Journal Home > Volume 16 , Issue 1

Metal nanoclusters (NCs) with precise structure and ultrasmall size have attracted great interests in catalysis. However, the poor stability has limited its large-scale use. Herein, we proposed the “covalence bridge” strategy to effectively connect atomically precise metal NCs and metal-organic frameworks. Benefiting from the covalent linkage, the synthesized UiO-66-NH2-Au25(L-Cys)18 showed outstanding stability after 16 h photocatalysis. Moreover, the covalence bridge created a strong metal-support interaction between the two components and provided an effective charge transport channel and thereby enhanced photocatalytic activity. UiO-66-NH2-Au25(L-Cys)18 displayed an exceptional photocatalytic H2 production rate, which is 21 and 90 times higher than that of UiO-66-NH2/Au25(PET)18 (made by physically combination) and bare UiO-66-NH2, respectively. Thermodynamic and kinetic studies demonstrated that UiO-66-NH2-Au25(L-Cys)18 exhibited higher charge transfer efficiency, lower overpotential of water reduction and activation energy barrier compared with its counterparts.


menu
Abstract
Full text
Outline
Electronic supplementary material
About this article

Covalence bridge atomically precise metal nanocluster and metal-organic frameworks for enhanced photostability and photocatalysis

Show Author's information Aimin YaoYuanxin Du( )Meng HanYan WangJiashen HuQingtao ZhuHongting ShengManzhou Zhu( )
Department of Materials Science and Engineering, Centre for Atomic Engineering of Advanced Materials, Key Laboratory of Structure and Functional Regulation of Hybrid Materials of Ministry of Education, Key Laboratory of Functional Inorganic Material Chemistry of Anhui Province, Anhui University, Hefei 230601, China

Abstract

Metal nanoclusters (NCs) with precise structure and ultrasmall size have attracted great interests in catalysis. However, the poor stability has limited its large-scale use. Herein, we proposed the “covalence bridge” strategy to effectively connect atomically precise metal NCs and metal-organic frameworks. Benefiting from the covalent linkage, the synthesized UiO-66-NH2-Au25(L-Cys)18 showed outstanding stability after 16 h photocatalysis. Moreover, the covalence bridge created a strong metal-support interaction between the two components and provided an effective charge transport channel and thereby enhanced photocatalytic activity. UiO-66-NH2-Au25(L-Cys)18 displayed an exceptional photocatalytic H2 production rate, which is 21 and 90 times higher than that of UiO-66-NH2/Au25(PET)18 (made by physically combination) and bare UiO-66-NH2, respectively. Thermodynamic and kinetic studies demonstrated that UiO-66-NH2-Au25(L-Cys)18 exhibited higher charge transfer efficiency, lower overpotential of water reduction and activation energy barrier compared with its counterparts.

Keywords: metal-organic frameworks, photostability, photocatalytic hydrogen production, atomically precise nanoclusters, covalent binding

References(23)

[1]

Du, Y. X.; Sheng, H. T.; Astruc, D.; Zhu, M. Z. Atomically precise noble metal nanoclusters as efficient catalysts: A bridge between structure and properties. Chem. Rev. 2020, 120, 526–622.

[2]

Kang, X.; Li, Y. W.; Zhu, M. Z.; Jin, R. C. Atomically precise alloy nanoclusters: Syntheses, structures, and properties. Chem. Soc. Rev. 2020, 49, 6443–6514.

[3]

Dong, C. Y.; Li, Y. L.; Cheng, D. Y.; Zhang, M. T.; Liu, J. J.; Wang, Y. G.; Xiao, D. Q.; Ma, D. Supported metal clusters: Fabrication and application in heterogeneous catalysis. ACS Catal. 2020, 10, 11011–11045.

[4]

Deng, Y.; Zhang, Z.; Du, P. Y.; Ning, X. M.; Wang, Y.; Zhang, D. X.; Liu, J.; Zhang, S. T.; Lu, X. Q. Embedding ultrasmall Au clusters into the pores of a covalent organic framework for enhanced photostability and photocatalytic performance. Angew. Chem., Int. Ed. 2020, 59, 6082–6089.

[5]

Jiang, Y. L.; Yu, Y.; Zhang, X.; Weinert, M.; Song, X. L.; Ai, J.; Han, L.; Fei, H. H. N-heterocyclic carbene-stabilized ultrasmall gold nanoclusters in a metal-organic framework for photocatalytic CO2 reduction. Angew. Chem., Int. Ed. 2021, 60, 17388–17393.

[6]

Yun, Y. P.; Sheng, H. T.; Bao, K.; Xu, L.; Zhang, Y.; Astruc, D.; Zhu, M. Z. Design and remarkable efficiency of the robust sandwich cluster composite nanocatalysts ZIF-8@Au25@ZIF-67. J. Am. Chem. Soc. 2020, 142, 4126–4130.

[7]

Luo, L. S.; Jin, R. C. Atomically precise metal nanoclusters meet metal-organic frameworks. iScience 2021, 24, 103206.

[8]

Luo, Y. C.; Fan, S. Y.; Yu, W. Q.; Wu, Z. L.; Cullen, D. A.; Liang, C. L.; Shi, J. Y.; Su, C. Y. Fabrication of Au25(SG)18-ZIF-8 nanocomposites: A facile strategy to position Au25(SG)18 nanoclusters inside and outside ZIF-8. Adv. Mater. 2018, 30, 1704576.

[9]

Ji, S. F.; Chen, Y. J.; Zhao, S.; Chen, W. X; Shi, L. J.; Wang, Y.; Dong, J. C.; Li, Z.; Li, F. W.; Chen, C. et al. Atomically dispersed ruthenium species inside metal-organic frameworks: Combining the high activity of atomic sites and the molecular sieving effect of MOFs. Angew. Chem., Int. Ed. 2019, 58, 4271–4275.

[10]

Liu, L. L.; Song, Y. B.; Chong, H. B.; Yang, S.; Xiang, J.; Jin, S.; Kang, X.; Zhang, J.; Yu, H. Z.; Zhu, M. Z. Size-confined growth of atom-precise nanoclusters in metal-organic frameworks and their catalytic applications. Nanoscale 2016, 8, 1407–1412.

[11]

Kratzl, K.; Kratky, T.; Günther, S.; Tomanec, O.; Zbořil, R.; Michalička, J.; Macak, J. M.; Cokoja, M.; Fischer, R. A. Generation and stabilization of small platinum clusters Pt12±x inside a metal-organic framework. J. Am. Chem. Soc. 2019, 141, 13962–13969.

[12]

Sun, L. L.; Yun, Y. P.; Sheng, H. T.; Du, Y. X.; Ding, Y. M.; Wu, P.; Li, P.; Zhu, M. Z. Rational encapsulation of atomically precise nanoclusters into metal-organic frameworks by electrostatic attraction for CO2 conversion. J. Mater. Chem. A 2018, 6, 15371–15376.

[13]

Yuan, X.; Zhang, B.; Luo, Z. T.; Yao, Q. F.; Leong, D. T.; Yan, N.; Xie, J. P. Balancing the rate of cluster growth and etching for gram-scale synthesis of thiolate-protected Au25 nanoclusters with atomic precision. Angew. Chem., Int. Ed. 2014, 53, 4623–4627.

[14]

Sun, K.; Liu, M.; Pei, J. Z.; Li, D. D.; Ding, C. M.; Wu, K. F.; Jiang, H. L. Incorporating transition-metal phosphides into metal-organic frameworks for enhanced photocatalysis. Angew. Chem., Int. Ed. 2020, 59, 22749–22755.

[15]

Zhang, J. Y.; Li, Z. M.; Huang, J. H.; Liu, C.; Hong, F.; Zheng, K.; Li, G. Size dependence of gold clusters with precise numbers of atoms in aerobic oxidation of d-glucose. Nanoscale 2017, 9, 16879–16886.

[16]

Kandiah, M.; Nilsen, M. H.; Usseglio, S.; Jakobsen, S.; Olsbye, U.; Tilset, M.; Larabi, C.; Quadrelli, E. A.; Bonino, F.; Lillerud, K. P. Synthesis and stability of tagged UiO-66 Zr-MOFs. Chem. Mater. 2010, 22, 6632–6640.

[17]

Sarker, M.; Song, J. Y.; Jhung, S. H. Carboxylic-acid-functionalized UiO-66-NH2: A promising adsorbent for both aqueous- and non-aqueous-phase adsorptions. Chem. Eng. J. 2018, 331, 124–131.

[18]

Wang, G.; He, C. T.; Huang, R.; Mao, J. J.; Wang, D. S.; Li, Y. D. Photoinduction of Cu single atoms decorated on UiO-66-NH2 for enhanced photocatalytic reduction of CO2 to liquid fuels. J. Am. Chem. Soc. 2020, 142, 19339–19345.

[19]

Ding, L.; Shao, P. H.; Luo, Y.; Yin, X. C.; Yu, S. P.; Fang, L. L.; Yang, L. M.; Yang, J. K.; Luo, X. B. Functionalization of UiO-66-NH2 with rhodanine via amidation: Towarding a robust adsorbent with dual coordination sites for selective capture of Ag(I) from wastewater. Chem. Eng. J. 2020, 382, 123009.

[20]

Xu, H. Q.; Yang, S. Z.; Ma, X.; Huang, J. E.; Jiang, H. L. Unveiling charge-separation dynamics in CdS/metal-organic framework composites for enhanced photocatalysis. ACS Catal. 2018, 8, 11615–11621.

[21]

Xiao, J. D.; Han, L. L.; Luo, J.; Yu, S. H.; Jiang, H. L. Integration of plasmonic effects and schottky junctions into metal-organic framework composites: Steering charge flow for enhanced visible-light photocatalysis. Angew. Chem., Int. Ed. 2018, 57, 1103–1107.

[22]

Zhen, W. L.; Ma, J. T.; Lu, G. X. Small-sized Ni(1 1 1) particles in metal-organic frameworks with low over-potential for visible photocatalytic hydrogen generation. Appl. Catal. B Environ. 2016, 190, 12–25.

[23]

Xu, M. L.; Li, D. D.; Sun, K.; Jiao, L.; Xie, C. F.; Ding, C. M.; Jiang, H. L. Interfacial microenvironment modulation boosting electron transfer between metal nanoparticles and MOFs for enhanced photocatalysis. Angew. Chem., Int. Ed. 2021, 60, 16372–16376.

File
12274_2022_4725_MOESM1_ESM.pdf (2.7 MB)
Publication history
Copyright
Acknowledgements

Publication history

Received: 07 May 2022
Revised: 15 June 2022
Accepted: 01 July 2022
Published: 10 August 2022
Issue date: January 2023

Copyright

© Tsinghua University Press 2022

Acknowledgements

Acknowledgements

We acknowledge the financial support of the Natural Science research project of Universities in Anhui Province (No. KJ2021ZD0001).

Return