Journal Home > Volume 16 , Issue 6

Lithium-sulfur batteries (LSBs) have emerged as a promising high energy density system in miniaturized energy storage devices. However, serious issues rooted in large volume change (80%), poor intrinsic conductivity, “shuttle effect” of S cathode, and limited mass loading of traditional electrode still make it a big challenge to achieve high energy density LSBs in a limited footprint. Herein, an innovative carbon dioxide (CO2) assisted three-dimensional (3D) printing strategy is proposed to fabricate three-dimensional lattice structured CO2 activated single-walled carbon nanotubes/S composite thick electrode (3DP S@CNTs-CO2) for high areal capacity LSBs. The 3D lattice structure formed by interwoven CNTs and printed regular macropores can not only act as fast electron transfer networks, ensuring good electronic conductivity of thick electrode, but is beneficial to electrolyte infiltration, effectively boosting ion diffusion kinetics even under a high-mass loading. In addition, the subsequent high-temperature CO2 in-situ etching can induce abundant nanopores on the wall of CNTs, which significantly promotes the sulfur loading as well as its full utilization as a result of shortened ion diffusion paths. Owing to these merits, the 3DP S@CNTs-CO2 electrode delivers an impressive mass loading of 10 mg·cm−2. More importantly, a desired attribute of linearly scale up in areal capacitance with increased layers is observed, up to an outstanding value of 5.74 mAh·cm−2, outperforming most reported LSBs that adopt strategies that physically inhibit polysulfides. This work provides a thrilling drive that stimulates the application of LSBs in new generation miniaturized electronic devices.


menu
Abstract
Full text
Outline
Electronic supplementary material
About this article

3D printing CO2-activated carbon nanotubes host to promote sulfur loading for high areal capacity lithium-sulfur batteries

Show Author's information Haiyan ChenJingfeng LiuWanqiu CaoHanna HeXiaolong Li( )Chuhong Zhang( )
State Key Laboratory of Polymer Materials Engineering, Polymer Research Institute, Sichuan University, Chengdu 610065, China

Abstract

Lithium-sulfur batteries (LSBs) have emerged as a promising high energy density system in miniaturized energy storage devices. However, serious issues rooted in large volume change (80%), poor intrinsic conductivity, “shuttle effect” of S cathode, and limited mass loading of traditional electrode still make it a big challenge to achieve high energy density LSBs in a limited footprint. Herein, an innovative carbon dioxide (CO2) assisted three-dimensional (3D) printing strategy is proposed to fabricate three-dimensional lattice structured CO2 activated single-walled carbon nanotubes/S composite thick electrode (3DP S@CNTs-CO2) for high areal capacity LSBs. The 3D lattice structure formed by interwoven CNTs and printed regular macropores can not only act as fast electron transfer networks, ensuring good electronic conductivity of thick electrode, but is beneficial to electrolyte infiltration, effectively boosting ion diffusion kinetics even under a high-mass loading. In addition, the subsequent high-temperature CO2 in-situ etching can induce abundant nanopores on the wall of CNTs, which significantly promotes the sulfur loading as well as its full utilization as a result of shortened ion diffusion paths. Owing to these merits, the 3DP S@CNTs-CO2 electrode delivers an impressive mass loading of 10 mg·cm−2. More importantly, a desired attribute of linearly scale up in areal capacitance with increased layers is observed, up to an outstanding value of 5.74 mAh·cm−2, outperforming most reported LSBs that adopt strategies that physically inhibit polysulfides. This work provides a thrilling drive that stimulates the application of LSBs in new generation miniaturized electronic devices.

Keywords: lithium-sulfur battery, three-dimensional (3D) printing, high areal capacity, thick electrode, CO2-activation

References(47)

[1]

Lv, J.; Chen, J.; Lee, P. S. Sustainable wearable energy storage devices self-charged by human-body bioenergy. SusMat 2021, 1, 285–302.

[2]

Dong, S. H.; Liu, H. J.; Hu, Y. Z.; Chong, S. K. Cathode materials for rechargeable lithium-sulfur batteries: Current progress and future prospects. ChemElectroChem 2022, 9, e202101564.

[3]

Li, H. T.; Li, Y. G.; Zhang, L. Designing principles of advanced sulfur cathodes toward practical lithium-sulfur batteries. SusMat 2022, 2, 34–64.

[4]

Manthiram, A.; Fu, Y. Z.; Su, Y. S. Challenges and prospects of lithium-sulfur batteries. Acc. Chem. Res. 2013, 46, 1125–1134.

[5]

Chen, C. L.; Jiang, J. M.; He, W. J.; Lei, W.; Hao, Q. L.; Zhang, X. G. 3D printed high-loading lithium-sulfur battery toward wearable energy storage. Adv. Funct. Mater. 2020, 30, 1909469.

[6]

Cheng, X. B.; Liu, H.; Yuan, H.; Peng, H. J.; Tang, C.; Huang, J. Q.; Zhang, Q. A perspective on sustainable energy materials for lithium batteries. SusMat 2021, 1, 38–50.

[7]

Manthiram, A.; Fu, Y. Z.; Chung, S. H.; Zu, C. X.; Su, Y. S. Rechargeable lithium-sulfur batteries. Chem. Rev. 2014, 114, 11751–11787.

[8]

Bhargav, A.; He, J. R.; Gupta, A.; Manthiram, A. Lithium-sulfur batteries: Attaining the critical metrics. Joule 2020, 4, 285–291.

[9]

Shi, Z. X.; Sun, Z. T.; Cai, J. S.; Fan, Z. D.; Jin, J.; Wang, M. L.; Sun, J. Y. Boosting dual-directional polysulfide electrocatalysis via bimetallic alloying for printable Li-S batteries. Adv. Funct. Mater. 2021, 31, 2006798.

[10]

Wei, C. H.; Tian, M.; Fan, Z. D.; Yu, L. H.; Song, Y. Z.; Yang, X. Z.; Shi, Z. X.; Wang, M. L.; Yang, R. Z.; Sun, J. Y. Concurrent realization of dendrite-free anode and high-loading cathode via 3D printed N-Ti3C2 MXene framework toward advanced Li-S full batteries. Energy Storage Mater. 2021, 41, 141–151.

[11]

Peng, H. J.; Huang, J. Q.; Cheng, X. B.; Zhang, Q. Review on high-loading and high-energy lithium-sulfur batteries. Adv. Energy Mater. 2017, 7, 1700260.

[12]

Su, Y. S.; Manthiram, A. Lithium-sulphur batteries with a microporous carbon paper as a bifunctional interlayer. Nat. Commun. 2012, 3, 1166.

[13]

Zhang, X. Q.; He, B.; Li, W. C.; Lu, A. H. Hollow carbon nanofibers with dynamic adjustable pore sizes and closed ends as hosts for high-rate lithium-sulfur battery cathodes. Nano Res. 2018, 11, 1238–1246.

[14]

Xin, S.; Gu, L.; Zhao, N. H.; Yin, Y. X.; Zhou, L. J.; Guo, Y. G.; Wan, L. J. Smaller sulfur molecules promise better lithium-sulfur batteries. J. Am. Chem. Soc. 2012, 134, 18510–18513.

[15]

Jayaprakash, N.; Shen, J.; Moganty, S. S.; Corona, A.; Archer, L. A. Porous hollow carbon@sulfur composites for high-power lithium-sulfur batteries. Angew. Chem., Int. Ed. 2011, 50, 5904–5908.

[16]

He, B.; Li, W. C.; Chen, Z. Y.; Shi, L.; Zhang, Y.; Xia, J. L.; Lu, A. H. Multilevel structured carbon film as cathode host for Li-S batteries with superhigh-areal-capacity. Nano Res. 2021, 14, 1273–1279.

[17]

Wang, J. C.; Kaskel, S. KOH activation of carbon-based materials for energy storage. J. Mater. Chem. 2012, 22, 23710–23725.

[18]

Wang, H. L.; Yang, Y.; Liang, Y. Y.; Robinson, J. T.; Li, Y. G.; Jackson, A.; Cui, Y.; Dai, H. J. Graphene-wrapped sulfur particles as a rechargeable lithium-sulfur battery cathode material with high capacity and cycling stability. Nano Lett. 2011, 11, 2644–2647.

[19]

Ji, X. L.; Lee, K. T.; Nazar, L. F. A highly ordered nanostructured carbon-sulphur cathode for lithium-sulphur batteries. Nat. Mater. 2009, 8, 500–506.

[20]

Yin, Y. X.; Xin, S.; Guo, Y. G.; Wan, L. J. Lithium-sulfur batteries: Electrochemistry, materials, and prospects. Angew. Chem., Int. Ed. 2013, 52, 13186–13200.

[21]

Wang, L.; Liu, S. K., Hu, J.; Zhang, X. N.; Li, X.; Zhang, G. H.; Li, Y. J.; Zheng, C. M.; Hong, X. B.; Duan, H. G. Tailoring polysulfide trapping and kinetics by engineering hollow carbon bubble nanoreactors for high-energy Li-S pouch cells. Nano Res. 2021, 14, 1355–1363.

[22]

Fujimori, T.; Morelos-Gómez, A.; Zhu, Z.; Muramatsu, H.; Futamura, R.; Urita, K.; Terrones, M.; Hayashi, T.; Endo, M.; Hong, S. Y. et al. Conducting linear chains of sulphur inside carbon nanotubes. Nat. Commun. 2013, 4, 2162.

[23]

Zhou, G. M.; Wang, D. W.; Li, F.; Hou, P. X.; Yin, L. C.; Liu, C.; Lu, G. Q. M.; Gentle, I. R.; Cheng, H. M. A flexible nanostructured sulphur-carbon nanotube cathode with high rate performance for Li-S batteries. Energy Environ. Sci. 2012, 5, 8901–8906.

[24]

Zhang, C. H.; Li, Y. J.; Kang, W. B.; Liu, X. G.; Wang, Q. Current advances and future perspectives of additive manufacturing for functional polymeric materials and devices. SusMat 2021, 1, 127–147.

[25]

Kang, W. B.; Zeng, L.; Ling, S. W.; Zhang, C. H. 3D printed supercapacitors toward trinity excellence in kinetics, energy density, and flexibility. Adv. Energy Mater. 2021, 11, 2100020.

[26]

Xue, L. X.; Zeng, L.; Kang, W. B.; Chen, H. Y.; Hu, Y.; Li, Y. Y.; Chen, W.; Lei, T. Y.; Yan, Y. C.; Yang, C. T. et al. 3D printed Li-S batteries with in situ decorated Li2S/C cathode: Interface engineering induced loading-insensitivity for scaled areal performance. Adv. Energy Mater. 2021, 11, 2100420.

[27]

Chen, Y.; Liu, C.; Li, F.; Cheng, H. M. Pore structures of multi-walled carbon nanotubes activated by air, CO2 and KOH. J. Porous Mater. 2006, 13, 141–146.

[28]

Lee, S. Y.; Park, S. J. Influence of CO2 activation on hydrogen storage behaviors of platinum-loaded activated carbon nanotubes. J. Solid State Chem. 2010, 183, 2951–2956.

[29]

Moon, S.; Jung, Y. H.; Jung, W. K.; Jung, D. S.; Choi, J. W.; Kim, D. K. Batteries: Encapsulated monoclinic sulfur for stable cycling of Li-S rechargeable batteries. Adv. Mater. 2013, 25, 6546.

[30]

Kang, W. M.; Fan, L. L.; Deng, N. P.; Zhao, H. J.; Li, Q. X.; Naebe, M.; Yan, J.; Cheng, B. W. Sulfur-embedded porous carbon nanofiber composites for high stability lithium-sulfur batteries. Chem. Eng. J. 2018, 333, 185–190.

[31]

Su, Y. S.; Fu, Y. Z.; Manthiram, A. Self-weaving sulfur-carbon composite cathodes for high rate lithium-sulfur batteries. Phys. Chem. Chem. Phys. 2012, 14, 14495–14499.

[32]

Guo, J. C.; Xu, Y. H.; Wang, C. S. Sulfur-impregnated disordered carbon nanotubes cathode for lithium-sulfur batteries. Nano Lett. 2011, 11, 4288–4294.

[33]

Shen, K.; Mei, H. L.; Li, B.; Ding, J. W.; Yang, S. B. 3D printing sulfur copolymer-graphene architectures for Li-S batteries. Adv. Energy Mater. 2018, 8, 1701527.

[34]

Milroy, C. A.; Jang, S.; Fujimori, T.; Dodabalapur, A.; Manthiram, A. Inkjet-printed lithium-sulfur microcathodes for all-printed, integrated nanomanufacturing. Small 2017, 13, 1603786.

[35]

Wang, J.; Cheng, S.; Li, W. F.; Zhang, S.; Li, H. F.; Zheng, Z. Z.; Li, F. J.; Shi, L. Y.; Lin, H. Z.; Zhang, Y. G. Simultaneous optimization of surface chemistry and pore morphology of 3D graphene-sulfur cathode via multi-ion modulation. J. Power Sources 2016, 321, 193–200.

[36]

Gao, X. J.; Yang, X. F.; Sun, Q.; Luo, J.; Liang, J. N.; Li, W. H.; Wang, J. W.; Wang, S. Z.; Li, M. S.; Li, R. Y. et al. Converting a thick electrode into vertically aligned “thin electrodes” by 3D-printing for designing thickness independent Li-S cathode. Energy Storage Mater. 2020, 24, 682–688.

[37]

He, H. N.; Huang, D.; Tang, Y. G.; Wang, Q.; Ji, X. B.; Wang, H. Y.; Guo, Z. P. Tuning nitrogen species in three-dimensional porous carbon via phosphorus doping for ultra-fast potassium storage. Nano Energy 2019, 57, 728–736.

[38]

Chung, S. H.; Chang, C. H.; Manthiram, A. Robust, ultra-tough flexible cathodes for high-energy Li-S batteries. Small 2016, 12, 939–950.

[39]

Chung, S. H.; Manthiram, A. Carbonized eggshell membrane as a natural polysulfide reservoir for highly reversible Li-S batteries. Adv. Mater. 2014, 26, 1360–1365.

[40]

Lv, D. P.; Zheng, J. M.; Li, Q. Y.; Xie, X.; Ferrara, S.; Nie, Z. M.; Mehdi, L. B.; Browning, N. D.; Zhang, J. G.; Graff, G. L. et al. High energy density lithium-sulfur batteries: Challenges of thick sulfur cathodes. Adv. Energy Mater. 2015, 5, 1402290.

[41]

Peng, H. J.; Xu, W. T.; Zhu, L.; Wang, D. W.; Huang, J. Q.; Cheng, X. B.; Yuan, Z.; Wei, F.; Zhang, Q. 3D carbonaceous current collectors: The origin of enhanced cycling stability for high-sulfur-loading lithium-sulfur batteries. Adv. Funct. Mater. 2016, 26, 6351–6358.

[42]

Jin, K. K.; Zhou, X. F.; Zhang, L. Z.; Xin, X.; Wang, G. H.; Liu, Z. P. Sulfur/carbon nanotube composite film as a flexible cathode for lithium-sulfur batteries. J. Phys. Chem. C. 2013, 117, 21112–21119.

[43]

Xu, T.; Song, J. X.; Gordin, M. L.; Sohn, H.; Yu, Z. X.; Chen, S. R.; Wang, D. H. Mesoporous carbon-carbon nanotube-sulfur composite microspheres for high-areal-capacity lithium-sulfur battery cathodes. ACS Appl. Mater. Interfaces 2013, 5, 11355–11362.

[44]

Zhou, G. M.; Yin, L. C.; Wang, D. W.; Li, L.; Pei, S. F.; Gentle, I. R.; Li, F.; Cheng, H. M. Fibrous hybrid of graphene and sulfur nanocrystals for high-performance lithium-sulfur batteries. ACS Nano 2013, 7, 5367–5375.

[45]

Lu, S. T.; Chen, Y.; Wu, X. H.; Wang, Z. D.; Li, Y. Three-dimensional sulfur/graphene multifunctional hybrid sponges for lithium-sulfur batteries with large areal mass loading. Sci. Rep. 2014, 4, 4629.

[46]

Thieme, S.; Brückner, J.; Bauer, I.; Oschatz, M.; Borchardt, L.; Althues, H.; Kaskel, S. High capacity micro-mesoporous carbon-sulfur nanocomposite cathodes with enhanced cycling stability prepared by a solvent-free procedure. J. Mater. Chem. A 2013, 1, 9225–9234.

[47]

Ji, X. L.; Evers, S.; Black, R.; Nazar, L. F. Stabilizing lithium-sulphur cathodes using polysulphide reservoirs. Nat. Commun. 2011, 2, 325.

File
4741_ESM.pdf (4.5 MB)
Publication history
Copyright

Publication history

Received: 22 April 2022
Revised: 30 June 2022
Accepted: 03 July 2022
Published: 08 August 2022
Issue date: June 2023

Copyright

© Tsinghua University Press 2022
Return