Journal Home > Volume 16 , Issue 3

Electroreduction of carbon dioxide into value-added fuels or chemicals using renewable energy helps to effectively reduce carbon dioxide emission and alleviate the greenhouse effect while storing intermittent energies. Due to the existing infrastructure of global natural gas utilization and distribution, methane produced in such a green route attracts wide interests. However, limited success has been witnessed in the practical application of catalysts imparting satisfactory methane activity and selectivity. Herein, we report the fabrication of an atomically dispersed Co-Cu alloy through the reconstruction of trace-Co doped Cu metal-organic framework. This catalyst exhibits a methane Faradaic efficiency of 60% ± 1% with the corresponding partial current density of 303 ± 5 mA·cm−2. Operando X-ray adsorption spectroscopy and attenuated-total-reflection surface enhanced infrared spectroscopy unravel that the introduction of atomically dispersed Co in Cu favors *CO protonation via enhancing surface water activation, and suppresses C−C coupling by reducing *CO coverage, thereby leading to high methane selectivity.

File
12274_2022_4728_MOESM1_ESM.pdf (2.6 MB)
Publication history
Copyright
Acknowledgements

Publication history

Received: 28 May 2022
Revised: 29 June 2022
Accepted: 30 June 2022
Published: 01 August 2022
Issue date: March 2023

Copyright

© Tsinghua University Press 2022

Acknowledgements

Acknowledgements

This work was supported by the National Natural Science Foundation of China (Nos. 22072101 and 22075193), the Natural Science Foundation of Jiangsu Province (No. BK20211306), Six Talent Peaks Project in Jiangsu Province (No. TD-XCL-006), and the Priority Academic Program Development (PAPD) of Jiangsu Higher Education Institutions.

Return