Journal Home > Volume 16 , Issue 1

Focused ion beam (FIB) processing with low-energy ions has become a standard technique for the manipulation of nanostructures. Many underlying ion beam effects that deviate from conventional high-energy ion irradiation of bulk systems are considered today; however, ion channeling with its consequence of significant deeper penetration depth has been only theoretically investigated in this regime. We present here an experimental approach to determine the channeling of low-energy ions in crystalline nanoparticles by measuring the sputter yield derived from scanning electron microscopy (SEM) images taken after irradiation under various incident ion angles. Channeling maps of 30 and 20 keV Ga+ ions in Ag nanocubes have been identified and fit well with the theory. Indeed, channeling has a significant impact on the transport of energetic ions in crystals due to the large critical angle at low ion energies, thus being relevant for any FIB-application. Consequently, the obtained sputter yield clearly differs from amorphous materials; therefore, it is recommended not to rely only on, e.g., ion distribution depths predicted by standard Monte-Carlo (MC) algorithms for amorphous materials.


menu
Abstract
Full text
Outline
Electronic supplementary material
About this article

Low-energy ion channeling in nanocubes

Show Author's information Shiva Choupanian1( )Wolfhard Möller2Martin Seyring3Carsten Ronning1( )
Institute of Solid State Physics, Friedrich Schiller University Jena, Max-Wien-Platz 1, 07743 Jena, Germany
Helmholtz-Zentrum Dresden-Rossendorf, Bautzner Landstraße 400, 01328 Dresden, Germany
Otto Schott Institute of Materials Research, Friedrich Schiller University Jena, Loebdergraben 32, 07743 Jena, Germany

Abstract

Focused ion beam (FIB) processing with low-energy ions has become a standard technique for the manipulation of nanostructures. Many underlying ion beam effects that deviate from conventional high-energy ion irradiation of bulk systems are considered today; however, ion channeling with its consequence of significant deeper penetration depth has been only theoretically investigated in this regime. We present here an experimental approach to determine the channeling of low-energy ions in crystalline nanoparticles by measuring the sputter yield derived from scanning electron microscopy (SEM) images taken after irradiation under various incident ion angles. Channeling maps of 30 and 20 keV Ga+ ions in Ag nanocubes have been identified and fit well with the theory. Indeed, channeling has a significant impact on the transport of energetic ions in crystals due to the large critical angle at low ion energies, thus being relevant for any FIB-application. Consequently, the obtained sputter yield clearly differs from amorphous materials; therefore, it is recommended not to rely only on, e.g., ion distribution depths predicted by standard Monte-Carlo (MC) algorithms for amorphous materials.

Keywords: focused ion beam, ion nanostructure interaction, ion channeling, metallic nanoparticles

References(56)

[1]
Utke, I.; Moshkalev, S.; Russel, P. Nanofabrication Using Focused Ion and Electron Beams: Principles and Applications; Oxford University Press: New York, 2012.
[2]

Tseng, A. A. Recent developments in micromilling using focused ion beam technology. J. Micromech. Microeng. 2004, 14, R15–R34.

[3]

Li, P.; Chen, S. Y.; Dai, H. F.; Yang, Z. M.; Chen, Z. Q.; Wang, Y. S.; Chen, Y. Q.; Peng, W. Q.; Shan, W. B.; Duan, H. G. Recent advances in focused ion beam nanofabrication for nanostructures and devices: Fundamentals and applications. Nanoscale 2021, 13, 1529–1565.

[4]

Volkert, C. A.; Minor, A. M. Focused ion beam microscopy and micromachining. MRS Bull. 2007, 32, 389–399.

[5]

Krasheninnikov, A. V.; Nordlund, K. Ion and electron irradiation-induced effects in nanostructured materials. J. Appl. Phys. 2010, 107, 071301.

[6]

Johannes, A.; Holland-Moritz, H.; Ronning, C. Ion beam irradiation of nanostructures: Sputtering, dopant incorporation, and dynamic annealing. Semicond. Sci. Technol. 2015, 30, 033001.

[7]

Zhang, X. H.; Hattar, K.; Chen, Y. X.; Shao, L.; Li, J.; Sun, C.; Yu, K. Y.; Li, N.; Taheri, M. L.; Wang, H. Y. et al. Radiation damage in nanostructured materials. Prog. Mater. Sci. 2018, 96, 217–321.

[8]

Choupanian, S.; Nagel, A.; Möller, W.; Pacholski, C.; Ronning, C. The disappearance and return of nanoparticles upon low energy ion irradiation. Nanotechnology 2022, 33, 035703.

[9]

Greaves, G.; Hinks, J. A.; Busby, P.; Mellors, N. J.; Ilinov, A.; Kuronen, A.; Nordlund, K.; Donnelly, S. E. Enhanced sputtering yields from single-ion impacts on gold nanorods. Phys. Rev. Lett. 2013, 111, 065504.

[10]

Järvi, T. T.; Pakarinen, J. A.; Kuronen, A.; Nordlund, K. Enhanced sputtering from nanoparticles and thin films: Size effects. Europhys. Lett. 2008, 82, 26002.

[11]

Urbassek, H. M.; Bradley, R. M.; Nietiadi, M. L.; Möller, W. Sputter yield of curved surfaces. Phys. Rev. B 2015, 91, 165418.

[12]

Borschel, C.; Messing, M. E.; Borgström, M. T.; Paschoal, W. Jr.; Wallentin, J.; Kumar, S.; Mergenthaler, K.; Deppert, K.; Canali, C. M.; Pettersson, H. et al. A new route toward semiconductor nanospintronics: Highly Mn-doped GaAs nanowires realized by ion-implantation under dynamic annealing conditions. Nano Lett. 2011, 11, 3935–3940.

[13]

Sigmund, P. A mechanism of surface micro-roughening by ion bombardment. J. Mater. Sci. 1973, 8, 1545–1553.

[14]

Borschel, C.; Ronning, C. Ion beam irradiation of nanostructures—A 3D monte carlo simulation code. Nucl. Instrum. Methods Phys. Res. Sect. B Beam Interact. Mater. Atoms. 2011, 269, 2133–2138.

[15]

Holland-Moritz, H.; Scheeler, S.; Stanglmair, C.; Pacholski, C.; Ronning, C. Enhanced sputter yields of ion irradiated Au nano particles: Energy and size dependence. Nanotechnology 2015, 26, 325301.

[16]

Möller, W. TRI3DYN—Collisional computer simulation of the dynamic evolution of 3-dimensional nanostructures under ion irradiation. Nucl. Instrum. Methods Phys. Res. Sect. B Beam Interact. Mater. Atoms. 2014, 322, 23–33.

[17]

Holland-Moritz, H.; Graupner, J.; Möller, W.; Pacholski, C.; Ronning, C. Dynamics of nanoparticle morphology under low energy ion irradiation. Nanotechnology 2018, 29, 314002.

[18]

Lindhard, J. Influence of crystal lattice on motion of energetic charged particles. Mat. Fys. Medd. Dan. Vid. Selsk. 1965, 34, 1–64.

[19]

Robinson, M. T.; Oen, O. S. The channeling of energetic atoms in crystal lattices. Appl. Phys. Lett. 1963, 2, 30–32.

[20]

Piercy, G. R.; Brown, F.; Davies, J. A.; McCargo, M. Experimental evidence for the increase of heavy ion ranges by channeling in crystalline structure. Phys. Rev. Lett. 1963, 10, 399–400.

[21]

Kornelsen, E. V.; Brown, F.; Davies, J. A.; Domeij, B.; Piercy, G. R. Penetration of heavy ions of KeV energies into monocrystalline tungsten. Phys. Rev. 1964, 136, A849–A858.

[22]

Eriksson, L.; Davies, J. A.; Jespersgaard, P. Range measurements in oriented tungsten single crystals (0.1–1.0 MeV). I. Electronic and nuclear stopping powers. Phys. Rev. 1967, 161, 219–234.

[23]

Peter, S. Theory of sputtering. I. Sputtering yield of amourphous and polycrystalline targets. Phys. Rev. 1969, 184, 383–416.

[24]

Gemmell, D. S. Channeling and related effects in the motion of charged particles through crystals. Rev. Mod. Phys. 1974, 46, 129–227.

[25]

Southern, A. L.; Willis, W. R.; Robinson, M. T. Sputtering experiments with 1- to 5-KeV Ar+ Ions. J. Appl. Phys. 1963, 34, 153–163.

[26]

Datz, S.; Noggle, T. S.; Moak, C. D. Anisotropic energy losses in a face-centered-cubic crystal for high-energy 79Br and 127I Ions. Phys. Rev. Lett. 1965, 15, 254–257.

[27]

Raineri, V.; Privitera, V.; Campisano, S. U. Channeling effects in ion implantation in silicon. Radiat. Eff. Defects Solids 1994, 399–413.

[28]

Raatz, N.; Scheuner, C.; Pezzagna, S.; Meijer, J. Investigation of ion channeling and scattering for single-ion implantation with high spatial resolution. Phys. Status Solidi A 2019, 216, 1900528.

[29]

Davies, J. A. The channeling phenomenon- and some of its applications. Phys. Scr. 1983, 28, 294–302.

[30]

Feldman, L. C.; Poate, J. M. Rutherford backscattering and channeling analysis of interfaces and epitaxial structures. Annu. Rev. Mater. Sci. 1982, 12, 149–176.

[31]

Ziegler, J. F.; Lever, R. F. Channeling of ions near the silicon 〈001〉 axis. Appl. Phys. Lett. 1985, 46, 358–360.

[32]

Mayer, J. W. Semiconductor physics and channeling. Radiat. Eff. 1972, 12, 183–191.

[33]

Mayer, J. W. Ion implantation-lattice disorder. Radiat. Eff. 1971, 8, 269–277.

[34]

Johansen, A.; Olsen, J. S.; Sarholt-Kristensen, L.; Martin, F. W. Carrier concentration, mobility, resistivity and impurity concentration of 400 KeV channeled phosphorus ions in silicon. Radiat. Eff. 1970, 3, 65–72.

[35]

Hobler, G. Critical angles and low-energy limits to ion channeling in silicon. Radiat. Eff. Defects Solids 1996, 139, 21–85.

[36]

Gibbons, J. F. Ion implantation in semiconductors—Part II: Damage production and annealing. Proc. IEEE 1972, 60, 1062–1096.

[37]

Chadderton, L. T. Nucleation of damage centres during ion implantation of silicon. Radiat. Eff. 1971, 8, 77–86.

[38]

Hinks, J. A.; Hibberd, F.; Hattar, K.; Ilinov, A.; Bufford, D. C.; Djurabekova, F.; Greaves, G.; Kuronen, A.; Donnelly, S. E.; Nordlund, K. Effects of crystallographic and geometric orientation on ion beam sputtering of gold nanorods. Sci. Rep. 2018, 8, 512.

[39]

Ghaderzadeh, S.; Ghorbani-Asl, M.; Kretschmer, S.; Hlawacek, G.; Krasheninnikov, A. V. Channeling effects in gold nanoclusters under he ion irradiation: Insights from molecular dynamics simulations. Nanotechnology. 2020, 31, 035302.

[40]

Kempshall, B. W.; Schwarz, S. M.; Prenitzer, B. I.; Giannuzzi, L. A.; Irwin, R. B.; Stevie, F. A. Ion channeling effects on the focused ion beam milling of Cu. J. Vac. Sci. Technol. B 2001, 19, 749.

[41]

Xia, Y. N.; Xiong, Y. J.; Lim, B.; Skrabalak, S. E. Shape-controlled synthesis of metal nanocrystals: Simple chemistry meets complex physics? Angew. Chem., Int. Ed. 2009, 48, 60–103.

[42]

Anker, J. N.; Hall, W. P.; Lyandres, O.; Shah, N. C.; Zhao, J.; Van Duyne, R. P. Biosensing with plasmonic nanosensors. Nat. Mater. 2008, 7, 442–453.

[43]

Talapin, D. V.; Lee, J. S.; Kovalenko, M. V.; Shevchenko, E. V. Prospects of colloidal nanocrystals for electronic and optoelectronic applications. Chem. Rev. 2010, 110, 389–458.

[44]

Goldberger, J.; He, R. R.; Zhang, Y. F.; Lee, S.; Yan, H. Q.; Choi, H. J.; Yang, P. D. Single-crystal gallium nitride nanotubes. Nature 2003, 422, 599–602.

[45]

Suwada, T.; Satoh, M.; Furukawa, K.; Kamitani, T.; Sugimura, T.; Umemori, K.; Okuno, H.; Endou, Y.; Haruna, T.; Hamatsu, R. et al. First application of a tungsten single-crystal positron source at the KEK B factory. Phys. Rev. Accel. Beams. 2007, 10, 073501.

[46]

Thomas, L.; Lionti, F.; Ballou, R.; Gatteschi, D.; Sessoli, R.; Barbara, B. Macroscopic quantum tunnelling of magnetization in a single crystal of nanomagnets. Nature 1996, 383, 145–147.

[47]

Utsumi, W.; Saitoh, H.; Kaneko, H.; Watanuki, T.; Aoki, K.; Shimomura, O. Congruent melting of gallium nitride at 6 GPa and its application to single-crystal growth. Nat. Mater. 2003, 2, 735–738.

[48]

Litnovsky, A.; Krasikov, Y.; Rasinski, M.; Kreter, A.; Linsmeier, C.; Mertens, P.; Unterberg, B.; Breuer, U.; Wegener, T. First direct comparative test of single crystal rhodium and molybdenum mirrors for ITER diagnostics. Fusion Eng. Des. 2017, 123, 674–677.

[49]

Wang, Y.; Zheng, Y. Q.; Huang, C. Z.; Xia, Y. N. Synthesis of Ag nanocubes 18–32 Nm in edge length: The effects of polyol on reduction kinetics, size control, and reproducibility. J. Am. Chem. Soc. 2013, 135, 1941–1951.

[50]

Wang, B.; Zhang, L.; Zhou, X. Synthesis of silver nanocubes as a SERS substrate for the determination of pesticide paraoxon and thiram. Spectrochim. Acta Part A Mol. Biomol. Spectrosc. 2014, 121, 63–69.

[51]

McLellan, J. M.; Siekkinen, A.; Chen, J. Y.; Xia, Y. N. Comparison of the surface-enhanced Raman scattering on sharp and truncated silver nanocubes. Chem. Phys. Lett. 2006, 427, 122–126.

[52]

Sun, B.; Wang, Z. Y.; Liu, Z. Y.; Tan, X. H.; Liu, X. Y.; Shi, T. L.; Zhou, J. X.; Liao, G. L. Tailoring of silver nanocubes with optimized localized surface plasmon in a gap mode for a flexible MoS2 photodetector. Adv. Funct. Mater. 2019, 29, 1900541.

[53]

Sun, Y. G.; Xia, Y. N. Shape-controlled synthesis of gold and silver nanoparticles. Science 2002, 298, 2176–2179.

[54]

Ziegler, J. F.; Ziegler, M. D.; Biersack, J. P. SRIM—The stopping and range of ions in matter (2010). Nucl. Instrum. Methods Phys. Res. Sect. B Beam Interact. Mater. Atoms. 2010, 268, 1818–1823.

[55]

Nordlund, K.; Djurabekova, F.; Hobler, G. Large fraction of crystal directions leads to ion channeling. Phys. Rev. B 2016, 94, 214109.

[56]

Sun, C.; Bufford, D.; Chen, Y.; Kirk, M. A.; Wang, Y. Q.; Li, M.; Wang, H.; Maloy, S. A.; Zhang, X. In situ study of defect migration kinetics in nanoporous Ag with enhanced radiation tolerance. Sci. Rep. 2014, 4, 3737.

File
12274_2022_4723_MOESM1_ESM.pdf (1.5 MB)
Publication history
Copyright
Acknowledgements
Rights and permissions

Publication history

Received: 01 May 2022
Revised: 20 June 2022
Accepted: 01 July 2022
Published: 11 August 2022
Issue date: January 2023

Copyright

© The author(s) 2022

Acknowledgements

Acknowledgements

We thank the Deutsche Forschungsgemeinschaft (DFG) for financial support through the project Ro1198/22-1 “Energy induced nanoparticle substrate interactions”.

Rights and permissions

Copyright: 2022 by the author(s). This article is an open access article distributed under Creative Commons Attribution License (CC BY 4.0), visit https://creativecommons.org/licenses/by/4.0/.

Return