AI Chat Paper
Note: Please note that the following content is generated by AMiner AI. SciOpen does not take any responsibility related to this content.
{{lang === 'zh_CN' ? '文章概述' : 'Summary'}}
{{lang === 'en_US' ? '中' : 'Eng'}}
Chat more with AI
Article Link
Collect
Submit Manuscript
Show Outline
Outline
Show full outline
Hide outline
Outline
Show full outline
Hide outline
Research Article

Functional polymer passivating FA0.85PEA0.15SnI3 for efficient and stable lead-free perovskite solar cells

Wenzhan Xu1,2,§Yu Gao1,2,§Miao He1,2Shuyan Chen2Hongyan Fu1Guodan Wei1,2( )
Tsinghua-Berkeley Shenzhen Institute (TBSI), Tsinghua Shenzhen International Graduate School, Tsinghua University, Shenzhen 518000, China
Tsinghua Shenzhen International Graduate School, Tsinghua University, Shenzhen 518000, China

§ Wenzhan Xu and Yu Gao contributed equally to this work.

Show Author Information

Graphical Abstract

Polymer poly(ethylene glycol) diacrylate (PEGDA) is used to control crystal growth and passivate the defects in FA0.85PEA0.15SnI3 thin film as a flexible polymer scaffold, which enables high power conversion efficiency (PCE) of 11.45% with voltage of 0.82 V.

Abstract

Due to their excellent advantages such as low toxicity, superior optoelectronic properties, low-temperature fabrication, and cost-effectiveness, Sn-based perovskites have become the most promising alternatives for high performance lead-free perovskite solar cells. However, the character of Sn2+ is easily oxidized to Sn4+, causing unnecessary p-type self-doping and high leakage current. More seriously, trap-induced non-radiative recombination from rapid crystallization causes into large energy loss with a low open circuit voltage. Therefore, the Sn-based solar cells have efficiency far behind the Pb-based solar cells. Herein, the polymer poly(ethylene glycol) diacrylate (PEGDA) is used to control crystal growth and passivate the defects in FA0.85PEA0.15SnI3 thin film. This Sn-perovskite layer shows compact crystal with large grain size and reduced defects. Optimized perovskite thin film is further processed to fabricate the inverted solar cell with device structure of ITO (indium tin oxide)/PEDOT:PSS (Poly(3,4-ethylenedioxythiophene)/poly(styrenesulfonate))/FA0.85PEA0.15SnI3/ICBA (indene-C60 bisadduct)/BCP (bathocuproine)/Ag, which shows the power conversion efficiency (PCE) of 11.45% with voltage of 0.82 V. Moreover, corresponding perovskite solar cells exhibit an enhanced stability due to PEGDA induced compressive strain in perovskite. This work could shed light on one of successful attempts to improve Sn-based solar cell efficiency for sustainable energy conversion.

Electronic Supplementary Material

Download File(s)
12274_2022_4722_MOESM1_ESM.pdf (1.4 MB)

References

[1]

Xing, G. C.; Mathews, N.; Sun, S. Y.; Lim, S. S.; Lam, Y. M.; Grätzel, M.; Mhaisalkar, S.; Sum, T. C. Long-range balanced electron- and hole-transport lengths in organic−inorganic CH3NH3PbI3. Science 2013, 342, 344–347.

[2]

Wang, K.; Liu, C.; Du, P. C.; Zheng, J.; Gong, X. Bulk heterojunction perovskite hybrid solar cells with large fill factor. Energy Environ. Sci. 2015, 8, 1245–1255.

[3]

Yang, W. S.; Noh, J. H.; Jeon, N. J.; Kim, Y. C.; Ryu, S.; Seo, J.; Seok, S. I. High-performance photovoltaic perovskite layers fabricated through intramolecular exchange. Science 2015, 348, 1234–1237.

[4]

Xu, W. Z.; Gao, Y.; Ming, W. J.; He, F.; Li, J. Z.; Zhu, X. H.; Kang, F. Y.; Li, J. Y.; Wei, G. D. Suppressing defects-induced nonradiative recombination for efficient perovskite solar cells through green antisolvent engineering. Adv. Mater. 2020, 32, 2003965.

[5]

Xu, W. Z.; He, F.; Zhang, M.; Nie, P. B.; Zhang, S. W.; Zhao, C.; Luo, R. P.; Li, J. Z.; Zhang, X.; Zhao, S. C. et al. Minimizing voltage loss in efficient all-inorganic CsPbI2Br perovskite solar cells through energy level alignment. ACS Energy Lett. 2019, 4, 2491–2499.

[6]

Green, M.; Dunlop, E.; Hohl-Ebinger, J.; Yoshita, M.; Kopidakis, N.; Hao, X. J. Solar cell efficiency tables (version 57). Prog. Photovolt. Res. Appl. 2021, 29, 3–15.

[7]

Xu, L. G.; Feng, X. Y.; Jia, W. B.; Lv, W. X.; Mei, A. Y.; Zhou, Y. H.; Zhang, Q.; Chen, R. F.; Huang, W. Recent advances and challenges of inverted lead-free tin-based perovskite solar cells. Energy Environ. Sci. 2021, 14, 4292–4317.

[8]

Kojima, A.; Teshima, K.; Shirai, Y.; Miyasaka, T. Organometal halide perovskites as visible-light sensitizers for photovoltaic cells. J. Am. Chem. Soc. 2009, 131, 6050–6051.

[9]

Min, H.; Lee, D. Y.; Kim, J.; Kim, G.; Lee, K. S.; Kim, J.; Paik, M. J.; Kim, Y. K.; Kim, K. S.; Kim, M. G. et al. Perovskite solar cells with atomically coherent interlayers on SnO2 electrodes. Nature 2021, 598, 444–450.

[10]

Shi, Z. J.; Guo, J.; Chen, Y. H.; Li, Q.; Pan, Y. F.; Zhang, H. J.; Xia, Y. D.; Huang, W. Lead-free organic−inorganic hybrid perovskites for photovoltaic applications: Recent advances and perspectives. Adv. Mater. 2017, 29, 1605005.

[11]

Xi, J.; Wu, Z. X.; Jiao, B.; Dong, H.; Ran, C. X.; Piao, C. C.; Lei, T.; Song, T. B.; Ke, W. J.; Yokoyama, T. et al. Multichannel interdiffusion driven FASnI3 film formation using aqueous hybrid salt/polymer solutions toward flexible lead-free perovskite solar cells. Adv. Mater. 2017, 29, 1606964.

[12]

Noel, N. K.; Stranks, S. D.; Abate, A.; Wehrenfennig, C.; Guarnera, S.; Haghighirad, A. A.; Sadhanala, A.; Eperon, G. E.; Pathak, S. K.; Johnston, M. B. et al. Lead-free organic−inorganic tin halide perovskites for photovoltaic applications. Energy Environ. Sci. 2014, 7, 3061–3068.

[13]

Ran, C. X.; Xi, J.; Gao, W. Y.; Yuan, F.; Lei, T.; Jiao, B.; Hou, X.; Wu, Z. X. Bilateral interface engineering toward efficient 2D−3D bulk heterojunction tin halide lead-free perovskite solar cells. ACS Energy Lett. 2018, 3, 713–721.

[14]

Song, T. B.; Yokoyama, T.; Aramaki, S.; Kanatzidis, M. G. Performance enhancement of lead-free tin-based perovskite solar cells with reducing atmosphere-assisted dispersible additive. ACS Energy Lett. 2017, 2, 897–903.

[15]

Liao, Y. Q.; Liu, H. F.; Zhou, W. J.; Yang, D. W.; Shang, Y. Q.; Shi, Z. F.; Li, B. H.; Jiang, X. Y.; Zhang, L. J.; Quan, L. N. et al. Highly oriented low-dimensional tin halide perovskites with enhanced stability and photovoltaic performance. J. Am. Chem. Soc. 2017, 139, 6693–6699.

[16]

Zhou, J. H.; Hao, M. W.; Zhang, Y.; Ma, X.; Dong, J. C.; Lu, F. F.; Wang, J.; Wang, N.; Zhou, Y. Y. Chemo-thermal surface dedoping for high-performance tin perovskite solar cells. Matter 2022, 5, 683–693.

[17]

Yu, B. B.; Chen, Z. H.; Zhu, Y. D.; Wang, Y. Y.; Han, B.; Chen, G. C.; Zhang, X. S.; Du, Z.; He, Z. B. Heterogeneous 2D/3D tin-halides perovskite solar cells with certified conversion efficiency breaking 14%. Adv. Mater. 2021, 33, 2102055.

[18]

Bernal, C.; Yang, K. S. First-principles hybrid functional study of the organic−inorganic perovskites CH3NH3SnBr3 and CH3NH3SnI3. J. Phys. Chem. C 2014, 118, 24383–24388.

[19]

Herz, L. M. Charge-carrier mobilities in metal halide perovskites: Fundamental mechanisms and limits. ACS Energy Lett. 2017, 2, 1539–1548.

[20]

Stoumpos, C. C.; Malliakas, C. D.; Kanatzidis, M. G. Semiconducting tin and lead iodide perovskites with organic cations: Phase transitions, high mobilities, and near-infrared photoluminescent properties. Inorg. Chem. 2013, 52, 9019–9038.

[21]

Deng, L. L.; Wang, K.; Yang, H. J.; Yu, H. M.; Hu, B. Polymer assist crystallization and passivation for enhancements of open-circuit voltage and stability in tin-halide perovskite solar cells. J. Phys. D:Appl. Phys. 2018, 51, 475102.

[22]

Chang, B. H.; Li, B.; Wang, Z. X.; Li, H.; Wang, L.; Pan, L.; Li, Z. H.; Yin, L. W. Efficient bulk defect suppression strategy in FASnI3 perovskite for photovoltaic performance enhancement. Adv. Funct. Mater. 2022, 32, 2107710.

[23]

Chang, B. H.; Li, B.; Pan, L.; Li, H.; Wang, L.; Fu, L.; Li, Z. H.; Yin, L. W. Polyethylene glycol polymer scaffold induced intermolecular interactions for crystallization regulation and defect passivation in FASnI3 films. ACS Appl. Energy Mater. 2021, 4, 3622–3632.

[24]

Lee, S. J.; Shin, S. S.; Kim, Y. C.; Kim, D.; Ahn, T. K.; Noh, J. H.; Seo, J.; Seok, S. I. Fabrication of efficient formamidinium tin iodide perovskite solar cells through SnF2-pyrazine complex. J. Am. Chem. Soc. 2016, 138, 3974–3977.

[25]

Jokar, E.; Chien, C. H.; Tsai, C. M.; Fathi, A.; Diau, E. W. G. Robust tin-based perovskite solar cells with hybrid organic cations to attain efficiency approaching 10%. Adv. Mater. 2019, 31, 1804835.

[26]

Meng, X. Y.; Wang, Y. B.; Lin, J. B.; Liu, X.; He, X.; Barbaud, J.; Wu, T. H.; Noda, T.; Yang, X. D.; Han, L. Y. Surface-controlled oriented growth of FASnI3 crystals for efficient lead-free perovskite solar cells. Joule 2020, 4, 902–912.

[27]

Meng, X. Y.; Li, Y. F.; Qu, Y. Z.; Chen, H. N.; Jiang, N.; Li, M. H.; Xue, D. J.; Hu, J. S.; Huang, H.; Yang, S. H. Crystallization kinetics modulation of FASnI3 films with pre-nucleation clusters for efficient lead-free perovskite solar cells. Angew. Chem., Int. Ed. 2021, 60, 3693–3698.

[28]

Khadka, D. B.; Shirai, Y.; Yanagida, M.; Miyano, K. Pseudohalide functional additives in tin halide perovskite for efficient and stable Pb-free perovskite solar cells. ACS Appl. Energy Mater. 2021, 4, 12819–12826.

[29]

Cao, J. P.; Tang, G. Q.; You, P.; Wang, T. Y.; Zheng, F. Y.; Zhao, J.; Yan, F. Enhanced performance of planar perovskite solar cells induced by van der Waals epitaxial growth of mixed perovskite films on WS2 flakes. Adv. Funct. Mater. 2020, 30, 2002358.

[30]

Al-Ashouri, A.; Magomedov, A.; Roß, M.; Jošt, M.; Talaikis, M.; Chistiakova, G.; Bertram, T.; Márquez, J. A.; Köhnen, E.; Kasparavičius, E. et al. Conformal monolayer contacts with lossless interfaces for perovskite single junction and monolithic tandem solar cells. Energy Environ. Sci. 2019, 12, 3356–3369.

[31]

Xu, W. Z.; Zhu, T.; Wu, H. D.; Liu, L.; Gong, X. Poly(ethylene glycol) diacrylate as the passivation layer for high-performance perovskite solar cells. ACS Appl. Mater. Interfaces 2020, 12, 45045–45055.

[32]

Nie, W. Y.; Tsai, H.; Asadpour, R.; Blancon, J. C.; Neukirch, A. J.; Gupta, G.; Crochet, J. J.; Chhowalla, M.; Tretiak, S.; Alam, M. A. et al. High-efficiency solution-processed perovskite solar cells with millimeter-scale grains. Science 2015, 347, 522–525.

[33]

Li, M.; Wang, Z. K.; Zhuo, M. P.; Hu, Y.; Hu, K. H.; Ye, Q. Q.; Jain, S. M.; Yang, Y. G.; Gao, X. Y.; Liao, L. S. Pb-Sn-Cu ternary organometallic halide perovskite solar cells. Adv. Mater. 2018, 30, 1800258.

[34]

Gu, L.; Li, D. L.; Chao, L. F.; Dong, H.; Hui, W.; Niu, T. T.; Ran, C. X.; Xia, Y. D.; Song, L.; Chen, Y. H. et al. Strain engineering of metal-halide perovskites toward efficient photovoltaics: Advances and perspectives. Sol. RRL 2021, 5, 2000672.

[35]

Dou, J.; Zhu, C.; Wang, H.; Han, Y.; Ma, S.; Niu, X. X.; Li, N. X.; Shi, C. B.; Qiu, Z. W.; Zhou, H. P. et al. Synergistic effects of Eu-MOF on perovskite solar cells with improved stability. Adv. Mater. 2021, 33, 2102947.

[36]

Wang, H.; Zhu, C.; Liu, L.; Ma, S.; Liu, P. F.; Wu, J. F.; Shi, C. B.; Du, Q.; Hao, Y. M.; Xiang, S. S. et al. Interfacial residual stress relaxation in perovskite solar cells with improved stability. Adv. Mater. 2019, 31, 1904408.

[37]

Boyd, C. C.; Cheacharoen, R.; Leijtens, T.; McGehee, M. D. Understanding degradation mechanisms and improving stability of perovskite photovoltaics. Chem. Rev. 2019, 119, 3418–3451.

[38]

Liu, D. T.; Luo, D. Y.; Iqbal, A. N.; Orr, K. W. P.; Doherty, T. A. S.; Lu, Z. H.; Stranks, S. D.; Zhang, W. Strain analysis and engineering in halide perovskite photovoltaics. Nat. Mater. 2021, 20, 1337–1346.

Nano Research
Pages 481-488
Cite this article:
Xu W, Gao Y, He M, et al. Functional polymer passivating FA0.85PEA0.15SnI3 for efficient and stable lead-free perovskite solar cells. Nano Research, 2023, 16(1): 481-488. https://doi.org/10.1007/s12274-022-4722-7
Topics:

939

Views

7

Crossref

6

Web of Science

6

Scopus

0

CSCD

Altmetrics

Received: 18 April 2022
Revised: 07 June 2022
Accepted: 29 June 2022
Published: 05 August 2022
© Tsinghua University Press 2022
Return