Journal Home > Volume 16 , Issue 1

Localized surface plasmon resonances (LSPR) generated in a particle-film nanocavity enhance electric fields within a nanoscale volume. LSPR can also decay into hot carriers, highly energetic species that catalyze photocatalytic reactions in molecular analytes located in close proximity to metal surfaces. In this study, we examined the intensity of the electric field (near-field) and photocatalytic properties of plasmonic nanocavities formed by single nanoparticles (SNP) on single nanoplates (SNL). Using 4-nitrobenzenethiol (4-NBT) as a molecular reporter, we determined the near-field responses, as well as measured rates of 4-NBT dimerization into 4,4-dimercaptoazobenzene (DMAB) in the gold (Au) SNP on AuSNL nanocavity (Au-Au), as well as in AuSNP on AgSNL (Au-Ag), AgSNP on AuSNL (Ag-Au), and AgSNP on AgSNL (Ag-Ag) nanocavities using 532, 660, and 785 nm excitations. We observed the strongest near-field signals of 4-NBT at 660 nm in all examined plasmonic systems that is found to be substantially red-shifted relative to the LSPR of the corresponding nanoparticles. We also found that rates of DMAB formation were significantly greater in heterometal nanocavities (Au-Ag and Ag-Au) compared to their monometallic counterparts (Au-Au and Ag-Ag). These results point to drastic differences in plasmonic and photocatalytic properties of mono and bimetallic nanostructures.


menu
Abstract
Full text
Outline
Electronic supplementary material
About this article

Near-field and photocatalytic properties of mono- and bimetallic nanostructures monitored by nanocavity surface-enhanced Raman scattering

Show Author's information Rui Wang1,2,§Zhe He3,4,§Dmitry Kurouski2,4( )
State Key Laboratory of Bioelectronics, School of Biological Science and Medical Engineering, Southeast University, Nanjing 210096, China
Department of Biochemistry and Biophysics, Texas A&M University, College Station, TX 77843, USA
Department of Biomedical Engineering, California Institute of Technology, Pasadena, CA 91125, USA
The Institute for Quantum Science and Engineering, Texas A&M University, College Station, TX 77843, USA

§ Rui Wang and Zhe He contributed equally to this work.

Abstract

Localized surface plasmon resonances (LSPR) generated in a particle-film nanocavity enhance electric fields within a nanoscale volume. LSPR can also decay into hot carriers, highly energetic species that catalyze photocatalytic reactions in molecular analytes located in close proximity to metal surfaces. In this study, we examined the intensity of the electric field (near-field) and photocatalytic properties of plasmonic nanocavities formed by single nanoparticles (SNP) on single nanoplates (SNL). Using 4-nitrobenzenethiol (4-NBT) as a molecular reporter, we determined the near-field responses, as well as measured rates of 4-NBT dimerization into 4,4-dimercaptoazobenzene (DMAB) in the gold (Au) SNP on AuSNL nanocavity (Au-Au), as well as in AuSNP on AgSNL (Au-Ag), AgSNP on AuSNL (Ag-Au), and AgSNP on AgSNL (Ag-Ag) nanocavities using 532, 660, and 785 nm excitations. We observed the strongest near-field signals of 4-NBT at 660 nm in all examined plasmonic systems that is found to be substantially red-shifted relative to the LSPR of the corresponding nanoparticles. We also found that rates of DMAB formation were significantly greater in heterometal nanocavities (Au-Ag and Ag-Au) compared to their monometallic counterparts (Au-Au and Ag-Ag). These results point to drastic differences in plasmonic and photocatalytic properties of mono and bimetallic nanostructures.

Keywords: hot electrons, surface-enhanced Raman spectroscopy (SERS), plasmonic nanocavity, bimetal photocatalysis, plasmon-induced photocatalysis

References(39)

[1]

Harmsen, S.; Rogalla, S.; Huang, R. M.; Spaliviero, M.; Neuschmelting, V.; Hayakawa, Y.; Lee, Y.; Tailor, Y.; Toledo-Crow, R.; Kang, J. W. et al. Detection of premalignant gastrointestinal lesions using surface-enhanced resonance Raman scattering-nanoparticle endoscopy. ACS Nano 2019, 13, 1354–1364.

[2]

Dai, Q. F.; Ouyang, M.; Yuan, W. G.; Li, J. X.; Guo, B. H.; Lan, S.; Liu, S. H.; Zhang, Q. M.; Lu, G.; Tie, S. et al. Encoding random hot spots of a volume gold nanorod assembly for ultralow energy memory. Adv. Mater. 2017, 29, 1701918.

[3]

Ben-Shahar, Y.; Philbin, J. P.; Scotognella, F.; Ganzer, L.; Cerullo, G.; Rabani, E.; Banin, U. Charge carrier dynamics in photocatalytic hybrid semiconductor-metal nanorods: Crossover from auger recombination to charge transfer. Nano Lett. 2018, 18, 5211–5216.

[4]

Li, Z. D.; Kurouski, D. Plasmon-driven chemistry on mono- and bimetallic nanostructures. Acc. Chem. Res. 2021, 54, 2477–2487.

[5]

Ward, D. R.; Hüser, F.; Pauly, F.; Cuevas, J. C.; Natelson, D. Optical rectification and field enhancement in a plasmonic nanogap. Nat. Nanotechnol. 2010, 5, 732–736.

[6]

Cui, X. M.; Qin, F.; Lai, Y. H.; Wang, H.; Shao, L.; Chen, H. J.; Wang, J. F.; Lin, H. Q. Molecular tunnel junction-controlled high-order charge transfer plasmon and Fano resonances. ACS Nano 2018, 12, 12541–12550.

[7]

Zhang, F. L.; Yi, J.; Peng, W.; Radjenovic, P. M.; Zhang, H.; Tian, Z. Q.; Li, J. F. Elucidating molecule–plasmon interactions in nanocavities with 2 nm spatial resolution and at the single-molecule level. Angew. Chem., Int. Ed. 2019, 58, 12133–12137.

[8]

Li, C. Y.; Duan, S.; Yi, J.; Wang, C.; Radjenovic, P. M.; Tian, Z. Q.; Li, J. F. Real-time detection of single-molecule reaction by plasmon-enhanced spectroscopy. Sci. Adv. 2020, 6, eaba6012.

[9]

Li, G. C.; Zhang, Q.; Maier, S. A.; Lei, D. Y. Plasmonic particle-on-film nanocavities: A versatile platform for plasmon-enhanced spectroscopy and photochemistry. Nanophotonics 2018, 7, 1865–1889.

[10]

Lal, S.; Link, S.; Halas, N. J. Nano-optics from sensing to waveguiding. Nat. Photonics 2007, 1, 641–648.

[11]

Mukherjee, S.; Libisch, F.; Large, N.; Neumann, O.; Brown, L. V.; Cheng, J.; Lassiter, J. B.; Carter, E. A.; Nordlander, P.; Halas, N. J. Hot electrons do the impossible: Plasmon-induced dissociation of H2 on Au. Nano Lett. 2013, 13, 240–247.

[12]

Marimuthu, A.; Zhang, J.; Linic, S. Tuning selectivity in propylene epoxidation by plasmon mediated photo-switching of Cu oxidation state. Science 2013, 339, 1590–1593.

[13]

Kazuma, E.; Jung, J.; Ueba, H.; Trenary, M.; Kim, Y. Real-space and real-time observation of a plasmon-induced chemical reaction of a single molecule. Science 2018, 360, 521–526.

[14]

Brongersma, M. L.; Halas, N. J.; Nordlander, P. Plasmon-induced hot carrier science and technology. Nat. Nanotechnol. 2015, 10, 25–34.

[15]

Hartman, T.; Wondergem, C. S.; Kumar, N.; van den Berg, A.; Weckhuysen, B. M. Surface- and tip-enhanced Raman spectroscopy in catalysis. J. Phys. Chem. Lett. 2016, 7, 1570–1584.

[16]

Sun, M. T.; Huang, Y. Z.; Xia, L. X.; Chen, X. W.; Xu, H. X. The pH-controlled plasmon-assisted surface photocatalysis reaction of 4-aminothiophenol to p, p'-dimercaptoazobenzene on Au, Ag, and Cu colloids. J. Phys. Chem. C 2011, 115, 9629–9636.

[17]

Lin, K. Q.; Yi, J.; Hu, S.; Liu, B. J.; Liu, J. Y.; Wang, X.; Ren, B. Size effect on SERS of gold nanorods demonstrated via single nanoparticle spectroscopy. J. Phys. Chem. C 2016, 120, 20806–20813.

[18]

Wilson, A. J.; Jain, P. K. Light-induced voltages in catalysis by plasmonic nanostructures. Acc. Chem. Res. 2020, 53, 1773–1781.

[19]

Dong, B.; Fang, Y. R.; Chen, X. W.; Xu, H. X.; Sun, M. T. Substrate-, wavelength-, and time-dependent plasmon-assisted surface catalysis reaction of 4-nitrobenzenethiol dimerizing to p, p'-dimercaptoazobenzene on Au, Ag, and Cu films. Langmuir 2011, 27, 10677–10682.

[20]

Yu, S.; Wilson, A. J.; Heo, J.; Jain, P. K. Plasmonic control of multi-electron transfer and C–C coupling in visible-light-driven CO2 reduction on Au nanoparticles. Nano Lett. 2018, 18, 2189–2194.

[21]

Schürmann, R.; Ebel, K.; Nicolas, C.; Milosavljević, A. R.; Bald, I. Role of valence band states and plasmonic enhancement in electron-transfer-induced transformation of nitrothiophenol. J. Phys. Chem. Lett. 2019, 10, 3153–3158.

[22]

McFarland, A. D.; Young, M. A.; Dieringer, J. A.; Van Duyne, R. P. Wavelength-scanned surface-enhanced Raman excitation spectroscopy. J. Phys. Chem. B 2005, 109, 11279–11285.

[23]

Kurouski, D.; Large, N.; Chiang, N.; Greeneltch, N.; Carron, K. T.; Seideman, T.; Schatz, G. C.; Van Duyne, R. P. Unraveling near-field and far-field relationships for 3D SERS substrates—A combined experimental and theoretical analysis. Analyst 2016, 141, 1779–1788.

[24]

Doherty, M. D.; Murphy, A.; McPhillips, J.; Pollard, R. J.; Dawson, P. Wavelength dependence of Raman enhancement from gold nanorod arrays: Quantitative experiment and modeling of a hot spot dominated system. J. Phys. Chem. C 2010, 114, 19913–19919.

[25]

Kurouski, D.; Large, N.; Chiang, N.; Henry, A. I.; Seideman, T.; Schatz, G. C.; Van Duyne, R. P. Unraveling the near- and far-field relationship of 2D surface-enhanced Raman spectroscopy substrates using wavelength-scan surface-enhanced Raman excitation spectroscopy. J. Phys. Chem. C 2017, 121, 14737–14744.

[26]

Frens, G. Controlled nucleation for the regulation of the particle size in monodisperse gold suspensions. Nat. Phys. Sci. 1973, 241, 20–22.

[27]

Lee, P. C.; Meisel, D. Adsorption and surface-enhanced Raman of dyes on silver and gold sols. J. Phys. Chem. 1982, 86, 3391–3395.

[28]

Wang, R.; He, Z.; Sokolov, A. V.; Kurouski, D. Gap-mode tip-enhanced Raman scattering on Au nanoplates of varied thickness. J. Phys. Chem. Lett. 2020, 11, 3815–3820.

[29]

Zeng, J.; Xia, X. H.; Rycenga, M.; Henneghan, P.; Li, Q. G.; Xia, Y. N. Successive deposition of silver on silver nanoplates: Lateral versus vertical growth. Angew. Chem., Int. Ed. 2011, 50, 244–249.

[30]

Wustholz, K. L.; Henry, A. I.; McMahon, J. M.; Freeman, R. G.; Valley, N.; Piotti, M. E.; Natan, M. J.; Schatz, G. C.; Van Duyne, R. P. Structure–activity relationships in gold nanoparticle dimers and trimers for surface-enhanced Raman spectroscopy. J. Am. Chem. Soc. 2010, 132, 10903–10910.

[31]

Kleinman, S. L.; Sharma, B.; Blaber, M. G.; Henry, A. I.; Valley, N.; Freeman, R. G.; Natan, M. J.; Schatz, G. C.; Van Duyne, R. P. Structure enhancement factor relationships in single gold nanoantennas by surface-enhanced Raman excitation spectroscopy. J. Am. Chem. Soc. 2013, 135, 301–308.

[32]

Benz, F.; Schmidt, M. K.; Dreismann, A.; Chikkaraddy, R.; Zhang, Y.; Demetriadou, A.; Carnegie, C.; Ohadi, H.; De Nijs, B.; Esteban, R. et al. Single-molecule optomechanics in “picocavities”. Science 2016, 354, 726–729.

[33]

Du, W.; Wang, T.; Chu, H. S.; Wu, L.; Liu, R. R.; Sun, S.; Phua, W. K.; Wang, L. J.; Tomczak, N.; Nijhuis, C. A. On-chip molecular electronic plasmon sources based on self-assembled monolayer tunnel junctions. Nat. Photonics 2016, 10, 274–280.

[34]

Zhang, C.; Li, D. Y.; Zhang, G. D.; Wang, X. J.; Mao, L.; Gan, Q.; Ding, T.; Xu, H. X. Switching plasmonic nanogaps between classical and quantum regimes with supramolecular interactions. Sci. Adv. 2022, 8, eabj9752.

[35]

Büttiker, M.; Imry, Y.; Landauer, R.; Pinhas, S. Generalized many-channel conductance formula with application to small rings. Phys. Rev. B 1985, 31, 6207–6215.

[36]

Evers, F.; Korytár, R.; Tewari, S.; van Ruitenbeek, J. M. Advances and challenges in single-molecule electron transport. Rev. Mod. Phys. 2020, 92, 035001.

[37]

Holm, V. R. A.; Zheng, B. Y.; Denby, P. M.; Holst, B.; Halas, N. J.; Greve, M. M. Work function-driven hot electron extraction in a bimetallic plasmonic MIM device. ACS Photonics 2018, 5, 1202–1207.

[38]

Adak, O.; Korytár, R.; Joe, A. Y.; Evers, F.; Venkataraman, L. Impact of electrode density of states on transport through pyridine-linked single molecule junctions. Nano Lett. 2015, 15, 3716–3722.

[39]

Li, Z. D.; Rigor, J.; Large, N.; El-Khoury, P. Z.; Kurouski, D. Underlying mechanisms of hot carrier-driven reactivity on bimetallic nanostructures. J. Phys. Chem. C 2021, 125, 2492–2501.

File
12274_2022_4736_MOESM1_ESM.pdf (2.5 MB)
Publication history
Copyright
Acknowledgements

Publication history

Received: 09 May 2022
Revised: 28 June 2022
Accepted: 03 July 2022
Published: 05 August 2022
Issue date: January 2023

Copyright

© Tsinghua University Press 2022

Acknowledgements

Acknowledgements

We are grateful to AgriLife Research of Texas A&M for the provided financial support. We also acknowledge Governor’s University Research Initiative (GURI) grant program of Texas A&M University, GURI Grant Agreement No. 12-2016, M1700437. R. W. acknowledges the financial support from the State Key Laboratory of Analytical Chemistry for Life Science, Nanjing University (No. SKLACLS2215).

Return