Journal Home > Volume 16 , Issue 1

MoS2 is considered as an ideal electrode material in the field of energy storage due to high theoretical specific capacity and unique layered structure. However, limited interlayer distance and poor intrinsic electrical conductivity restrict its potential real-world application. Herein, an alternately intercalated structure of MoS2 monolayer and N-doped porous carbon (NC) layer is grown on reduced graphene oxide (rGO) via a chemical intercalated strategy. The expanded interlayer distance of MoS2 (0.96 nm), enlarged by the intercalation of N-doped porous carbon layers, can enhance ion diffusion mobility, provide additional reactive sites for ion storage and maintain the stability of electrode structure. In addition, the hierarchical structures between rGO substrate and intercalated N-doped carbon layers construct a three-dimensional (3D) conductive network, which can significantly improve the electrical conductivity and the structural stability. As a result, the rGO-supported MoS2/NC electrode exhibits an ultrahigh reversible capacity and remarkable long cycling stability for sodium-ion batteries (SIBs) and potassium-ion (PIBs). Meanwhile, the as-obtained MoS2/NC@rGO electrode also delivers a superior cycle performance of 250 mAh·g−1 after 160 cycles at 0.5 A·g−1 when employed as an anode for sodium-ion full cells.


menu
Abstract
Full text
Outline
Electronic supplementary material
About this article

MoS2-intercalated carbon hetero-layers bonded on graphene as electrode materials for enhanced sodium/potassium ion storage

Show Author's information Laiying Jing1,2,§Junwei Sun1,§Chaoyang Sun1Di Wu1Gang Lian1( )Deliang Cui1Qilong Wang3Haohai Yu1
State Key Lab of Crystal Materials, Shandong University, Jinan 250100, China
School of Materials Science and Engineering, Qilu University of Technology (Shandong Academy of Sciences), Jinan 250353, China
Key Laboratory for Special Functional Aggregated Materials of Education Ministry, School of Chemistry & Chemical Engineering, Shandong University, Jinan 250100, China

§ Laiying Jing and Junwei Sun contributed equally to this work.

Abstract

MoS2 is considered as an ideal electrode material in the field of energy storage due to high theoretical specific capacity and unique layered structure. However, limited interlayer distance and poor intrinsic electrical conductivity restrict its potential real-world application. Herein, an alternately intercalated structure of MoS2 monolayer and N-doped porous carbon (NC) layer is grown on reduced graphene oxide (rGO) via a chemical intercalated strategy. The expanded interlayer distance of MoS2 (0.96 nm), enlarged by the intercalation of N-doped porous carbon layers, can enhance ion diffusion mobility, provide additional reactive sites for ion storage and maintain the stability of electrode structure. In addition, the hierarchical structures between rGO substrate and intercalated N-doped carbon layers construct a three-dimensional (3D) conductive network, which can significantly improve the electrical conductivity and the structural stability. As a result, the rGO-supported MoS2/NC electrode exhibits an ultrahigh reversible capacity and remarkable long cycling stability for sodium-ion batteries (SIBs) and potassium-ion (PIBs). Meanwhile, the as-obtained MoS2/NC@rGO electrode also delivers a superior cycle performance of 250 mAh·g−1 after 160 cycles at 0.5 A·g−1 when employed as an anode for sodium-ion full cells.

Keywords: sodium-ion batteries, MoS2, graphene, expanded interlayer spacing, potassium-ion batteries

References(50)

[1]

Choi, J. W.; Aurbach, D. Promise and reality of post-lithium-ion batteries with high energy densities. Nat. Rev. Mater. 2016, 1, 16013.

[2]

Mei, J.; Liao, T.; Sun, Z. Q. 2D/2D heterostructures: Rational design for advanced batteries and electrocatalysis. Energy Environ. Mater. 2022, 5, 115–132.

[3]

Hwang, J. Y.; Myung, S. T.; Sun, Y. K. Sodium-ion batteries: Present and future. Chem. Soc. Rev. 2017, 46, 3529–3614.

[4]

Rajagopalan, R.; Tang, Y. G.; Ji, X. B.; Jia, C. K.; Wang, H. Y. Advancements and challenges in potassium ion batteries: A comprehensive review. Adv. Funct. Mater. 2020, 30, 1909486.

[5]
Tong, Z. Q.; Kang, T. X.; Wu, Y.; Zhang, F.; Tang, Y. B.; Lee, C. S. Novel metastable Bi: Co and Bi: Fe alloys nanodots@carbon as anodes for high rate K-ion batteries. Nano Res. in press, https://doi.org/10.1007/s12274-022-4398-z.
[6]

Mu, S. N.; Liu, Q. R.; Kidkhunthod, P.; Zhou, X. L.; Wang, W. L.; Tang, Y. B. Molecular grafting towards high-fraction active nanodots implanted in N-doped carbon for sodium dual-ion batteries. Natl. Sci. Rev. 2021, 8, nwaa178.

[7]

Zhang, J.; Lai, L.; Wang, H.; Chen, M.; Shen, Z. X. Energy storage mechanisms of anode materials for potassium ion batteries. Mater. Today Energy 2021, 21, 100747.

[8]

Du, P.; Cao, L.; Zhang, B.; Wang, C. H.; Xiao, Z. M.; Zhang, J. F.; Wang, D.; Ou, X. Recent progress on heterostructure materials for next-generation sodium/potassium ion batteries. Renew. Sustain. Energy Rev. 2021, 151, 111640.

[9]

Xiao, S. H.; Li, X. Y.; Li, T. S.; Xiang, Y.; Chen, J. S. Practical strategies for enhanced performance of anode materials in Na+/K+-ion batteries. J. Mater. Chem. A 2021, 9, 7317–7335.

[10]

Pan, Q. G.; Zheng, Y. P.; Tong, Z. P.; Shi, L.; Tang, Y. B. Novel lamellar tetrapotassium pyromellitic organic for robust high-capacity potassium storage. Angew. Chem., Int. Ed. 2021, 60, 11835–11840.

[11]

Wu, C.; Dou, S. X.; Yu, Y. The state and challenges of anode materials based on conversion reactions for sodium storage. Small 2018, 14, 1703671.

[12]

Yin, H.; Han, C. J.; Liu, Q. R.; Wu, F. Y.; Zhang, F.; Tang, Y. B. Recent advances and perspectives on the polymer electrolytes for sodium/potassium-ion batteries. Small, 2021, 17, 2006627.

[13]

Wu, Y.; Yu, Y. 2D material as anode for sodium ion batteries: Recent progress and perspectives. Energy Storage Mater. 2019, 16, 323–343.

[14]

Sun, Y. F.; Terrones, M.; Schaak, R. E. Colloidal nanostructures of transition-metal dichalcogenides. Acc. Chem. Res. 2021, 54, 1517–1527.

[15]

Wang, P. Y.; Sun, S. M.; Jiang, Y.; Cai, Q.; Zhang, Y. H.; Zhou, L. M.; Fang, S. M.; Liu, J.; Yu, Y. Hierarchical microtubes constructed by MoS2 nanosheets with enhanced sodium storage performance. ACS Nano 2020, 14, 15577–15586.

[16]

Xie, X. Q.; Makaryan, T.; Zhao, M. Q.; Van Aken, K. L.; Gogotsi, Y.; Wang, G. X. MoS2 nanosheets vertically aligned on carbon paper: A freestanding electrode for highly reversible sodium-ion batteries. Adv. Energy Mater. 2016, 6, 1502161.

[17]

Bang, G. S.; Nam, K. W.; Kim, J. Y.; Shin, J.; Choi, J. W.; Choi, S. Y. Effective liquid-phase exfoliation and sodium ion battery application of MoS2 nanosheets. ACS Appl. Mater. Interfaces 2014, 6, 7084–7089.

[18]

Zhang, X. Q.; Li, X. N.; Liang, J. W.; Zhu, Y. C.; Qian, Y. T. Synthesis of MoS2@C Nanotubes via the kirkendall effect with enhanced electrochemical performance for lithium ion and sodium ion batteries. Small 2016, 12, 2484–2491.

[19]

Choi, S. H.; Ko, Y. N.; Lee, J. K.; Kang, Y. C. 3D MoS2-graphene microspheres consisting of multiple nanospheres with superior sodium ion storage properties. Adv. Funct. Mater. 2015, 25, 1780–1788.

[20]

Deng, Z. N.; Jiang, H.; Hu, Y. J.; Liu, Y.; Zhang, L.; Liu, H. L.; Li, C. Z. 3D ordered macroporous MoS2@C nanostructure for flexible Li-Ion batteries. Adv. Mater. 2017, 29, 1603020.

[21]

Lu, Y. Y.; Zhao, Q.; Zhang, N.; Lei, K. X.; Li, F. J.; Chen, J. Facile spraying synthesis and high-performance sodium storage of mesoporous MoS2/C microspheres. Adv. Funct. Mater. 2016, 26, 911–918.

[22]

Pan, Q. C.; Zhang, Q. B.; Zheng, F. H.; Liu, Y. Z.; Li, Y. P.; Ou, X.; Xiong, X. H.; Yang, C. H.; Liu, M. L. Construction of MoS2/C hierarchical tubular heterostructures for high performance sodium ion batteries. ACS Nano 2018, 12, 12578–12586.

[23]

Sun, J. W.; Lian, G.; Jing, L. Y.; Wu, D.; Cui, D. L.; Wang, Q. L.; Yu, H. H.; Zhang, H. J.; Wong, C. P. Assembly of flower-like VS2/N-doped porous carbon with expanded (001) plane on RGO for superior Na-ion and K-ion storage. Nano Res. 2022, 15, 4108–4116.

[24]

Hu, X.; Liu, Y. J.; Li, J. W.; Wang, G. X.; Chen, J. X.; Zhong, G. B.; Zhan, H. B.; Wen, Z. H. Self-assembling of conductive interlayer-expanded WS2 nanosheets into 3D hollow hierarchical microflower bud hybrids for fast and stable sodium storage. Adv. Funct. Mater. 2020, 30, 1907677.

[25]

Sun, J. W.; Jiao, S. L.; Lian, G.; Jing, L. Y.; Cui, D. L.; Wang, Q.; Wong, C. P. Hierarchical MoS2/m-C@a-C@Ti3C2 nanohybrids as superior electrodes for enhanced sodium storage and hydrogen evolution reaction. Chem. Eng. J. 2021, 421, 129680.

[26]

Xu, D.; Chen, L.; Su, X. Z.; Jiang, H. L.; Lian, C.; Liu, H. L.; Chen, L.; Hu, Y. J.; Jiang, H.; Li, C. Z. Heterogeneous MoSe2/nitrogen-doped-carbon nanoarrays: Engineering atomic interface for potassium-ion storage. Adv. Funct. Mater. 2022, 32, 2110223.

[27]

Jing, L. Y.; Lian, G.; Niu, F. E.; Yang, J.; Wang, Q. L.; Cui, D. L.; Wong, C. P.; Liu, X. Z. Few-atomic-layered hollow nanospheres constructed from alternate intercalation of carbon and MoS2 monolayers for sodium and lithium storage. Nano Energy 2018, 51, 546–555.

[28]

Wang, G.; Zhang, J.; Yang, S.; Wang, F. X.; Zhuang, X. D.; Müllen, K.; Feng, X. L. Vertically aligned MoS2 nanosheets patterned on electrochemically exfoliated graphene for high-performance lithium and sodium storage. Adv. Energy Mater. 2018, 8, 1702254.

[29]

Jing, L. Y.; Lian, G.; Wang, J. R.; Zhao, M. W.; Liu, X. Z.; Wang, Q. L.; Cui, D. L.; Wong, C. P. Porous-hollow nanorods constructed from alternate intercalation of carbon and MoS2 monolayers for lithium and sodium storage. Nano Res. 2019, 12, 1912–1920.

[30]

Zhao, C. T.; Yu, C.; Zhang, M. D.; Sun, Q.; Li, S. F.; Norouzi Banis, M.; Han, X. T.; Dong, Q.; Yang, J.; Wang, G. et al. Enhanced sodium storage capability enabled by super wide-interlayer-spacing MoS2 integrated on carbon fibers. Nano Energy 2017, 41, 66–74.

[31]

Shan, T. T.; Xin, S.; You, Y.; Cong, H. P.; Yu, S. H.; Manthiram, A. Combining nitrogen-doped graphene sheets and MoS2: A unique film-foam-film structure for enhanced lithium storage. Angew. Chem., Int. Ed. 2016, 55, 12783–12788.

[32]

Wu, J. X.; Qin, X. Y.; Zhang, H. R.; He, Y. B.; Li, B. H.; Ke, L.; Lv, W.; Du, H. D.; Yang, Q. H.; Kang, F. Y. Multilayered silicon embedded porous Carbon/Graphene hybrid film as a high performance anode. Carbon 2015, 84, 434–443.

[33]

Li, H. M.; Dong, W.; Shen, X. Y.; Ge, C. D.; Song, Y. L.; Wang, Z. S.; Wang, A. R.; Yang, Z. Q.; Hao, M. W.; Zhang, Y. et al. Enhancing the efficiency and stability of CsPbI3 nanocrystal-based light-emitting diodes through ligand engineering with octylamine. J. Phys. Chem. C 2022, 126, 1085–1093.

[34]

Ren, W. N.; Zhang, H. F.; Guan, C.; Cheng, C. W. Ultrathin MoS2 nanosheets@metal organic framework-derived N-doped carbon nanowall arrays as sodium ion battery anode with superior cycling life and rate capability. Adv. Funct. Mater. 2017, 27, 1702116.

[35]

Zhang, X. E.; Zhao, R. F.; Wu, Q. H.; Li, W. L.; Shen, C.; Ni, L. B.; Yan, H.; Diao, G. W.; Chen, M. Petal-like MoS2 nanosheets space-confined in hollow mesoporous carbon spheres for enhanced lithium storage performance. ACS Nano 2017, 11, 8429–8436.

[36]

Wu, C. H.; Ou, J. Z.; He, F. Y.; Ding, J. F.; Luo, W.; Wu, M. H.; Zhang, H. J. Three-dimensional MoS2/carbon sandwiched architecture for boosted lithium storage capability. Nano Energy 2019, 65, 104061.

[37]

Wu, K.; Cao, X.; Li, M. Y.; Lei, B.; Zhan, J.; Wu, M. H. Bottom-up synthesis of MoS2/CNTs hollow polyhedron with 1T/2H hybrid phase for superior potassium-ion storage. Small 2020, 16, 2004178.

[38]

Czerw, R.; Terrones, M.; Charlier, J. C.; Blase, X.; Foley, B.; Kamalakaran, R.; Grobert, N.; Terrones, H.; Tekleab, D.; Ajayan, P. M. et al. Identification of electron donor states in N-doped carbon nanotubes. Nano Lett. 2001, 1, 457–460.

[39]

Wu, J. X.; Lu, Z. H.; Li, K. K.; Cui, J.; Yao, S. S.; Haq, M. I. U.; Li, B. H.; Yang, Q. H.; Kang, F.; Ciucci, F. et al. Hierarchical MoS2/carbon microspheres as long-life and high-rate anodes for sodium-ion batteries. J. Mater. Chem. A 2018, 6, 5668–5677.

[40]

Ge, P.; Hou, H. S.; Cao, X. Y.; Li, S. J.; Zhao, G. G.; Guo, T. X.; Wang, C.; Ji, X. B. Multidimensional evolution of carbon structures underpinned by temperature-induced intermediate of chloride for sodium-ion batteries. Adv. Sci. 2018, 5, 1800080.

[41]

Li, L. J.; Chen, Z. Y.; Zhang, Q.; Xu, M. B.; Zhou, X.; Zhu, H. L.; Zhang, K. L. A hydrolysis-hydrothermal route for the synthesis of ultrathin LiAlO2-inlaid LiNi0.5Co0.2Mn0.3O2 as a high-performance cathode material for lithium ion batteries. J. Mater. Chem. A 2015, 3, 894–904.

[42]

Cao, J. M.; Sun, Z. Q.; Li, J. Z.; Zhu, Y. K.; Yuan, Z. Y.; Zhang, Y. M.; Li, D. D.; Wang, L. L.; Han, W. Microbe-assisted assembly of Ti3C2Tx MXene on fungi-derived nanoribbon heterostructures for ultrastable sodium and potassium ion storage. ACS Nano 2021, 15, 3423–3433.

[43]

Cao, J. M.; Li, J. Z.; Li, D. D.; Yuan, Z. Y.; Zhang, Y. M.; Shulga, V.; Sun, Z. Q.; Han, W. Strongly coupled 2D transition metal chalcogenide-MXene-carbonaceous nanoribbon heterostructures with ultrafast ion transport for boosting sodium/potassium ions storage. Nano-Micro Lett. 2021, 13, 113.

[44]

Hou, M. X.; Li, X.; Wang, J. W.; Jing, L. Y.; Li, M. Alternately intercalated superstructure of MoS2 and C monolayers for high-performance sodium-ion energy storage and efficient removal of Cr (VI). Energy Fuels, 2022, 36, 2880–2889.

[45]

Hao, S.; Shen, X.; Tian, M.; Yu, R. C.; Wang, Z. X.; Chen, L. Q. Reversible conversion of MoS2 upon sodium extraction. Nano Energy 2017, 41, 217–224.

[46]

Chen, B.; Lu, H. H.; Zhou, J. W.; Ye, C.; Shi, C. S.; Zhao, N. Q.; Qiao, S. Z. Porous MoS2/carbon spheres anchored on 3D interconnected multiwall carbon nanotube networks for ultrafast Na storage. Adv. Energy Mater. 2018, 8, 1702909.

[47]

Muller, G. A.; Cook, J. B.; Kim, H. S.; Tolbert, S. H.; Dunn, B. High performance pseudocapacitor based on 2D layered metal chalcogenide nanocrystals. Nano Lett. 2015, 15, 1911–1917.

[48]

Augustyn, V.; Come, J.; Lowe, M. A.; Kim, J. W.; Taberna, P. L.; Tolbert, S. H.; Abruña, H. D.; Simon, P.; Dunn, B. High-rate electrochemical energy storage through Li+ intercalation pseudocapacitance. Nat. Mater. 2013, 12, 518–522.

[49]

Zhang, K.; Park, M.; Zhou, L. M.; Lee, G. H.; Shin, J.; Hu, Z.; Chou, S. L.; Chen, J.; Kang, Y. M. Cobalt-doped FeS2 nanospheres with complete solid solubility as a high-performance anode material for sodium-ion batteries. Angew. Chem., Int. Ed. 2016, 55, 12822–12826.

[50]

Di, S. J.; Ding, P.; Wang, Y. Y.; Wu, Y. L.; Deng, J.; Jia, L.; Li, Y. G. Interlayer-expanded MoS2 assemblies for enhanced electrochemical storage of potassium ions. Nano Res. 2020, 13, 225–230.

File
12274_2022_4721_MOESM1_ESM.pdf (7.6 MB)
Publication history
Copyright

Publication history

Received: 28 March 2022
Revised: 16 June 2022
Accepted: 30 June 2022
Published: 30 July 2022
Issue date: January 2023

Copyright

© Tsinghua University Press 2022
Return