, E. J.; McCloskey, B. D. Promising routes to a high Li+ transference number electrolyte for lithium ion batteries. ACS Energy Lett. 2017, 2, 2563–2575.
Yadav, P. J. P.; Maiti, B.; Ghorai, B. K.; Sastry, P. U.; Patra, A. K.; Aswal, V. K.; Maiti, P. Thermoreversible gelation of poly(vinylidene fluoride-co-chlorotrifluoroethylene): Structure, morphology, thermodynamics, and theoretical prediction. Macromolecules 2011, 44, 3029–3038.
Zheng, L. B.; Wang, J.; Yu, D. W.; Zhang, Y.; Wei, Y. S. Preparation of PVDF-CTFE hydrophobic membrane by non-solvent induced phase inversion: Relation between polymorphism and phase inversion. J. Membr. Sci. 2018, 550, 480–491.
Zheng, L. B.; Wang, J.; Wu, Z. J.; Li, J.; Zhang, Y.; Yang, M.; Wei, Y. S. Preparation of interconnected biomimetic poly(vinylidene fluoride-co-chlorotrifluoroethylene) hydrophobic membrane by tuning the two-stage phase inversion process. ACS Appl. Mater. Interfaces 2016, 8, 32604–32615.
Huang, Y. F.; Xu, J. Z.; Soulestin, T.; Dos Santos, F. D.; Li, R. P.; Fukuto, M.; Lei, J.; Zhong, G. J.; Li, Z. M.; Li, Y. et al. Can relaxor ferroelectric behavior Be realized for Poly(vinylidene fluoride-co-chlorotrifluoroethylene) [P(VDF-CTFE)] random copolymers by inclusion of CTFE units in PVDF crystals? Macromolecules 2018, 51, 5460–5472.
Salimi, A.; Yousefi, A. A. FTIR studies of β-phase crystal formation in stretched PVDF films. Polym. Test. 2003, 22, 699–704.
Cai, X. M.; Lei, T. P.; Sun, D. H.; Lin, L. W. A critical analysis of the α, β and γ phases in poly(vinylidene fluoride) using FTIR. RSC Adv. 2017, 7, 15382–15389.
Zhang, X.; Han, J.; Niu, X. F.; Xin, C. Z.; Xue, C. J.; Wang, S.; Shen, Y.; Zhang, L.; Li, L. L.; Nan, C. W. High cycling stability for solid-state Li metal batteries via regulating solvation effect in poly(vinylidene fluoride)-based electrolytes. Batter Supercaps 2020, 3, 876–883.
Ma, R. H.; Lu, X. L.; Kong, X.; Zheng, S. Y.; Zhang, S. Z.; Liu, S. H. A method of controllable positive-charged modification of PVDF-CTFE membrane surface based on C-Cl active site. J. Membr. Sci. 2021, 620, 118936.
Zhang, S. Z.; Liang, T. B.; Wang, D. H.; Xu, Y. J.; Cui, Y. L.; Li, J. R.; Wang, X. L.; Xia, X. H.; Gu, C. D.; Tu, J. P. A stretchable and safe polymer electrolyte with a protecting-layer strategy for solid-state lithium metal batteries. Adv. Sci. 2021, 8, 2003241.
Xu, B. Y.; Li, X. Y.; Yang, C.; Li, Y. T.; Grundish, N. S.; Chien, P. H.; Dong, K.; Manke, I.; Fang, R. Y.; Wu, N. et al. Interfacial chemistry enables stable cycling of all-solid-state Li metal batteries at high current densities. J. Am. Chem. Soc. 2021, 143, 6542–6550.
Xue, C. J.; Guan, S. D.; Hu, B. K.; Wang, X. Z.; Xin, C. Z.; Liu, S. J.; Yu, J. Y.; Wen, K. H.; Li, L. L.; Nan, C. W. Significantly improved interface between PVDF-based polymer electrolyte and lithium metal via thermal-electrochemical treatment. Energy Storage Mater. 2022, 46, 452–460.