Journal Home > Volume 16 , Issue 4

Surficial redox reactions play an essential role in photocatalytic water splitting, and are closely related to the surface properties of a specific photocatalyst. In this work, using monoclinic BiVO4 decahedral single crystals as a model photocatalyst, we report on the interrelationship between the photocatalytic activity and the surficial reaction sites for charge-carrier consumption. By controlled hydrothermal synthesis, the ratio of {010} to {110} facets on BiVO4, which respectively serve as reductive and oxidative sites, is carefully tailored. Our results show that superior photocatalytic water oxidation could be obtained on BiVO4 decahedrons with a medium ratio of reductive/oxidative sites and that efficient overall water splitting could be achieved via further modification of appropriate cocatalysts in Z-scheme system. The excellent photocatalytic performance is attributed to the accelerated selective redox reactions by realizing balanced charge-carrier consumption, which provides insightful guidance for prospering photocatalytic reactions in energy conversion.


menu
Abstract
Full text
Outline
Electronic supplementary material
About this article

Photocatalytic water splitting on BiVO4: Balanced charge-carrier consumption and selective redox reaction

Show Author's information Xiangjiu Guan1,2Li Tian1Yazhou Zhang1,3Jinwen Shi1Shaohua Shen1( )
International Research Center for Renewable Energy, State Key Laboratory of Multiphase Flow in Power Engineering, Xi’an Jiaotong University, Xi’an 710049, China
Suzhou Academy of Xi’an Jiaotong University, Suzhou 215123, China
State Key Laboratory for Physical Chemistry of Solid Surfaces, College of Chemistry and Chemical Engineering, Xiamen University, Xiamen 361005, China

Abstract

Surficial redox reactions play an essential role in photocatalytic water splitting, and are closely related to the surface properties of a specific photocatalyst. In this work, using monoclinic BiVO4 decahedral single crystals as a model photocatalyst, we report on the interrelationship between the photocatalytic activity and the surficial reaction sites for charge-carrier consumption. By controlled hydrothermal synthesis, the ratio of {010} to {110} facets on BiVO4, which respectively serve as reductive and oxidative sites, is carefully tailored. Our results show that superior photocatalytic water oxidation could be obtained on BiVO4 decahedrons with a medium ratio of reductive/oxidative sites and that efficient overall water splitting could be achieved via further modification of appropriate cocatalysts in Z-scheme system. The excellent photocatalytic performance is attributed to the accelerated selective redox reactions by realizing balanced charge-carrier consumption, which provides insightful guidance for prospering photocatalytic reactions in energy conversion.

Keywords: water splitting, photocatalytic, BiVO4, reactive site

References(55)

[1]

Tachibana, Y.; Vayssieres, L.; Durrant, J. R. Artificial photosynthesis for solar water-splitting. Nat. Photonics 2012, 6, 511–518.

[2]

Wang, Q.; Domen, K. Particulate photocatalysts for light-driven water splitting: Mechanisms, challenges, and design strategies. Chem. Rev. 2020, 120, 919–985.

[3]

Song, H.; Luo, S. Q.; Huang, H. M.; Deng, B. W.; Ye, J. H. Solar-driven hydrogen production: Recent advances, challenges, and future perspectives. ACS Energy Lett. 2022, 7, 1043–1065.

[4]

Zhang, J. N.; Hu, W. P.; Cao, S.; Piao, L. Y. Recent progress for hydrogen production by photocatalytic natural or simulated seawater splitting. Nano Res. 2020, 13, 2313–2322.

[5]

Su, J. Z.; Vayssieres, L. A place in the sun for artificial photosynthesis? ACS Energy Lett. 2016, 1, 121–135.

[6]

Chen, X. B.; Shen, S. H.; Guo, L. J.; Mao, S. S. Semiconductor-based photocatalytic hydrogen generation. Chem. Rev. 2010, 110, 6503–6570.

[7]

Zhao, D. M.; Wang, Y. Q.; Dong, C. L.; Huang, Y. C.; Chen, J.; Xue, F.; Shen, S. H.; Guo, L. J. Boron-doped nitrogen-deficient carbon nitride-based Z-scheme heterostructures for photocatalytic overall water splitting. Nat. Energy 2021, 6, 388–397.

[8]

Qi, Y.; Zhang, J. W.; Kong, Y.; Zhao, Y.; Chen, S. S.; Li, D.; Liu, W.; Chen, Y. F.; Xie, T. F.; Cui, J. Y. et al. Unraveling of cocatalysts photodeposited selectively on facets of BiVO4 to boost solar water splitting. Nat. Commun. 2022, 13, 484.

[9]

Wang, Z.; Inoue, Y.; Hisatomi, T.; Ishikawa, R.; Wang, Q.; Takata, T.; Chen, S. S.; Shibata, N.; Ikuhara, Y.; Domen, K. Overall water splitting by Ta3N5 nanorod single crystals grown on the edges of KTaO3 particles. Nat. Catal. 2018, 1, 756–763.

[10]

Wang, Q.; Hisatomi, T.; Jia, Q. X.; Tokudome, H.; Zhong, M.; Wang, C. Z.; Pan, Z. H.; Takata, T.; Nakabayashi, M.; Shibata, N. et al. Scalable water splitting on particulate photocatalyst sheets with a solar-to-hydrogen energy conversion efficiency exceeding 1%. Nat. Mater. 2016, 15, 611–615.

[11]

Guan, X. J.; Chowdhury, F. A.; Wang, Y. J.; Pant, N.; Vanka, S.; Trudeau, M. L.; Guo, L. J.; Vayssieres, L.; Mi, Z. T. Making of an industry-friendly artificial photosynthesis device. ACS Energy Lett. 2018, 3, 2230–2231.

[12]

Liu, J.; Liu, Y.; Liu, N. Y.; Han, Y. Z.; Zhang, X.; Huang, H.; Lifshitz, Y.; Lee, S. T.; Zhong, J.; Kang, Z. H. Metal-free efficient photocatalyst for stable visible water splitting via a two-electron pathway. Science 2015, 347, 970–974.

[13]

Takata, T.; Jiang, J. Z.; Sakata, Y.; Nakabayashi, M.; Shibata, N.; Nandal, V.; Seki, K.; Hisatomi, T.; Domen, K. Photocatalytic water splitting with a quantum efficiency of almost unity. Nature 2020, 581, 411–414.

[14]

Guan, X. J.; Chowdhury, F. A.; Pant, N.; Guo, L. J.; Vayssieres, L.; Mi, Z. T. Efficient unassisted overall photocatalytic seawater splitting on GaN-based nanowire arrays. J. Phys. Chem. C 2018, 122, 13797–13802.

[15]

Guo, L. J.; Chen, Y. B.; Su, J. Z.; Liu, M. C.; Liu, Y. Obstacles of solar-powered photocatalytic water splitting for hydrogen production: A perspective from energy flow and mass flow. Energy 2019, 172, 1079–1086.

[16]

Marschall, R. Semiconductor composites: Strategies for enhancing charge carrier separation to improve photocatalytic activity. Adv. Funct. Mater. 2014, 24, 2421–2440.

[17]

Moniz, S. J. A.; Shevlin, S. A.; Martin, D. J.; Guo, Z. X.; Tang, J. W. Visible-light driven heterojunction photocatalysts for water splitting-a critical review. Energy Environ. Sci. 2015, 8, 731–759.

[18]

Ide, Y.; Inami, N.; Hattori, H.; Saito, K.; Sohmiya, M.; Tsunoji, N.; Komaguchi, K.; Sano, T.; Bando, Y.; Golberg, D. et al. Remarkable charge separation and photocatalytic efficiency enhancement through interconnection of TiO2 nanoparticles by hydrothermal treatment. Angew. Chem., Int. Ed. 2016, 55, 3600–3605.

[19]
Zhao, D. M. ; Guan, X. J. ; Shen, S. H. Design of polymeric carbon nitride-based heterojunctions for photocatalytic water splitting: A review. Environ. Chem. Lett., in press, https://doi.org/10.1007/s10311-022-01429-6.
[20]

Meng, J. Z.; Duan, Y. Y.; Jing, S. J.; Ma, J. P.; Wang, K. W.; Zhou, K.; Ban, C. G.; Wang, Y.; Hu, B. H.; Yu, D. M. et al. Facet junction of BiOBr nanosheets boosting spatial charge separation for CO2 photoreduction. Nano Energy 2022, 92, 106671.

[21]

Deng, Y. T.; Zhou, H. P.; Zhao, Y.; Yang, B.; Shi, M.; Tao, X. P.; Yang, S. Q.; Li, R. G.; Li, C. Spatial separation of photogenerated charges on well-defined bismuth vanadate square nanocrystals. Small 2022, 18, 2103245.

[22]

Yang, H. G.; Sun, C. H.; Qiao, S. Z.; Zou, J.; Liu, G.; Smith, S. C.; Cheng, H. M.; Lu, G. Q. Anatase TiO2 single crystals with a large percentage of reactive facets. Nature 2008, 453, 638–641.

[23]

Han, X. G.; Kuang, Q.; Jin, M. S.; Xie, Z. X.; Zheng, L. S. Synthesis of titania nanosheets with a high percentage of exposed (001) facets and related photocatalytic properties. J. Am. Chem. Soc. 2009, 131, 3152–3153.

[24]

Bi, Y. P.; Ouyang, S. X.; Umezawa, N.; Cao, J. Y.; Ye, J. H. Facet effect of single-crystalline Ag3PO4 sub-microcrystals on photocatalytic properties. J. Am. Chem. Soc. 2011, 133, 6490–6492.

[25]

Li, R. G.; Zhang, F. X.; Wang, D. E.; Yang, J. X.; Li, M. R.; Zhu, J.; Zhou, X.; Han, H. X.; Li, C. Spatial separation of photogenerated electrons and holes among {010} and {110} crystal facets of BiVO4. Nat. Commun. 2013, 4, 1432.

[26]

Liu, G.; Yu, J. C.; Lu, G. Q.; Cheng, H. M. Crystal facet engineering of semiconductor photocatalysts: Motivations, advances and unique properties. Chem. Commun. 2011, 47, 6763–6783.

[27]

Zhong, Y. Q.; Wang, R.; Chen, J. H.; Duan, C.; Huang, Z. Y.; Yu, S.; Guo, H.; Zhou, Y. Surface-terminated hydroxyl groups for deciphering the facet-dependent photocatalysis of anatase TiO2. ACS Appl. Mater. Interfaces 2022, 14, 17601–17609.

[28]

Wang, B.; Shen, S. H.; Guo, L. J. SrTiO3 single crystals enclosed with high-indexed {023} facets and {001} facets for photocatalytic hydrogen and oxygen evolution. Appl. Catal. B 2015, 166–167, 320–326.

[29]

Xi, G. C.; Ye, J. H. Synthesis of bismuth vanadate nanoplates with exposed {001} facets and enhanced visible-light photocatalytic properties. Chem. Commun. 2010, 46, 1893–1895.

[30]

Wang, D. G.; Jiang, H. F.; Zong, X.; Xu, Q.; Ma, Y.; Li, G. L.; Li, C. Crystal facet dependence of water oxidation on BiVO4 sheets under visible light irradiation. Chem.—Eur. J. 2011, 17, 1275–1282.

[31]

Cheng, C.; Mao, L. H.; Shi, J. W.; Xue, F.; Zong, S. C.; Zheng, B. T.; Guo, L. J. NiCo2O4 nanosheets as a novel oxygen-evolution-reaction cocatalyst in situ bonded on the g-C3N4 photocatalyst for excellent overall water splitting. J. Mater. Chem. A 2021, 9, 12299–12306.

[32]

Zhang, X. W.; Li, Z.; Ta, N.; Han, H. X. Unique properties of RhCrOx cocatalyst regulating reactive oxygen species formation in photocatalytic overall water splitting. ACS Sustainable Chem. Eng. 2022, 10, 4059–4064.

[33]

Maeda, K.; Teramura, K.; Lu, D. L.; Saito, N.; Inoue, Y.; Domen, K. Domen K. Roles of Rh/Cr2O3 (core/shell) nanoparticles photodeposited on visible-light-responsive (Ga1−xZnx)(N1−xOx) solid solutions in photocatalytic overall water splitting. J. Phys. Chem. C 2007, 111, 7554–7560.

[34]

Suzuki, H.; Nitta, S.; Tomita, O.; Higashi, M.; Abe, R. Highly dispersed RuO2 hydrates prepared via simple adsorption as efficient cocatalysts for visible-light-driven Z-scheme water splitting with an IO3/I redox mediator. ACS Catal. 2017, 7, 4336–4343.

[35]

Suzuki, H.; Tomita, O.; Higashi, M.; Abe, R. Two-step photocatalytic water splitting into H2 and O2 using layered metal oxide KCa2Nb3O10 and its derivatives as O2-evolving photocatalysts with IO3/I or Fe3+/Fe2+ redox mediator. Catal. Sci. Technol. 2015, 5, 2640–2648.

[36]

Qi, Y.; Chen, S. S.; Cui, J. Y.; Wang, Z. L.; Zhang, F. X.; Li, C. Inhibiting competing reactions of iodate/iodide redox mediators by surface modification of photocatalysts to enable Z-scheme overall water splitting. Appl. Catal. B 2018, 224, 579–585.

[37]

Kato, H.; Sasaki, Y.; Shirakura, N.; Kudo, A. Synthesis of highly active rhodium-doped SrTiO3 powders in Z-scheme systems for visible-light-driven photocatalytic overall water splitting. J. Mater. Chem. A 2013, 1, 12327–12333.

[38]

Li, N. X.; Liu, M. C.; Zhou, Z. H.; Zhou, J. C.; Sun, Y. M.; Guo, L. J. Charge separation in facet-engineered chalcogenide photocatalyst: A selective photocorrosion approach. Nanoscale 2014, 6, 9695–9702.

[39]

Zong, S. C.; Tian, L.; Guan, X. J.; Cheng, C.; Shi, J. W.; Guo, L. J. Photocatalytic overall water splitting without noble-metal: Decorating CoP on Al-doped SrTiO3. J. Colloid Interface Sci. 2022, 606, 491–499.

[40]

Pan, Z. M.; Zheng, Y.; Guo, F. S.; Niu, P. P.; Wang, X. C. Decorating CoP and Pt nanoparticles on graphitic carbon nitride nanosheets to promote overall water splitting by conjugated polymers. ChemSusChem 2017, 10, 87–90.

[41]

Lu, C.; Zhang, C.; Wang, P.; Zhao, Y.; Yang, Y.; Wang, Y. J.; Yuan, H. F.; Qu, S. L.; Zhang, X. B.; Song, G. S. Light-free generation of singlet oxygen through manganese-thiophene nanosystems for pH-responsive chemiluminescence imaging and tumor therapy. Chem 2020, 6, 2314–2334.

[42]

Hu, J. Q.; He, H. C.; Li, L.; Zhou, X.; Li, Z. S.; Shen, Q.; Wu, C. P.; Asiri, A. M.; Zhou, Y.; Zou, Z. G. Highly symmetrical, 24-faceted, concave BiVO4 polyhedron bounded by multiple high-index facets for prominent photocatalytic O2 evolution under visible light. Chem. Commun. 2019, 55, 4777–4780.

[43]

Li, P.; Chen, X. Y.; He, H. C.; Zhou, X.; Zhou, Y.; Zou, Z. G. Polyhedral 30-faceted BiVO4 microcrystals predominantly enclosed by high-index planes promoting photocatalytic water-splitting activity. Adv. Mater. 2018, 30, 1703119.

[44]

Tan, H. L.; Wen, X. M.; Amal, R.; Ng, Y. H. BiVO4 {010} and {110} relative exposure extent: Governing factor of surface charge population and photocatalytic activity. J. Phys. Chem. Lett. 2016, 7, 1400–1405.

[45]

Wang, M. L.; Xu, S.; Zhou, Z. H.; Dong, C. L.; Guo, X.; Chen, J. L.; Huang, Y. C.; Shen, S. H.; Chen, Y. B.; Guo, L. J. et al. Atomically dispersed janus nickel sites on red phosphorus for photocatalytic overall water splitting. Angew. Chem., Int. Ed. 2022, 61, e202204711.

[46]
Lin, Z.; Wang, Y. Q.; Peng, Z. M.; Huang, Y. C.; Meng, F. Q.; Chen, J. L.; Dong, C. L.; Zhang, Q. H.; Wang, R. Z.; Zhao, D. M. et al. Single-metal atoms and ultra-small clusters manipulating charge carrier migration in polymeric perylene diimide for efficient photocatalytic oxygen production. Adv. Energy Mater., in press, https://doi.org/10.1002/aenm.202200716.
[47]

Qi, Y.; Zhao, Y.; Gao, Y. Y.; Li, D.; Li, Z.; Zhang, F. X.; Li, C. Redox-based visible-light-driven Z-scheme overall water splitting with apparent quantum efficiency exceeding 10%. Joule 2018, 2, 2393–2402.

[48]

Huang, Y.; Li, K.; Zhou, J. C.; Guan, J.; Zhu, F. F.; Wang, K.; Liu, M. C.; Chen, W. S.; Li, N. X. Nitrogen-stabilized oxygen vacancies in TiO2 for site-selective loading of Pt and CoOx cocatalysts toward enhanced photoreduction of CO2 to CH4. Chem. Eng. J. 2022, 439, 135744.

[49]

Singh, R. B.; Matsuzaki, H.; Suzuki, Y.; Seki, K.; Minegishi, T.; Hisatomi, T.; Domen, K.; Furube, A. Trapped state sensitive kinetics in LaTiO2N solid photocatalyst with and without cocatalyst loading. J. Am. Chem. Soc. 2014, 136, 17324–17331.

[50]

Chen, S.; Shen, S.; Liu, G.; Qi, Y.; Zhang, F.; Li, C. Interface engineering of a CoOx/Ta3N5 photocatalyst for unprecedented water oxidation performance under visible-light-irradiation. Angew. Chem., Int. Ed. 2015, 54, 3047–3051.

[51]

Feng, J. Y.; Luo, W. J.; Fang, T.; Lv, H.; Wang, Z. Q.; Gao, J.; Liu, W. M.; Yu, T.; Li, Z. S.; Zou, Z. G. Highly photo-responsive LaTiO2N photoanodes by improvement of charge carrier transport among film particles. Adv. Funct. Mater. 2014, 24, 3535–3542.

[52]

Abe, R.; Sayama, K.; Sugihara, H. Development of new photocatalytic water splitting into H2 and O2 using two different semiconductor photocatalysts and a shuttle redox mediator IO3/I. J. Phys. Chem. B 2005, 109, 16052–16061.

[53]

Maeda, K.; Higashi, M.; Lu, D. L.; Abe, R.; Domen, K. Efficient nonsacrificial water splitting through two-step photoexcitation by visible light using a modified oxynitride as a hydrogen evolution photocatalyst. J. Am. Chem. Soc. 2010, 132, 5858–5868.

[54]

Duong, H. P.; Mashiyama, T.; Kobayashi, M.; Iwase, A.; Kudo, A.; Asakura, Y.; Yin, S.; Kakihana, M.; Kato, H. Z-scheme water splitting by microspherical Rh-doped SrTiO3 photocatalysts prepared by a spray drying method. Appl. Catal. B 2019, 252, 222–229.

[55]

Niishiro, R.; Tanaka, S.; Kudo, A. Hydrothermal-synthesized SrTiO3 photocatalyst codoped with rhodium and antimony with visible-light response for sacrificial H2 and O2 evolution and application to overall water splitting. Appl. Catal. 2014, 150–151, 187–196.

File
12274_2022_4758_MOESM1_ESM.pdf (3.1 MB)
Publication history
Copyright

Publication history

Received: 15 April 2022
Revised: 09 June 2022
Accepted: 11 July 2022
Published: 15 August 2022
Issue date: April 2023

Copyright

© Tsinghua University Press 2022
Return