Journal Home > Volume 16 , Issue 1

Advances in electrochemical energy storage technologies drive the need for battery safety performance and miniaturization, which calls for the easily processable polymer electrolytes suitable for on-chip microbattery technology. However, the low ionic conductivity of polymer electrolytes and poor-patternable capabilities hinder their application in microdevices. Herein, we modified SU-8, as the matrix material, by poly(ethylene oxide) (PEO) with lithium salts to obtain a patternable lithium-ion polymer electrolyte. Due to the highly amorphous state and more Li-ion transport pathways through blending effect and the increase in number of epoxides, the ionic conductivity of achieved sample is increased by an order of magnitude to 2.9 × 10−4 S·cm−1 in comparison with the SU-8 sample at 50 °C. The modified SU-8 exhibits good thermal stability (> 150 °C), mechanical properties (elastic modulus of 1.52 GPa), as well as an electrochemical window of 4.3 V. Half-cell and microdevice were fabricated and tested to verify the possibility of the micro-sized on-chip battery. All of these results demonstrate a promising strategy for the integration of on-chip batteries with microelectronics.


menu
Abstract
Full text
Outline
Electronic supplementary material
About this article

Fabricating ion-conducting channel in SU-8 matrix for high-performance patternable polymer electrolytes

Show Author's information Tianzhao Li§Xuelei Pan§Zhongzhuo YangFang LiuKesong YuLin Xu( )Liqiang Mai( )
State Key Laboratory of Advanced Technology for Materials Synthesis and Processing, Wuhan University of Technology, Wuhan 430070, China

§ Tianzhao Li and Xuelei Pan contributed equally to this work.

Abstract

Advances in electrochemical energy storage technologies drive the need for battery safety performance and miniaturization, which calls for the easily processable polymer electrolytes suitable for on-chip microbattery technology. However, the low ionic conductivity of polymer electrolytes and poor-patternable capabilities hinder their application in microdevices. Herein, we modified SU-8, as the matrix material, by poly(ethylene oxide) (PEO) with lithium salts to obtain a patternable lithium-ion polymer electrolyte. Due to the highly amorphous state and more Li-ion transport pathways through blending effect and the increase in number of epoxides, the ionic conductivity of achieved sample is increased by an order of magnitude to 2.9 × 10−4 S·cm−1 in comparison with the SU-8 sample at 50 °C. The modified SU-8 exhibits good thermal stability (> 150 °C), mechanical properties (elastic modulus of 1.52 GPa), as well as an electrochemical window of 4.3 V. Half-cell and microdevice were fabricated and tested to verify the possibility of the micro-sized on-chip battery. All of these results demonstrate a promising strategy for the integration of on-chip batteries with microelectronics.

Keywords: lithium-ion battery, polymer electrolytes, patternable electrolytes, on-chip battery

References(44)

[1]

Armand, M.; Tarascon, J. M. Building better batteries. Nature 2008, 451, 652–657.

[2]

Lin, D. C.; Liu, Y. Y.; Cui, Y. Reviving the lithium metal anode for high-energy batteries. Nat. Nanotechnol. 2017, 12, 194–206.

[3]

Yu, K. S.; Pan, X. L.; Zhang, G. B.; Liao, X. B.; Zhou, X. B.; Yan, M. Y.; Xu, L.; Mai, L. Q. Nanowires in energy storage devices: Structures, synthesis, and applications. Adv. Energy Mater. 2018, 8, 1802369.

[4]

Lin, X. D.; Yu, J.; Effat, M. B.; Zhou, G. D.; Robson, M. J.; Kwok, S. C. T.; Li, H. J.; Zhan, S. Y.; Shang, Y. L.; Ciucci, F. Ultrathin and non-flammable dual-salt polymer electrolyte for high-energy-density lithium-metal battery. Adv. Funct. Mater. 2021, 31, 2010261.

[5]

Xu, L.; Tang, S.; Cheng, Y.; Wang, K. Y.; Liang, J. Y.; Liu, C.; Cao, Y. C.; Wei, F.; Mai, L. Q. Interfaces in solid-state lithium batteries. Joule 2018, 2, 1991–2015.

[6]

Fan, L.; Wei, S. Y.; Li, S. Y.; Li, Q.; Lu, Y. Y. Recent progress of the solid-state electrolytes for high-energy metal-based batteries. Adv. Energy Mater. 2018, 8, 1702657.

[7]

Thangadurai, V.; Narayanan, S.; Pinzaru, D. Garnet-type solid-state fast Li ion conductors for Li batteries: Critical review. Chem. Soc. Rev. 2014, 43, 4714–4727.

[8]

Zheng, H. P.; Wu, S. P.; Tian, R.; Xu, Z. M.; Zhu, H.; Duan, H. N.; Liu, H. Z. Intrinsic lithiophilicity of Li-garnet electrolytes enabling high-rate lithium cycling. Adv. Funct. Mater. 2020, 30, 1906189.

[9]

Xia, Y. Y.; Xu, N.; Du, L. L.; Cheng, Y.; Lei, S. L.; Li, S. J.; Liao, X. B.; Shi, W. C.; Xu, L.; Mai, L. Q. Rational design of ion transport paths at the interface of metal-organic framework modified solid electrolyte. ACS Appl. Mater. Interfaces 2020, 12, 22930–22938.

[10]

Dong, D. R.; Zhou, B.; Sun, Y. F.; Zhang, H.; Zhong, G. M.; Dong, Q. Y.; Fu, F.; Qian, H.; Lin, Z. Y.; Lu, D. R. et al. Polymer electrolyte glue: A universal interfacial modification strategy for all-solid-state Li batteries. Nano Lett. 2019, 19, 2343–2349.

[11]

Xia, S. L.; Ni, J. F.; Savilov, S. V.; Li, L. Oxygen-deficient Ta2O5 nanoporous films as self-supported electrodes for lithium microbatteries. Nano Energy 2018, 45, 407–412.

[12]

Pan, X. L.; Hong, X. F.; Xu, L.; Li, Y. X.; Yan, M. Y.; Mai, L. Q. On-chip micro/nano devices for energy conversion and storage. Nano Today 2019, 28, 100764.

[13]

Fan, X. Y.; Liu, X. R.; Hu, W. B.; Zhong, C.; Lu, J. Advances in the development of power supplies for the internet of everything. InfoMat 2019, 1, 130–139.

[14]

Rolison, D. R.; Nazar, L. F. Electrochemical energy storage to power the 21st century. MRS Bull. 2011, 36, 486–493.

[15]

Choi, C.; Robert, K.; Whang, G.; Roussel, P.; Lethien, C.; Dunn, B. Photopatternable hydroxide ion electrolyte for solid-state micro-supercapacitors. Joule 2021, 5, 2466–2478.

[16]

El-Kady, M. F.; Kaner, R. B. Scalable fabrication of high-power graphene micro-supercapacitors for flexible and on-chip energy storage. Nat. Commun. 2013, 4, 1475.

[17]

Wu, Z. S.; Feng, X. L.; Cheng, H. M. Recent advances in graphene-based planar micro-supercapacitors for on-chip energy storage. Natl. Sci. Rev. 2014, 1, 277–292.

[18]

Zhang, F.; Wei, M.; Viswanathan, V. V.; Swart, B.; Shao, Y. Y.; Wu, G.; Zhou, C. 3D printing technologies for electrochemical energy storage. Nano Energy 2017, 40, 418–431.

[19]

Zhu, C.; Liu, T. Y.; Qian, F.; Chen, W.; Chandrasekaran, S.; Yao, B.; Song, Y.; Duoss, E. B.; Kuntz, J. D.; Spadaccini, C. M. et al. 3D printed functional nanomaterials for electrochemical energy storage. Nano Today 2017, 15, 107–120.

[20]

Kim, S. H.; Choi, K. H.; Cho, S. J.; Choi, S.; Park, S.; Lee, S. Y. Printable solid-state lithium-ion batteries: A new route toward shape-conformable power sources with aesthetic versatility for flexible electronics. Nano Lett. 2015, 15, 5168–5177.

[21]

Mai, L. Q.; Dong, Y. J.; Xu, L.; Han, C. H. Single nanowire electrochemical devices. Nano Lett. 2010, 10, 4273–4278.

[22]

Mai, L. Q.; Tian, X. C.; Xu, X.; Chang, L.; Xu, L. Nanowire electrodes for electrochemical energy storage devices. Chem. Rev. 2014, 114, 11828–11862.

[23]
Xu, X.; Yan, M. Y.; Tian, X. C.; Yang, C. C.; Shi, M. Z.; Wei, Q. L.; Xu, L.; Mai, L. Q. In situ investigation of Li and Na ion transport with single nanowire electrochemical devices. Nano Lett. 2015, 15, 3879–3884.
[24]

Zhang, P. P.; Zhu, F.; Wang, F. X.; Wang, J. H.; Dong, R. H.; Zhuang, X. D.; Schmidt, O. G.; Feng, X. L. Stimulus-responsive micro-supercapacitors with ultrahigh energy density and reversible electrochromic window. Adv. Mater. 2017, 29, 1604491.

[25]

Choi, C. S.; Lau, J.; Hur, J.; Smith, L.; Wang, C. L.; Dunn, B. Synthesis and properties of a photopatternable lithium-ion conducting solid electrolyte. Adv. Mater. 2018, 30, 1703772.

[26]

Xue, Z. G.; He, D.; Xie, X. L. Poly (ethylene oxide)-based electrolytes for lithium-ion batteries. J. Mater. Chem. A 2015, 3, 19218–19253.

[27]

Zhang, Y. H.; Lu, W.; Cong, L. N.; Liu, J.; Sun, L. Q.; Mauger, A.; Julien, C. M.; Xie, H. M.; Liu, J. Cross-linking network based on poly (ethylene oxide): Solid polymer electrolyte for room temperature lithium battery. J. Power Sources 2019, 420, 63–72.

[28]

Das, D.; Chandrasekaran, A.; Venkatram, S.; Ramprasad, R. Effect of crystallinity on Li adsorption in polyethylene oxide. Chem. Mater. 2018, 30, 8804–8810.

[29]

Wong, D. H. C.; Vitale, A.; Devaux, D.; Taylor, A.; Pandya, A. A.; Hallinan, D. T.; Thelen, J. L.; Mecham, S. J.; Lux, S. F.; Lapides, A. M. et al. Phase behavior and electrochemical characterization of blends of perfluoropolyether, poly (ethylene glycol), and a lithium salt. Chem. Mater. 2015, 27, 597–603.

[30]

Rajendran, S.; Mahendran, O.; Kannan, R. Characterisation of [(1−x) PMMA–xPVDF] polymer blend electrolyte with Li+ ion. Fuel 2002, 81, 1077–1081.

[31]

Reddy, M. J.; Chu, P. P.; Kumar, J. S.; Rao, U. V. S. Inhibited crystallization and its effect on conductivity in a nano-sized fe oxide composite peo solid electrolyte. J. Power Sources 2006, 161, 535–540.

[32]

Yang, X. F.; Jiang, M.; Gao, X. J.; Bao, D. N.; Sun, Q.; Holmes, N.; Duan, H.; Mukherjee, S.; Adair, K.; Zhao, C. T. et al. Determining the limiting factor of the electrochemical stability window for PEO-based solid polymer electrolytes: Main chain or terminal-OH group? Energy Environ. Sci. 2020, 13, 1318–1325.

[33]

Appetecchi, G. B.; Hassoun, J.; Scrosati, B.; Croce, F.; Cassel, F.; Salomon, M. Hot-pressed, solvent-free, nanocomposite, PEO-based electrolyte membranes: II. All solid-state Li/LiFePO4 polymer batteries. J. Power Sources 2003, 124, 246–253.

[34]

Yu, S.; Schmidt, R. D.; Garcia-Mendez, R.; Herbert, E.; Dudney, N. J.; Wolfenstine, J. B.; Sakamoto, J.; Siegel, D. J. Elastic properties of the solid electrolyte Li7La3Zr2O12 (LLZO). Chem. Mater. 2016, 28, 197–206.

[35]

Zhang, J. J.; Zhao, J. H.; Yue, L. P.; Wang, Q. F.; Chai, J. C.; Liu, Z. H.; Zhou, X. H.; Li, H.; Guo, Y. G.; Cui, G. L. et al. Safety-reinforced poly (propylene carbonate)-based all-solid-state polymer electrolyte for ambient-temperature solid polymer lithium batteries. Adv. Energy Mater. 2015, 5, 1501082.

[36]

Fu, C. Y.; Venturi, V.; Kim, J.; Ahmad, Z.; Ells, A. W.; Viswanathan, V.; Helms, B. A. Universal chemomechanical design rules for solid-ion conductors to prevent dendrite formation in lithium metal batteries. Nat. Mater. 2020, 19, 758–766.

[37]

Lin, D. C.; Yuen, P. Y.; Liu, Y. Y.; Liu, W.; Liu, N.; Dauskardt, R. H.; Cui, Y. A silica-aerogel-reinforced composite polymer electrolyte with high ionic conductivity and high modulus. Adv. Mater. 2018, 30, 1802661.

[38]

Liang, W. F.; Shao, Y. F.; Chen, Y. M.; Zhu, Y. A 4 V cathode compatible, superionic conductive solid polymer electrolyte for solid lithium metal batteries with long cycle life. ACS Appl. Energy Mater. 2018, 1, 6064–6071.

[39]

Wang, C.; Wang, T.; Wang, L. L.; Hu, Z. L.; Cui, Z. L.; Li, J. D.; Dong, S. M.; Zhou, X. H.; Cui, G. L. Differentiated lithium salt design for multilayered PEO electrolyte enables a high-voltage solid-state lithium metal battery. Adv. Sci. 2019, 6, 1901036.

[40]

Liu, Y. L.; Zhao, Y.; Lu, W.; Sun, L. Q.; Lin, L.; Zheng, M.; Sun, X. L.; Xie, H. M. PEO based polymer in plastic crystal electrolytes for room temperature high-voltage lithium metal batteries. Nano Energy 2021, 88, 106205.

[41]

Pollak, E.; Salitra, G.; Baranchugov, V.; Aurbach, D. In situ conductivity, impedance spectroscopy, and ex situ Raman spectra of amorphous silicon during the insertion/extraction of lithium. J. Phys. Chem. C 2007, 111, 11437–11444.

[42]

Ma, T. Y.; Xu, H. Y.; Yu, X. N.; Li, H. Y.; Zhang, W. G.; Cheng, X. L.; Zhu, W. T.; Qiu, X. P. Lithiation behavior of coaxial hollow nanocables of carbon-silicon composite. ACS Nano 2019, 13, 2274–2280.

[43]

Son, Y.; Sung, J.; Son, Y.; Cho, J. Recent progress of analysis techniques for silicon-based anode of lithium-ion batteries. Curr. Opin. Electrochem. 2017, 6, 77–83.

[44]

Li, J. Y.; Li, G.; Zhang, J.; Yin, Y. X.; Yue, F. S.; Xu, Q.; Guo, Y. G. Rational design of robust Si/C microspheres for high-tap-density anode materials. ACS Appl. Mater. Interfaces 2019, 11, 4057–4064.

File
12274_2022_4751_MOESM1_ESM.pdf (1.9 MB)
Publication history
Copyright
Acknowledgements

Publication history

Received: 16 April 2022
Revised: 29 June 2022
Accepted: 08 July 2022
Published: 02 September 2022
Issue date: January 2023

Copyright

© Tsinghua University Press 2022

Acknowledgements

Acknowledgements

This work was supported by the National Key Research and Development Program of China (No. 2020YFA0715000), the National Natural Science Foundation of China (Nos. 51802239, 51832004), Foshan Xianhu Laboratory of the Advanced Energy Science and Technology Guangdong Laboratory (Nos. XHT2020-005, XHT2020-003), and the Innovation and Entrepreneurship Training Program of School of Materials Science and Engineering, Wuhan University of Technology (No. CY202031).

Return