Graphical Abstract

Covalent modification of graphene oxide (GO) with functional chromophores plays an important role in constructing various kinds of advanced optoelectronic materials for applications in molecular diagnosis, light-harvesting, photodynamic therapy, and optical limiting. Herein, a new approach to functionalizing GO with meso-substituted formylporphyrins at GO’s edge sites via imidazole condensation is developed, which affords a novel GO-imi-Por nanohybrid covalently-linked by imidazole rings between two components. The structure of the GO-imi-Por nanohybrid was thoroughly characterized by scanning electron microscopy (SEM), attenuated total reflectance-Fourier transform infrared (ATR-FTIR), Raman, and X-ray photoelectron spectroscopy (XPS). The red-shifted steady-state absorption, 95% quenched fluorescence, and largely enhanced nonlinear optical (NLO) properties through Z-scan studies at lower input energies demonstrate that this GO-imi-Por nanohybrid exhibits a more effective photoinduced energy/electron transfer between the intrahybrid two components and can be flexibly applied as an optical limiter candidate. This covalent edge-functionalization approach provides a new paradigm for constructing various edge-expanding GO nanohybrids with an efficient energy/electron transfer process and improved nonlinear optical effects, which would draw inspiration for engineering more adaptable optoelectronic devices.
Novoselov, K. S.; Geim, A. K.; Morozov, S. V.; Jiang, D.; Zhang, Y.; Dubonos, S. V.; Grigorieva, I. V.; Firsov, A. A. Electric field effect in atomically thin carbon films. Science 2004, 306, 666–669.
Rickhaus, P.; Liu, M. H.; Kurpas, M.; Kurzmann, A.; Lee, Y. J.; Overweg, H.; Eich, M.; Pisoni, R.; Taniguchi, T.; Watanabe, K. et al. The electronic thickness of graphene. Sci. Adv. 2020, 6, eaay8409.
Matochová, D.; Medved’, M.; Bakandritsos, A.; Steklý, T.; Zbořil, R.; Otyepka, M. 2D chemistry, chemical control of graphene derivatization. J. Phys. Chem. Lett. 2018, 9, 3580–3585.
Ambrosi, A.; Pumera, M. Exfoliation of layered materials using electrochemistry. Chem. Soc. Rev. 2018, 47, 7213–7224.
Dong, N. N.; Li, Y. X.; Zhang, S. F.; Zhang, X. Y.; Wang, J. Optically induced transparency and extinction in dispersed MoS2, MoSe2, and graphene nanosheets. Adv. Opt. Mater. 2017, 5, 1700543.
Dissanayake, D. M. A. S.; Cifuentes, M. P.; Humphrey, M. G. Optical limiting properties of (reduced) graphene oxide covalently functionalized by coordination complexes. Coord. Chem. Rev. 2018, 375, 489–513.
Wang, A. J.; Ye, J.; Humphrey, M. G.; Zhang, C. Graphene and carbon-nanotube nanohybrids covalently functionalized by porphyrins and phthalocyanines for optoelectronic properties. Adv. Mater. 2018, 30, 1705704.
Xu, T.; Zhao, S. J.; Lin, C. W.; Zheng, X. L.; Lan, M. H. Recent advances in nanomaterials for sonodynamic therapy. Nano Res. 2020, 13, 2898–2908.
Tarelho, J. P. G.; Dos Santos, M. P. S.; Ferreira, J. A. F.; Ramos, A.; Kopyl, S.; Kim, S. O.; Hong, S.; Kholkin, A. Graphene-based materials and structures for energy harvesting with fluids-A review. Mater. Today 2018, 21, 1019–1041.
Li, X. L.; Zhi, L. J. Graphene hybridization for energy storage applications. Chem. Soc. Rev. 2018, 47, 3189–3216.
Guo, J.; Yan, X. M.; Liu, Q.; Li, Q.; Xu, X.; Kang, L. T.; Cao, Z. M.; Chai, G. L.; Chen, J.; Wang, Y. B. et al. The synthesis and synergistic catalysis of iron phthalocyanine and its graphene-based axial complex for enhanced oxygen reduction. Nano Energy 2018, 46, 347–355.
Hou, J.; Zhang, B.; Li, D. Q.; Fu, Y. B.; Liu, G.; Chen, Y. Enabling superior stretchable resistive switching memory via polymer-functionalized graphene oxide nanosheets. J. Mater. Chem. C 2019, 7, 14664–14671.
Navalón, S.; Herance, J. R.; Alvaro, M.; García, H. Covalently modified graphenes in catalysis, electrocatalysis and photoresponsive materials. Chem. -Eur. J. 2017, 23, 15244–15275.
Stylianakis, M. M.; Konios, D.; Kakavelakis, G.; Charalambidis, G.; Stratakis, E.; Coutsolelos, A. G.; Kymakis, E.; Anastasiadis, S. H. Efficient ternary organic photovoltaics incorporating a graphene-based porphyrin molecule as a universal electron cascade material. Nanoscale 2015, 7, 17827–17835.
Song, W. N.; He, C. Y.; Zhang, W.; Gao, Y. C.; Yang, Y. X.; Wu, Y. Q.; Chen, Z. M.; Li, X. C.; Dong, Y. L. Synthesis and nonlinear optical properties of reduced graphene oxide hybrid material covalently functionalized with zinc phthalocyanine. Carbon 2014, 77, 1020–1030.
Eng, A. Y. S.; Chua, C. K.; Pumera, M. Refinements to the structure of graphite oxide: Absolute quantification of functional groups via selective labelling. Nanoscale 2015, 7, 20256–20266.
Liu, P. P.; Feng, Y. Q.; Gu, C. Z.; Meng, S. X.; Zhang, B. The facile synthesis of 5-formylporphyrin. Chin. Chem. Lett. 2012, 23, 505–508.
Sheik-Bahae, M.; Said, A. A.; Wei, T. H.; Hagan, D. J.; Van Stryland, E. W. Sensitive measurement of optical nonlinearities using a single beam. IEEE J. Quantum. Elect. 1990, 26, 760–769.
Sobral, A. J. F. N.; Rebanda, N. G. C. L.; Da Silva, M.; Lampreia, S. H.; Silva, M. R.; Beja, A. M.; Paixão, J. A.; Rocha Gonsalves, Gonsalves, A. M. D. One-step synthesis of dipyrromethanes in water. Tetrahedron Lett. 2003, 44, 3971–3973.
Plater, M. J.; Aiken, S.; Bourhill, G. A new synthetic route to donor-acceptor porphyrins. Tetrahedron 2002, 58, 2405–2413.
Fu, L. L.; Ye, J.; Li, H.; Huang, Z. P.; Humphrey, M. G.; Zhang, C. Strong near-infrared and ultrafast femtosecond nonlinearities of a covalently-linked triply-fused porphyrin dimer-SWCNT nanohybrid. Nano Res. 2022, 15, 1355–1365.
Kubendhiran, S.; Sakthinathan, S.; Chen, S. M.; Tamizhdurai, P.; Shanthi, K.; Karuppiah, C. Green reduction of reduced graphene oxide with nickel tetraphenyl porphyrin nanocomposite modified electrode for enhanced electrochemical determination of environmentally pollutant nitrobenzene. J. Colloid Interface Sci. 2017, 497, 207–216.
Gacka, E.; Wojcik, A.; Mazurkiewicz-Pawlicka, M.; Malolepszy, A.; Stobiński, L.; Kubas, A.; Hug, G. L.; Marciniak, B.; Lewandowska-Andralojc, A. Noncovalent porphyrin-graphene oxide nanohybrids: The pH-dependent behavior. J. Phys. Chem. C 2019, 123, 3368–3380.
Bottari, G.; Herranz, M. Á.; Wibmer, L.; Volland, M.; Rodríguez-Pérez, L.; Guldi, D. M.; Hirsch, A.; Martín, N.; D'Souza, F.; Torres, T. Chemical functionalization and characterization of graphene-based materials. Chem. Soc. Rev. 2017, 46, 4464–4500.
Dasler, D.; Schäfer, R. A.; Minameyer, M. B.; Hitzenberger, J. F.; Hauke, F.; Drewello, T.; Hirsch, A. Direct covalent coupling of porphyrins to graphene. J. Am. Chem. Soc. 2017, 139, 11760–11765.
Garg, K.; Shanmugam, R.; Ramamurthy, P. C. New covalent hybrids of graphene oxide with core modified and -expanded porphyrins: Synthesis characterisation and their nonlinear optical properties. Carbon 2017, 122, 307–318.
Wang, A. J.; Yu, W.; Xiao, Z. G.; Song, Y. L.; Long, L. L.; Cifuentes, M. P.; Humphrey, M. G.; Zhang, C. A 1, 3-dipolar cycloaddition protocol to porphyrin-functionalized reduced graphene oxide with a push-pull motif. Nano Res. 2015, 8, 870–886.
Wang, A. J.; Song, J. B.; Huang, Z. P.; Song, Y. L.; Yu, W.; Dong, H. L.; Hu, W. P.; Cifuentes, M. P.; Humphrey, M. G.; Zhang, L. et al. Multi-walled carbon nanotubes covalently functionalized by axially coordinated metal-porphyrins: Facile syntheses and temporally dependent optical performance. Nano Res. 2016, 9, 458–472.
Dyke, C. A.; Stewart, M. P.; Maya, F.; Tour, J. M. Diazonium-based functionalization of carbon nanotubes: XPS and GC-MS analysis and mechanistic implications. Synlett 2004, 155–160.
Tian, S. F.; Chen, S. D.; Ren, X. T.; Hu, Y. Q.; Hu, H. Y.; Sun, J. J.; Bai, F. An efficient visible-light photocatalyst for CO2 reduction fabricated by cobalt porphyrin and graphitic carbon nitride via covalent bonding. Nano Res. 2020, 13, 2665–2672.
Spampinato, V.; Ceccone, G.; Giordani, S. Surface analysis of zinc-porphyrin functionalized carbon nano-onions. Biointerphases 2015, 10, 019006.
Pandi, K.; Lakhera, S. K.; Neppolian, B. Facile synthesis of nitrogen deficient graphitic carbon nitride for photocatalytic hydrogen production activity. Mater. Lett. 2021, 303, 130467.
Schlesinger, I.; Powers-Riggs, N. E.; Logsdon, J. L.; Qi, Y.; Miller, S. A.; Tempelaar, R.; Young, R. M.; Wasielewski, M. R. Charge-transfer biexciton annihilation in a donor-acceptor co-crystal yields high-energy long-lived charge carriers. Chem. Sci. 2020, 11, 9532–9541.
Liu, Z. B.; Tian, J. G.; Guo, Z.; Ren, D. M.; Du, F.; Zheng, J. Y.; Chen, Y. S. Enhanced optical limiting effects in porphyrin-covalently functionalized single-walled carbon nanotubes. Adv. Mater. 2008, 20, 511–515.
Wang, A. J.; Long, L. L.; Zhao, W.; Song, Y. L.; Humphrey, M. G.; Cifuentes, M. P.; Wu, X. Z.; Fu, Y. S.; Zhang, D. D.; Li, X. F. et al. Increased optical nonlinearities of graphene nanohybrids covalently functionalized by axially-coordinated porphyrins. Carbon 2013, 53, 327–338.
Liu, Z. W.; Dong, N. N.; Jiang, P.; Wang, K. X.; Wang, J.; Chen, Y. Reduced graphene oxide chemically modified with aggregation-induced emission polymer for solid-state optical limiter. Chem. -Eur. J. 2018, 24, 19317–19322.
Du, Y. L.; Dong, N. N.; Zhang, M. H.; Zhu, K. H.; Na, R.; Zhang, S. L.; Sun, N. W.; Wang, G. B.; Wang, J. Covalent functionalization of graphene oxide with porphyrin and porphyrin incorporated polymers for optical limiting. Phys. Chem. Chem. Phys. 2017, 19, 2252–2260.
Limosani, F.; Kaur, R.; Cataldo, A.; Bellucci, S.; Micciulla, F.; Zanoni, R.; Lembo, A.; Wang, B. Z.; Pizzoferrato, R.; Guldi, D. M. et al. Designing cascades of electron transfer processes in multicomponent graphene conjugates. Angew. Chem. , Int. Ed. 2020, 59, 23706–23715.
Chen, S. H.; Luo, R.; Li, X. Y.; He, M. Y.; Fu, S. S.; Xu, J. L. Aggregation induced emission and nonlinear optical properties of an intramolecular charge-transfer compound. Materials (Basel) 2021, 14, 1909.
Luo, C.; Guldi, D. M.; Imahori, H.; Tamaki, K.; Sakata, Y. Sequential energy and electron transfer in an artificial reaction center: Formation of a long-lived charge-separated state. J. Am. Chem. Soc. 2000, 122, 6535–6551.
Ní Mhuircheartaigh, E. M.; Giordani, S.; Blau, W. J. Linear and nonlinear optical characterization of a tetraphenylporphyrin-carbon nanotube composite system. J. Phys. Chem. B 2006, 110, 23136–23141.
Megiatto, J. D.; Schuster, D. I. Jr.; De Miguel, G.; Wolfrum, S.; Guldi, D. M. Topological and conformational effects on electron transfer dynamics in porphyrin-[60]fullerene interlocked systems. Chem. Mater. 2012, 24, 2472–2485.
Neto, N. B.; De Boni, L.; Mendonça, C. R.; Misoguti, L.; Queiroz, S. L.; Dinelli, L. R.; Batista, A. A.; Zilio, S. C. Nonlinear absorption dynamics in tetrapyridyl metalloporphyrins. J. Phys. Chem. B 2005, 109, 17340–17345.