Journal Home > Volume 16 , Issue 1

Incorporating self-healing and recyclable capabilities into microwave absorbing materials is expected to facilitate the life extension, cost reduction, and performance stability, thereby meeting the practical applications. In this research, a recycling and room-temperature self-healing electromagnetic wave (EMW) absorber is designed, in which linear polyurethane cross-linked by aromatic disulfide bonds is used as healable matrix, and tubular carbon nanofibers (TCNFs) are employed to attenuate microwave. The resultant composites with a TCNFs content of 7 wt.% harvest a minimum reflection loss (RLmin) of −39.0 dB and an effective absorption bandwidth (EAB) of 2.9 GHz at a matching thickness of 4.0 mm. Driven by the reversible dynamic bonds including hydrogen bonds and aromatic disulfide bonds, the high healing efficiency of 88.7% at 25 °C and 93.2% at 60 °C is presented. Impressively, even after three repairing cycles at room temperature, a healable efficiency of 86.4% is acquired, and RLmin can still reach −39.1 dB at the same thickness, together with an EAB of 3.0 GHz. Additionally, the results of solvent recycling experiment manifest that the recycled specimen achieves the almost similar mechanical and microwave dissipation properties as original one. These attractive characteristics make the designed self-healing and recyclable composites promising for next-generation EMW consumption devices.


menu
Abstract
Full text
Outline
Electronic supplementary material
About this article

Multifunctional tubular carbon nanofibers/polyurethane electromagnetic wave absorber with room-temperature self-healing and recyclable performance

Show Author's information Shuai Kang2Shiya Qiao3Yutong Cao4Zuming Hu1,2( )Na Li2( )Junrong Yu1,2Yan Wang2
State Key Laboratory for Modification of Chemical Fibers and Polymer Materials, Donghua University, Shanghai 201620, China
College of Materials Science and Engineering, Donghua University, Shanghai 201620, China
Shanghai Collaborative Innovation Center for High Performance Fiber Composites, Donghua University, Shanghai 201620, China
Sinochem International Corporation, Shanghai 200126, China

Abstract

Incorporating self-healing and recyclable capabilities into microwave absorbing materials is expected to facilitate the life extension, cost reduction, and performance stability, thereby meeting the practical applications. In this research, a recycling and room-temperature self-healing electromagnetic wave (EMW) absorber is designed, in which linear polyurethane cross-linked by aromatic disulfide bonds is used as healable matrix, and tubular carbon nanofibers (TCNFs) are employed to attenuate microwave. The resultant composites with a TCNFs content of 7 wt.% harvest a minimum reflection loss (RLmin) of −39.0 dB and an effective absorption bandwidth (EAB) of 2.9 GHz at a matching thickness of 4.0 mm. Driven by the reversible dynamic bonds including hydrogen bonds and aromatic disulfide bonds, the high healing efficiency of 88.7% at 25 °C and 93.2% at 60 °C is presented. Impressively, even after three repairing cycles at room temperature, a healable efficiency of 86.4% is acquired, and RLmin can still reach −39.1 dB at the same thickness, together with an EAB of 3.0 GHz. Additionally, the results of solvent recycling experiment manifest that the recycled specimen achieves the almost similar mechanical and microwave dissipation properties as original one. These attractive characteristics make the designed self-healing and recyclable composites promising for next-generation EMW consumption devices.

Keywords: microwave absorption, room-temperature, self-healing, tubular carbon nanofibers, recyclability

References(69)

[1]

Wang, J. Q.; Huyan, Y.; Yang, Z. T.; Zhang, A. B.; Zhang, Q. Y.; Zhang, B. L. Tubular carbon nanofibers: Synthesis, characterization and applications in microwave absorption. Carbon 2019, 152, 255–266.

[2]

Shu, R. W.; Li, W. J.; Wu, Y.; Zhang, J. B.; Zhang, G. Y. Nitrogen-doped Co-C/MWCNTs nanocomposites derived from bimetallic metal-organic frameworks for electromagnetic wave absorption in the X-band. Chem. Eng. J. 2019, 362, 513–524.

[3]

He, J.; Liu, S.; Deng, L. W.; Shan, D. Y.; Cao, C.; Luo, H.; Yan, S. Q. Tunable electromagnetic and enhanced microwave absorption properties in CoFe2O4 decorated Ti3C2 MXene composites. Appl. Surf. Sci. 2020, 504, 144210.

[4]

Li, X.; Yu, L. J.; Yu, L. M.; Dong, Y. B.; Gao, Q.; Yang, Q. X.; Yang, W. T.; Zhu, Y. F.; Fu, Y. Q. Chiral polyaniline with superhelical structures for enhancement in microwave absorption. Chem. Eng. J. 2018, 352, 745–755.

[5]

Huang, T.; Wu, Z. C.; Yu, Q.; Tan, D. G.; Li, L. Preparation of hierarchically porous carbon/magnetic particle composites with broad microwave absorption bandwidth. Chem. Eng. J. 2019, 359, 69–78.

[6]

Zhang, M.; Zhang, J. H.; Lin, H.; Wang, T.; Ding, S. Q.; Li, Z. J.; Wang, J. H.; Meng, A. L.; Li, Q. D.; Lin, Y. S. Designable synthesis of reduced graphene oxide modified using CoFe2O4 nanospheres with tunable enhanced microwave absorption performances between the whole X and Ku bands. Compos. Part B-Eng. 2020, 190, 107902.

[7]

Li, Y.; Liu, X. F.; Nie, X. Y.; Yang, W. W.; Wang, Y. D.; Yu, R. H.; Shui, J. L. Multifunctional organic-inorganic hybrid aerogel for self-cleaning, heat-insulating, and highly efficient microwave absorbing material. Adv. Funct. Mater. 2019, 29, 1807624.

[8]

Liu, P. B.; Gao, S.; Chen, C.; Zhou, F. T.; Meng, Z. Y.; Huang, Y.; Wang, Y. Vacancies-engineered and heteroatoms-regulated N-doped porous carbon aerogel for ultrahigh microwave absorption. Carbon 2020, 169, 276–287.

[9]

Zhao, H. B.; Cheng, J. B.; Zhu, J. Y.; Wang, Y. Z. Ultralight CoNi/rGO aerogels toward excellent microwave absorption at ultrathin thickness. J. Mater. Chem. C 2019, 7, 441–448.

[10]

Cai, Z. X.; Su, L.; Wang, H. J.; Niu, M.; Tao, L. T.; Lu, D.; Xu, L.; Li, M. Z.; Gao, H. F. Alternating multilayered Si3N4/SiC aerogels for broadband and high-temperature electromagnetic wave absorption up to 1000 °C. ACS Appl. Mater. Interfaces 2021, 13, 16704–16712.

[11]

Zhang, Z.; Tan, J. W.; Gu, W. H.; Zhao, H. Q.; Zheng, J.; Zhang, B. S.; Ji, G. B. Cellulose-chitosan framework/polyailine hybrid aerogel toward thermal insulation and microwave absorbing application. Chem. Eng. J. 2020, 395, 125190.

[12]

Dai, Y.; Wu, X. Y.; Liu, Z. S.; Zhang, H. B.; Yu, Z. Z. Highly sensitive, robust and anisotropic MXene aerogels for efficient broadband microwave absorption. Compos. Part B-Eng. 2020, 200, 108263.

[13]

Zhou, Y.; Wang, S. J.; Li, D. S.; Jiang, L. Lightweight and recoverable ANF/rGO/PI composite aerogels for broad and high-performance microwave absorption. Compos. Part B-Eng. 2021, 213, 108701.

[14]

Li, X.; Wen, C. Y.; Yang, L. T.; Zhang, R. X.; Li, X. H.; Li, Y. S.; Che, R. C. MXene/FeCo films with distinct and tunable electromagnetic wave absorption by morphology control and magnetic anisotropy. Carbon 2021, 175, 509–518.

[15]

Kim, T.; Lee, J.; Lee, K.; Park, B.; Jung, B. M.; Lee, S. B. Magnetic and dispersible FeCoNi-graphene film produced without heat treatment for electromagnetic wave absorption. Chem. Eng. J. 2019, 361, 1182–1189.

[16]

Wang, Y.; Lu, X. C.; Chen, Y.; Lai, H. R.; Teng, S. Q.; Quan, B. Organic-inorganic hybrid-reinforced flexible and robust 2D papers for high-efficiency microwave-absorbing films. J. Mater. Chem. A 2021, 9, 24503–24509.

[17]

Luo, H.; Chen, F.; Wang, X.; Dai, W. Y.; Xiong, Y.; Yang, J. J.; Gong, R. Z. A novel two-layer honeycomb sandwich structure absorber with high-performance microwave absorption. Compos. Part A-Appl. Sci. Manuf. 2019, 119, 1–7.

[18]

Pang, H. F.; Duan, Y. P.; Dai, X. H.; Huang, L. X.; Yang, X.; Zhang, T.; Liu, X. J. The electromagnetic response of composition-regulated honeycomb structural materials used for broadband microwave absorption. J. Mater. Sci. Technol. 2021, 88, 203–214.

[19]

Choi, W. H.; Choe, H. S.; Nam, Y. W. Multifunctional microwave heating and absorbing honeycomb core using nickel-coated glass fabric. Compos. Part A-Appl. Sci. Manuf. 2020, 138, 106070.

[20]

Wang, P.; Zhang, Y. C.; Chen, H. L.; Zhou, Y. Z.; Jin, F. N.; Fan, H. L. Broadband radar absorption and mechanical behaviors of bendable over-expanded honeycomb panels. Compos. Sci. Technol. 2018, 162, 33–48.

[21]

Li, W. W.; Jin, H.; Zeng, Z. H.; Zhang, L. P.; Zhang, H.; Zhang, Z. Flexible and easy-to-tune broadband electromagnetic wave absorber based on carbon resistive film sandwiched by silicon rubber/multi-walled carbon nanotube composites. Carbon 2017, 121, 544–551.

[22]

Fan, Q. F.; Yang, X. Z.; Lei, H. S.; Liu, Y. Y.; Huang, Y. X.; Chen, M. J. Gradient nanocomposite with metastructure design for broadband radar absorption. Compos. Part A-Appl. Sci. Manuf. 2020, 129, 105698.

[23]

Zhou, D. F.; Yuan, H.; Yu, Z. R.; Guo, W.; Xiong, Y. L.; Luo, G. Q.; Shen, Q. Broadband electromagnetic absorbing performance by constructing alternate gradient structure (AGS) for PMMA-based foams. Compos. Part A-Appl. Sci. Manuf. 2021, 149, 106557.

[24]

Wen, C. Y.; Li, X.; Zhang, R. X.; Xu, C. Y.; You, W. B.; Liu, Z. W.; Zhao, B.; Che, R. C. High-density anisotropy magnetism enhanced microwave absorption performance in Ti3C2Tx MXene@Ni microspheres. ACS Nano 2022, 16, 1150–1159.

[25]

Wang, C. H.; Zong, L. S.; Pan, Y. X.; Li, N.; Liu, Q.; Wang, J. Y.; Jian, X. G. Preparation and characterization of branch-like heteroatoms-doped Ni@C nanofibers for high-performance microwave absorption with thin thickness. Compos. Part B-Eng. 2021, 223, 109114.

[26]

Meng, X.; He, L.; Liu, Y. Q.; Yu, Y. S.; Yang, W. W. Carbon-coated defect-rich MnFe2O4/MnO heterojunction for high-performance microwave absorption. Carbon 2022, 194, 207–219.

[27]

Liu, P. B.; Gao, S.; Zhang, G. Z.; Huang, Y.; You, W. B.; Che, R. C. Hollow engineering to Co@N-doped carbon nanocages via synergistic protecting-etching strategy for ultrahigh microwave absorption. Adv. Funct. Mater. 2021, 31, 2102812.

[28]

Song, G. L.; Yang, K. K.; Gai, L. X.; Li, Y. Y.; An, Q. D.; Xiao, Z. Y.; Zhai, S. R. ZIF-67/CMC-derived 3D N-doped hierarchical porous carbon with in-situ encapsulated bimetallic sulfide and Ni NPs for synergistic microwave absorption. Compos. Part A-Appl. Sci. Manuf. 2021, 149, 106584.

[29]

Liu, Y. M.; Fan, E. C.; Hou, R. H.; Zhang, P.; Zhang, S. J.; Shao, G. S. A simple synthesis of magnetic metal implanted hierarchical porous carbon networks for efficient microwave absorption. J. Mater. Chem. C 2021, 9, 14866–14875.

[30]

Shi, X. F.; Wu, Z. C.; Liu, Z. W.; Lv, J. G.; Zi, Z. F.; Che, R. C. Interface engineering in the hierarchical assembly of carbon-confined Fe3O4 nanospheres for enhanced microwave absorption. J. Mater. Chem. A 2022, 10, 8807–8816.

[31]

Huang, M. Q.; Wang, L.; Liu, Q.; You, W. B.; Che, R. C. Interface compatibility engineering of Multi-shell Fe@C@TiO2@MoS2 heterojunction expanded microwave absorption bandwidth. Chem. Eng. J. 2022, 429, 132191.

[32]

Wang, B. L.; Fu, Y. G.; Li, J.; Liu, T. Yolk-shelled Co@SiO2@Mesoporous carbon microspheres: Construction of multiple heterogeneous interfaces for wide-bandwidth microwave absorption. J. Colloid Interface Sci. 2022, 607, 1540–1550.

[33]

Wu, Y. H.; Peng, K. S.; Man, Z. M.; Zang, R.; Li, P. X.; Liu, S. S.; Wang, S. Y.; Liu, P. Y.; Li, P.; Cui, Y. H. A hierarchically three-dimensional CoNi/N-doped porous carbon nanosheets with high performance of electromagnetic wave absorption. Carbon 2022, 188, 503–512.

[34]

Huan, X. H.; Wang, H. T.; Deng, W. C.; Yan, J. Q.; Xu, K.; Geng, H. B.; Guo, X. D.; Jia, X. L.; Zhou, J. S.; Yang, X. P. Integrating multi-heterointerfaces in a 1D@2D@1D hierarchical structure via autocatalytic pyrolysis for ultra-efficient microwave absorption performance. Small 2022, 18, 2105411.

[35]

Hou, T. Q.; Jia, Z. R.; Dong, Y. H.; Liu, X. H.; Wu, G. L. Layered 3D structure derived from MXene/magnetic carbon nanotubes for ultra-broadband electromagnetic wave absorption. Chem. Eng. J. 2022, 431, 133919.

[36]

Yuan, M.; Zhou, M.; Fu, H. Q. Synergistic microstructure of sandwich-like NiFe2O4@SiO2@MXene nanocomposites for enhancement of microwave absorption in the whole Ku-band. Compos. Part B-Eng. 2021, 224, 109178.

[37]

Li, Y. H.; Guo, W. J.; Li, W. J.; Liu, X.; Zhu, H.; Zhang, J. P.; Liu, X. J.; Wei, L. H.; Sun, A. L. Tuning hard phase towards synergistic improvement of toughness and self-healing ability of poly(urethane urea) by dual chain extenders and coordinative bonds. Chem. Eng. J. 2020, 393, 124583.

[38]

Liu, Y. H.; Zheng, J.; Zhang, X.; Du, Y. Q.; Li, K.; Yu, G. B.; Jia, Y.; Zhang, Y. Mussel-inspired and aromatic disulfide-mediated polyurea-urethane with rapid self-healing performance and water-resistance. J. Colloid Interface Sci. 2021, 593, 105–115.

[39]

Yang, S. W.; Wang, S.; Du, X. S.; Du, Z. L.; Cheng, X.; Wang, H. B. Mechanically robust self-healing and recyclable flame-retarded polyurethane elastomer based on thermoreversible crosslinking network and multiple hydrogen bonds. Chem. Eng. J. 2020, 391, 123544.

[40]

Qu, Q. Q.; He, J.; Da, Y. S.; Zhu, M. H.; Liu, Y. Y.; Li, X. X.; Tian, X. Y.; Wang, H. High Toughness polyurethane toward artificial muscles, tuned by mixing dynamic hard domains. Macromolecules 2021, 54, 8243–8254.

[41]

Chang, K.; Jia, H.; Gu, S. Y. A transparent, highly stretchable, self-healing polyurethane based on disulfide bonds. Eur. Polym. J. 2019, 112, 822–831.

[42]

Wu, H. H.; Liu, X. D.; Sheng, D. K.; Zhou, Y.; Xu, S. B.; Xie, H. P.; Tian, X. X.; Sun, Y. L.; Shi, B. R.; Yang, Y. M. High performance and near body temperature induced self-healing thermoplastic polyurethane based on dynamic disulfide and hydrogen bonds. Polymer 2021, 214, 123261.

[43]

Yang, Y.; Ye, Z. S.; Liu, X. X.; Su, J. H. A healable waterborne polyurethane synergistically cross-linked by hydrogen bonds and covalent bonds for composite conductors. J. Mater. Chem. C 2020, 8, 5280–5292.

[44]

Guo, Y. F.; Yang, L.; Zhang, L. Z.; Chen, S.; Sun, L. J.; Gu, S. J.; You, Z. W. A dynamically hybrid crosslinked elastomer for room-temperature recyclable flexible electronic devices. Adv. Funct. Mater. 2021, 31, 2106281.

[45]

Wang, Y. M.; Pan, M.; Liang, X. Y.; Li, B. J.; Zhang, S. Electromagnetic wave absorption coating material with self-healing properties. Macromol. Rapid Commun. 2017, 38, 1700447.

[46]

Zhou, M.; Yan, Q. M.; Fu, Q.; Fu, H. Q. Self-healable ZnO@ multiwalled carbon nanotubes (MWCNTs)/DA-PDMS nanocomposite via Diels–Alder chemistry as microwave absorber: A novel multifunctional material. Carbon 2020, 169, 235–247.

[47]

Dai, X. Y.; Du, Y. Z.; Yang, J. Y.; Wang, D.; Gu, J. W.; Li, Y. E.; Wang, S.; Xu, B. B.; Kong, J. Recoverable and self-healing electromagnetic wave absorbing nanocomposites. Compos. Sci. Technol. 2019, 174, 27–32.

[48]

Li, X. P.; Yu, R.; He, Y. Y.; Zhang, Y.; Yang, X.; Zhao, X. J.; Huang, W. Self-healing polyurethane elastomers based on a disulfide bond by digital light processing 3D printing. ACS Macro Lett. 2019, 8, 1511–1516.

[49]

Rekondo, A.; Martin, R.; Ruiz de Luzuriaga, A.; Cabañero, G.; Grande, H. J.; Odriozola, I. Catalyst-free room-temperature self-healing elastomers based on aromatic disulfide metathesis. Mater. Horiz. 2014, 1, 237–240.

[50]

Kim, S. M.; Jeon, H.; Shin, S. H.; Park, S. A.; Jegal, J.; Hwang, S. Y.; Oh, D. X.; Park, J. Superior toughness and fast self-healing at room temperature engineered by transparent elastomers. Adv. Mater. 2018, 30, 1705145.

[51]

Cai, Y. B.; Zou, H. W.; Zhou, S. T.; Chen, Y.; Liang, M. Room-temperature self-healing ablative composites via dynamic covalent bonds for high-performance applications. ACS Appl. Polym. Mater. 2020, 2, 3977–3987.

[52]

Yao, W. J.; Tian, Q. Y.; Shi, J. Q.; Luo, C. S.; Wu, W. Printable, down/up-conversion triple-mode fluorescence responsive and colorless self-healing elastomers with superior toughness. Adv. Funct. Mater. 2021, 31, 2100211.

[53]

Li, F. L.; Xu, Z. F.; Hu, H.; Kong, Z. Y.; Chen, C.; Tian, Y.; Zhang, W. W.; Bin Ying, W.; Zhang, R. Y.; Zhu, J. A polyurethane integrating self-healing, anti-aging and controlled degradation for durable and eco-friendly E-skin. Chem. Eng. J. 2021, 410, 128363.

[54]

Ying, W. B.; Yu, Z.; Kim, D. H.; Lee, K. J.; Hu, H.; Liu, Y. W.; Kong, Z. Y.; Wang, K.; Shang, J.; Zhang, R. Y. et al. Waterproof, highly tough, and fast self-healing polyurethane for durable electronic skin. ACS Appl. Mater. Interfaces 2020, 12, 11072–11083.

[55]

Kang, S.; Qiao, S. Y.; Cao, Y. T.; Hu, Z. M.; Yu, J. R.; Wang, Y.; Zhu, J. Hyper-cross-linked polymers-derived porous tubular carbon nanofibers@TiO2 toward a wide-band and lightweight microwave absorbent at a low loading content. ACS Appl. Mater. Interfaces 2020, 12, 46455–46465.

[56]

Kang, S.; Qiao, S. Y.; Cao, Y. T.; Hu, Z. M.; Yu, J. R.; Wang, Y. High-Efficiency microwave attenuation of magnetic carbon nanoparticle-decorated tubular carbon nanofibers composites at an ultralow filling content. Adv. Electron. Mater. 2021, 7, 2100121.

[57]

Wang, J. Q.; Cui, Y. H.; Wu, F.; Shah, T.; Ahmad, M.; Zhang, A. B.; Zhang, Q. Y.; Zhang, B. L. Core–shell structured Fe/Fe3O4@TCNFs@TiO2 magnetic hybrid nanofibers: Preparation and electromagnetic parameters regulation for enhanced microwave absorption. Carbon 2020, 165, 275–285.

[58]

Wu, F.; Liu, P.; Wang, J. Q.; Shah, T.; Ahmad, M.; Zhang, Q. Y.; Zhang, B. L. Fabrication of magnetic tubular fiber with multi-layer heterostructure and its microwave absorbing properties. J. Colloid Interface Sci. 2020, 577, 242–255.

[59]

Wang, J. Q.; Wu, F.; Cui, Y. H.; Chen, J. J.; Zhang, A. B.; Zhang, Q. Y.; Zhang, B. L. Facile synthesis of tubular magnetic carbon nanofibers by hypercrosslinked polymer design for microwave adsorption. J. Am. Ceram. Soc. 2020, 103, 5706–5720.

[60]

Cao, F. H.; Yan, F.; Xu, J.; Zhu, C. L.; Qi, L. H.; Li, C. Y.; Chen, Y. J. Tailing size and impedance matching characteristic of nitrogen-doped carbon nanotubes for electromagnetic wave absorption. Carbon 2021, 174, 79–89.

[61]

Xiang, Z.; Chu, C. Z.; Xie, H.; Xiang, T.; Zhou, S. B. Multifunctional thermoplastic polyurea based on the synergy of dynamic disulfide bonds and hydrogen bond cross-links. ACS Appl. Mater. Interfaces 2021, 13, 1463–1473.

[62]

Jia, Y. J.; Zhang, L. Z.; Qin, M. L.; Li, Y.; Gu, S. J.; Guan, Q. B.; You, Z. W. Highly efficient self-healable and robust fluorinated polyurethane elastomer for wearable electronics. Chem. Eng. J. 2022, 430, 133081.

[63]

Martin, R.; Rekondo, A.; Ruiz de Luzuriaga, A.; Cabañero, G.; Grande, H. J.; Odriozola, I. The processability of a poly(urea-urethane) elastomer reversibly crosslinked with aromatic disulfide bridges. J. Mater. Chem. A 2014, 2, 5710–5715.

[64]

Tu, J.; Xu, H.; Xiang, G. F.; Chen, L.; Li, P. Y.; Guo, X. D. Highly stretchable, high efficiency room temperature self-healing polyurethane adhesive based on hydrogen bonds-applicable to solid rocket propellants. Poly. Chem. 2021, 12, 4532–4545.

[65]

Cheng, J. B.; Yuan, W. J.; Zhang, A. N.; Zhao, H. B.; Wang, Y. Z. Porous CoNi nanoalloy@N-doped carbon nanotube composite clusters with ultra-strong microwave absorption at a low filler loading. J. Mater. Chem. C 2020, 8, 13712–13722.

[66]

He, Z. L.; Byun, J. H.; Zhou, G. H.; Park, B. J.; Kim, T. H.; Lee, S. B.; Yi, J. W.; Um, M. K.; Chou, T. W. Effect of MWCNT content on the mechanical and strain-sensing performance of Thermoplastic Polyurethane composite fibers. Carbon 2019, 146, 701–708.

[67]

He, Z. L.; Zhou, G. H.; Byun, J. H.; Lee, S. K.; Um, M. K.; Park, B.; Kim, T.; Lee, S. B.; Chou, T. W. Highly stretchable multi-walled carbon nanotube/thermoplastic polyurethane composite fibers for ultrasensitive, wearable strain sensors. Nanoscale 2019, 11, 5884–5890.

[68]

Wang, Z.; Liu, Y. T.; Zhang, D. J.; Zhang, K. M.; Gao, C. H.; Wu, Y. M. Tough, stretchable and self-healing C-MXenes/PDMS conductive composites as sensitive strain sensors. Compos. Sci. Technol. 2021, 216, 109042.

[69]

Shi, Z.; Kang, J.; Zhang, L. Water-enabled room-temperature self-healing and recyclable polyurea materials with super-strong strength, toughness, and large stretchability. ACS Appl. Mater. Interfaces 2020, 12, 23484–23493.

File
12274_2022_4743_MOESM1_ESM.pdf (1.9 MB)
Publication history
Copyright
Acknowledgements

Publication history

Received: 13 May 2022
Revised: 10 June 2022
Accepted: 03 July 2022
Published: 05 August 2022
Issue date: January 2023

Copyright

© Tsinghua University Press 2022

Acknowledgements

Acknowledgements

This work was financially supported by the National Key Research and Development Program of China (No. 2021YFB3700101).

Return