Journal Home > Volume 16 , Issue 1

The proposed work aims to develop a sensitive surface-enhanced Raman spectroscopy (SERS) nano-biosensor. The inverted nano pyramid array on silicon substrate fabricated using electron beam lithography (EBL) was utilised as a master template and the mold was later replicated via nanoimprinting process to prepare gold-coated polymer nanopyramid three-dimensional (3D) SERS substrate. The fast and versatile replication process using nanoimprinting lithography (NIL) can produce polymer nanopyramids in a low-cost and reproducible fashion. Also, the proposed fabrication protocol can be easily upscale for large scale fabrication. The intense electric field confinement at nanotips and four edges of gold-coated polymer nanopyramid enhanced the Raman signal of probe molecules, i.e., Rhodamine 6G with a limit of detection down to 3.277 × 10−9 M was achieved. This work also underlines the efficiency of gold-coated polymer nanopyramid arrays in the spectral detection of hemoglobin proteins at low concentrations. The Raman signal enhancement mechanism was further studied through the electromagnetic simulation using COMSOL Multiphysics. In addition, bending test experiments were performed to understand the effect of flexibility on SERS signal response. The fabricated gold-coated polymer nanopyramids arrays could pave the way for the development of low-cost SERS platforms for the detection of hazardous biological and chemical compounds at ultra-low concentrations in practical applications.


menu
Abstract
Full text
Outline
Electronic supplementary material
About this article

Fabrication of plasmonic nanopyramidal array as flexible SERS substrate for biosensing application

Show Author's information Anindita Das1Udit Pant2Cuong Cao2,3Rakesh S. Moirangthem1( )Hitesh Bhanudas Kamble4
Nanophotonics Lab, Department of Physics, Indian Institute of Technology (Indian School of Mines), Dhanbad-826004, India
Institute for Global Food Security, School of Biological Sciences, Queen’s University of Belfast, 19 Chlorine Gardens, Belfast, BT9 5DL, UK
Material and Advanced Technologies for Healthcare, Queen’s University of Belfast, 18-30 Malone Road, Belfast, BT9 5BN, UK
IITB Nanofabrication Facility, Department of Electrical Engineering, Indian Institute of Technology, Bombay-400076, India

Abstract

The proposed work aims to develop a sensitive surface-enhanced Raman spectroscopy (SERS) nano-biosensor. The inverted nano pyramid array on silicon substrate fabricated using electron beam lithography (EBL) was utilised as a master template and the mold was later replicated via nanoimprinting process to prepare gold-coated polymer nanopyramid three-dimensional (3D) SERS substrate. The fast and versatile replication process using nanoimprinting lithography (NIL) can produce polymer nanopyramids in a low-cost and reproducible fashion. Also, the proposed fabrication protocol can be easily upscale for large scale fabrication. The intense electric field confinement at nanotips and four edges of gold-coated polymer nanopyramid enhanced the Raman signal of probe molecules, i.e., Rhodamine 6G with a limit of detection down to 3.277 × 10−9 M was achieved. This work also underlines the efficiency of gold-coated polymer nanopyramid arrays in the spectral detection of hemoglobin proteins at low concentrations. The Raman signal enhancement mechanism was further studied through the electromagnetic simulation using COMSOL Multiphysics. In addition, bending test experiments were performed to understand the effect of flexibility on SERS signal response. The fabricated gold-coated polymer nanopyramids arrays could pave the way for the development of low-cost SERS platforms for the detection of hazardous biological and chemical compounds at ultra-low concentrations in practical applications.

Keywords: flexible, surface-enhanced Raman spectroscopy (SERS), nanopyramids, hemoglobin protein, nanoimprinting, replica molding

References(50)

[1]

Jose, J.; Kress, S.; Barik, A.; Otto, L. M.; Shaver, J.; Johnson, T. W.; Lapin, Z. J.; Bharadwaj, P.; Novotny, L.; Oh, S. H. Individual template-stripped conductive gold pyramids for tip-enhanced dielectrophoresis. ACS Photonics 2014, 1, 464–470.

[2]

Tabatabaei, M.; Sangar, A.; Kazemi-Zanjani, N.; Torchio, P.; Merlen, A.; Lagugné-Labarthet, F. Optical properties of silver and gold tetrahedral nanopyramid arrays prepared by nanosphere lithography. J. Phys. Chem. C 2013, 117, 14778–14786.

[3]

Zhang, W. H.; Yeo, B. S.; Schmid, T.; Zenobi, R. Single molecule tip-enhanced Raman spectroscopy with silver tips. J. Phys. Chem. C 2007, 111, 1733–1738.

[4]

Umakoshi, T.; Saito, Y.; Verma, P. Highly efficient plasmonic tip design for plasmon nanofocusing in near-field optical microscopy. Nanoscale 2016, 8, 5634–5640.

[5]

Sharma, A.; Khan, R.; Catanante, G.; Sherazi, T. A.; Bhand, S.; Hayat, A.; Marty, J. L. Designed strategies for fluorescence-based biosensors for the detection of mycotoxins. Toxins 2018, 10, 197.

[6]
Çimen, D.; Topçu, A. A.; Özbek, M. A.; Bereli, N.; Denizli, A. Molecular imprinted sensors for ion-sensing. In Molecular Imprinting for Nanosensors and Other Sensing Applications. Denizli, A., Ed.; Elsevier: Amsterdam, 2021; pp 69–92.
[7]

Tipping, W. J.; Lee, M.; Serrels, A.; Brunton, V. G.; Hulme, A. N. Stimulated Raman scattering microscopy: An emerging tool for drug discovery. Chem. Soc. Rev. 2016, 45, 2075–2089.

[8]

Das, G. M.; Managò, S.; Mangini, M.; De Luca, A. C. Biosensing using SERS active gold nanostructures. Nanomaterials 2021, 11, 2679.

[9]

Liao, P. F.; Wokaun, A. Lightning rod effect in surface enhanced Raman scattering. J. Chem. Phys. 1982, 76, 751–752.

[10]

Phan-Quang, G. C.; Han, X. M.; Koh, C. S. L.; Sim, H. Y. F.; Lay, C. L.; Leong, S. X.; Lee, Y. H.; Pazos-Perez, N.; Alvarez-Puebla, R. A.; Ling, X. Y. Three-dimensional surface-enhanced Raman scattering platforms: Large-scale plasmonic hotspots for new applications in sensing, microreaction, and data storage. Acc. Chem. Res. 2019, 52, 1844–1854.

[11]

Kumar, S.; Johnson, T. W.; Wood, C. K.; Qu, T.; Wittenberg, N. J.; Otto, L. M.; Shaver, J.; Long, N. J.; Victora, R. H.; Edel, J. B. et al. Template-stripped multifunctional wedge and pyramid arrays for magnetic nanofocusing and optical sensing. ACS Appl. Mater. Interfaces 2016, 8, 9319–9326.

[12]

Zhang, C. P.; Yi, P. Y.; Peng, L. F.; Lai, X. M.; Chen, J.; Huang, M. Z.; Ni, J. Continuous fabrication of nanostructure arrays for flexible surface enhanced Raman scattering substrate. Sci. Rep. 2017, 7, 39814.

[13]

Cao, C. O.; Zhang, J.; Wen, X. L.; Dodson, S. L.; Dao, N. T.; Wong, L. M.; Wang, S. J.; Li, S. Z.; Phan, A. T.; Xiong, Q. H. Metamaterials-based label-free nanosensor for conformation and affinity biosensing. ACS Nano 2013, 7, 7583–7591.

[14]

David, C.; Guillot, N.; Shen, H.; Toury, T.; de la Chapelle, M. L. SERS detection of biomolecules using lithographed nanoparticles towards a reproducible SERS biosensor. Nanotechnology 2010, 21, 475501.

[15]

Logan, N.; Lou-Franco, J.; Elliott, C.; Cao, C. O. Catalytic gold nanostars for SERS-based detection of mercury ions (Hg2+) with inverse sensitivity. Environ. Sci. :Nano 2021, 8, 2718–2730.

[16]

Liu, Z.; Yang, Z. B.; Peng, B.; Cao, C. O.; Zhang, C.; You, H. J.; Xiong, Q. H.; Li, Z. Y.; Fang, J. X. Highly sensitive, uniform, and reproducible surface-enhanced Raman spectroscopy from hollow Au-Ag alloy nanourchins. Adv. Mater. 2014, 26, 2431–2439.

[17]

Zhang, J.; Cao, C. O.; Xu, X. L.; Liow, C.; Li, S. Z.; Tan, P. H.; Xiong, Q. H. Tailoring alphabetical metamaterials in optical frequency: Plasmonic coupling, dispersion, and sensing. ACS Nano 2014, 8, 3796–3806.

[18]

Cao, C. O.; Zhang, J.; Li, S. Z.; Xiong, Q. H. Intelligent and ultrasensitive analysis of mercury trace contaminants via plasmonic metamaterial-based surface-enhanced Raman spectroscopy. Small 2014, 10, 3252–3256.

[19]

Wang, Y. D.; Lu, N.; Wang, W. T.; Liu, L. X.; Feng, L.; Zeng, Z. F.; Li, H. B.; Xu, W. Q.; Wu, Z. J.; Hu, W. et al. Highly effective and reproducible surface-enhanced Raman scattering substrates based on Ag pyramidal arrays. Nano Res. 2013, 6, 159–166.

[20]

Lawson, R. A.; Robinson, A. P. G. Overview of materials and processes for lithography. Front. Nanosci. 2016, 11, 1–90.

[21]

Cattoni, A.; Mailly, D.; Dalstein, O.; Faustini, M.; Seniutinas, G.; Rösner, B.; David, C. Sub-10 nm electron and helium ion beam lithography using a recently developed alumina resist. Microelectron. Eng. 2018, 193, 18–22.

[22]

Horák, M.; Bukvišová, K.; Švarc, V.; Jaskowiec, J.; Křápek, V.; Šikola, T. Comparative study of plasmonic antennas fabricated by electron beam and focused ion beam lithography. Sci. Rep. 2018, 8, 9640.

[23]
Cha, C.; Piraino, F.; Khademhosseini, A. Microfabrication technology in tissue engineering. In Tissue Engineering; 2nd ed. Van Blitterswijk, C. A.; De Boer, J., Eds.; Academic Press: Boston, 2014; pp 283–310.
[24]
Krauss, P. R.; Chou, S. Y. Sub-10 nm imprint lithography and applications. In 55th Annual Device Research Conference Digest, Fort Collins, USA, 1997, pp 90–91.
[25]

Geissler, M.; Li, K. B.; Cui, B.; Clime, L.; Veres, T. Plastic substrates for surface-enhanced Raman scattering. J. Phys. Chem. C 2009, 113, 17296–17300.

[26]

Linn, N. C.; Sun, C. H.; Arya, A.; Jiang, P.; Jiang, B. Surface-enhanced Raman scattering on periodic metal nanotips with tunable sharpness. Nanotechnology 2009, 20, 225303.

[27]

Gómez, M.; Kadkhodazadeh, S.; Lazzari, M. Surface enhanced Raman scattering (SERS) in the visible range on scalable aluminum-coated platforms. Chem. Commun. 2018, 54, 10638–10641.

[28]

Nordberg, E. P.; Ten Eyck, G. A.; Stalford, H. L.; Muller, R. P.; Young, R. W.; Eng, K.; Tracy, L. A.; Childs, K. D.; Wendt, J. R.; Grubbs, R. K. et al. Enhancement-mode double-top-gated metal-oxide-semiconductor nanostructures with tunable lateral geometry. Phys. Rev. B 2009, 80, 115331.

[29]

Atkins, C. G.; Buckley, K.; Blades, M. W.; Turner, R. F. B. Raman spectroscopy of blood and blood components. Appl. Spectrosc. 2017, 71, 767–793.

[30]
Malabi, R.; Manoto, S.; Ombinda-Lemboumba, S.; Khanyile, S.; Khamlich, S.; Maaza, M.; Mthunzi-Kufa, P. Growth and characterisation of gold thin film layer using an ebeam evaporation system for surface plasmon resonance applications. In Proceedings of SPIE 10894, Plasmonics in Biology and Medicine XVI, San Francisco, USA, 2019, pp 108941E.
[31]

Asapu, R.; Ciocarlan, R. G.; Claes, N.; Blommaerts, N.; Minjauw, M.; Ahmad, T.; Dendooven, J.; Cool, P.; Bals, S.; Denys, S. et al. Plasmonic near-field localization of silver core–shell nanoparticle assemblies via wet chemistry nanogap engineering. ACS Appl. Mater. Interfaces 2017, 9, 41577–41585.

[32]

Zhai, W. L.; Li, D. W.; Qu, L. L.; Fossey, J. S.; Long, Y. T. Multiple depositions of Ag nanoparticles on chemically modified agarose films for surface-enhanced Raman spectroscopy. Nanoscale 2012, 4, 137–142.

[33]

Kalaivani, G.; Sivanesan, A.; Kannan, A.; Venkata Narayanan, N. S.; Kaminska, A.; Sevvel, R. Plasmon-tuned silver colloids for SERRS analysis of methemoglobin with preserved nativity. Langmuir 2012, 28, 14357–14363.

[34]

Kang, Y. P.; Si, M. Z.; Liu, R. M.; Qiao, S. B. Surface-enhanced Raman scattering (SERS) spectra of hemoglobin on nano silver film prepared by electrolysis method. J. Raman Spectrosc. 2010, 41, 614–617.

[35]
Santos, M. C. D.; Morais, C. L. M.; Lima, K. M. G.; Martin, F. L. Vibrational spectroscopy in protein research toward virus identification: Challenges, new research, and future perspectives. In Vibrational Spectroscopy in Protein Research: From Purified Proteins to Aggregates and Assemblies. Ozaki, Y.; Baranska, M.; Lednev, I. K.; Wood, B. R., Eds.; Academic Press: London, 2020; pp 315–335.
[36]

Qiu, X. J.; Huang, H. C.; Huang, Z. T.; Zhuang, Z. F.; Guo, Z. Y.; Liu, S. H. Effect of red light-emitting diodes irradiation on hemoglobin for potential hypertension treatment based on confocal micro-Raman spectroscopy. Scanning 2017, 2017, 5067867.

[37]

Lindquist, N. C.; Nagpal, P.; Lesuffleur, A.; Norris, D. J.; Oh, S. H. Three-dimensional plasmonic nanofocusing. Nano Lett. 2010, 10, 1369–1373.

[38]

Shiohara, A.; Wang, Y. S.; Liz-Marzán, L. M. Recent approaches toward creation of hot spots for SERS detection. J. Photochem. Photobiol. C:Photochem. Rev. 2014, 21, 2–25.

[39]

Xu, G. J.; Cheng, H. Y.; Jones, R.; Feng, Y. Q.; Gong, K. D.; Li, K. J.; Fang, X. Z.; Tahir, M. A.; Valev, V. K.; Zhang, L. W. Surface-enhanced Raman spectroscopy facilitates the detection of microplastics < 1 μm in the environment. Environ. Sci. Technol. 2020, 54, 15594–15603.

DOI
[40]

Ke, N. H.; Tuan, D. A.; Thong, T. T.; Long, N. H.; Thanh, N. H.; Tuan Hung, L. V. Preparation of SERS substrate with Ag nanoparticles covered on pyramidal Si structure for abamectin detection. Plasmonics 2021, 16, 2125–2137.

[41]

Costa, J. C.; Spina, F.; Lugoda, P.; Garcia-Garcia, L.; Roggen, D.; Münzenrieder, N. Flexible sensors—From materials to applications. Technologies 2019, 7, 35.

[42]

Li, Z. Y.; Huang, X.; Lu, G. Recent developments of flexible and transparent SERS substrates. J. Mater. Chem. C 2020, 8, 3956–3969.

[43]

Shinki; Sarkar, S. Au0.5Ag0.5 alloy nanolayer deposited on pyramidal si arrays as substrates for surface-enhanced Raman spectroscopy. ACS Appl. Nano Mater. 2020, 3, 7088–7095.

[44]

Simo, P. C.; Laible, F.; Horneber, A.; Burkhardt, C. J.; Fleischer, M. Hexagonal arrays of plasmonic gold nanopyramids on flexible substrates for surface-enhanced Raman scattering. Nanotechnology 2022, 33, 095303.

[45]

Zhang, C.; Man, B. Y.; Jiang, S. Z.; Yang, C.; Liu, M.; Chen, C. S.; Xu, S. C.; Qiu, H. W.; Li, Z. SERS detection of low-concentration adenosine by silver nanoparticles on silicon nanoporous pyramid arrays structure. Appl. Surf. Sci. 2015, 347, 668–672.

[46]

Roy, A.; Maiti, A.; Chini, T. K.; Satpati, B. Annealing induced morphology of silver nanoparticles on pyramidal silicon surface and their application to surface-enhanced Raman scattering. ACS Appl. Mater. Interfaces 2017, 9, 34405–34415.

[47]

Kurouski, D.; Postiglione, T.; Deckert-Gaudig, T.; Deckert, V.; Lednev, I. K. Amide I vibrational mode suppression in surface (SERS) and tip (TERS) enhanced Raman spectra of protein specimens. Analyst 2013, 138, 1665–1673.

[48]

Xie, L. P.; Zeng, H.; Zhu, J. X.; Zhang, Z. L.; Sun, H. B.; Xia, W.; Du, Y. N. State of the art in flexible SERS sensors toward label-free and onsite detection: From design to applications. Nano Res. 2022, 15, 4374–4394.

[49]

Liu, H. Q.; He, Y. N.; Cao, K. Z. Flexible surface-enhanced Raman scattering substrates: A review on constructions, applications, and challenges. Adv. Mater. Interfaces 2021, 8, 2100982.

[50]

Le Ru, E. C.; Blackie, E.; Meyer, M.; Etchegoin, P. G. Surface enhanced Raman scattering enhancement factors: A comprehensive study. J. Phys. Chem. C 2007, 111, 13794–13803.

File
12274_2022_4745_MOESM1_ESM.pdf (1.4 MB)
Publication history
Copyright

Publication history

Received: 05 May 2022
Revised: 04 July 2022
Accepted: 05 July 2022
Published: 27 July 2022
Issue date: January 2023

Copyright

© Tsinghua University Press 2022
Return