Journal Home > Volume 16 , Issue 1

Spatially uniform high-temperature superconducting films are highly desirable for exploring novel properties and popularizing applications. To improve the uniformity, we fabricate monolayer FeSexTe1x (0 < x ≤ 1) films on SrTiO3(001) by topotactic reaction of monolayer FeTe films with selenium. Using in situ low-temperature scanning tunneling microscopy/spectroscopy, we demonstrate atomic-level uniformity of element distribution and well-defined superconducting gaps of ~ 15 meV in FeSexTe1−x films. In particular, the monolayer FeSe films exhibit fewer line defects and higher superfluid density as evidenced by sharper coherence peaks than those prepared by the co-evaporation method. Our results provide a promising way to optimize sample quality and lay a foundation for studying new physics and drawing reliable conclusions.


menu
Abstract
Full text
Outline
About this article

Preparation of spatially uniform monolayer FeSexTe1−x (0 < x ≤ 1) by topotactic reaction

Show Author's information Zhongxu Wei1,2Cui Ding3,2Yujie Sun1Lili Wang2( )Qi-Kun Xue1,2,3( )
Department of Physics, Southern University of Science and Technology, Shenzhen 518055, China
State Key Laboratory of Low-Dimensional Quantum Physics, Department of Physics, Tsinghua University, Beijing 10008, China
Beijing Academy of Quantum Information Sciences, Beijing 100193, China

Abstract

Spatially uniform high-temperature superconducting films are highly desirable for exploring novel properties and popularizing applications. To improve the uniformity, we fabricate monolayer FeSexTe1x (0 < x ≤ 1) films on SrTiO3(001) by topotactic reaction of monolayer FeTe films with selenium. Using in situ low-temperature scanning tunneling microscopy/spectroscopy, we demonstrate atomic-level uniformity of element distribution and well-defined superconducting gaps of ~ 15 meV in FeSexTe1−x films. In particular, the monolayer FeSe films exhibit fewer line defects and higher superfluid density as evidenced by sharper coherence peaks than those prepared by the co-evaporation method. Our results provide a promising way to optimize sample quality and lay a foundation for studying new physics and drawing reliable conclusions.

Keywords: scanning tunneling microscopy, monolayer FeSexTe1−x, interface superconductivity, topotactic reaction

References(40)

[1]

Shi, X.; Han, Z. Q.; Richard, P.; Wu, X. X.; Peng, X. L.; Qian, T.; Wang, S. C.; Hu, J. P.; Sun, Y. J.; Ding, H. FeTe1−xSex monolayer films: Towards the realization of high-temperature connate topological superconductivity. Sci. Bull. 2017, 62, 503–507.

[2]

Peng, X. L.; Li, Y.; Wu, X. X.; Deng, H. B.; Shi, X.; Fan, W. H.; Li, M.; Huang, Y. B.; Qian, T.; Richard, P. et al. Observation of topological transition in high-Tc superconducting monolayer FeTe1−xSex films on SrTiO3(001). Phys. Rev. B 2019, 100, 155134.

[3]

Chen, C.; Jiang, K.; Zhang, Y.; Liu, C. F.; Liu, Y.; Wang, Z. Q.; Wang, J. Atomic line defects and zero-energy end states in monolayer Fe(Te, Se) high-temperature superconductors. Nat. Phys. 2020, 16, 536–540.

[4]

Liu, C. F.; Chen, C.; Liu, X. Q.; Wang, Z. Q.; Liu, Y.; Ye, S. S.; Wang, Z. Q.; Hu, J. P.; Wang, J. Zero-energy bound states in the high-temperature superconductors at the two-dimensional limit. Sci. Adv. 2020, 6, eaax7547.

[5]

Wang, Q. Y.; Li, Z.; Zhang, W. H.; Zhang, Z. C.; Zhang, J. S.; Li, W.; Ding, H.; Ou, Y. B.; Deng, P.; Chang, K. et al. Interface-induced high-temperature superconductivity in single unit-cell fese films on SrTiO3. Chin. Phys. Lett. 2012, 29, 037402.

[6]

Zhang, W. H.; Li, Z.; Li, F. S.; Zhang, H. M.; Peng, J. P.; Tang, C. J.; Wang, Q. Y.; He, K.; Chen, X.; Wang, L. L. et al. Interface charge doping effects on superconductivity of single-unit-cell FeSe films on SrTiO3 substrates. Phys. Rev. B 2014, 89, 060506(R).

[7]

Chen, C.; Liu, C. F.; Liu, Y.; Wang, J. Bosonic mode and impurity-scattering in monolayer Fe(Te, Se) high-temperature superconductors. Nano Lett. 2020, 20, 2056–2061.

[8]

Tan, S. Y.; Zhang, Y.; Xia, M.; Ye, Z. R.; Chen, F.; Xie, X.; Peng, R.; Xu, D. F.; Fan, Q.; Xu, H. C. et al. Interface-induced superconductivity and strain-dependent spin density waves in FeSe/SrTiO3 thin films. Nat. Mater. 2013, 12, 634–640.

[9]

Lee, J. J.; Schmitt, F. T.; Moore, R. G.; Johnston, S.; Cui, Y. T.; Li, W.; Yi, M.; Liu, Z. K.; Hashimoto, M.; Zhang, Y. et al. Interfacial mode coupling as the origin of the enhancement of Tc in FeSe films on SrTiO3. Nature 2014, 515, 245–248.

[10]

Xu, Y.; Rong, H. T.; Wang, Q. Y.; Wu, D. S.; Hu, Y.; Cai, Y. Q.; Gao, Q.; Yan, H. T.; Li, C.; Yin, C. H. et al. Spectroscopic evidence of superconductivity pairing at 83 K in single-layer FeSe/SrTiO3 films. Nat. Commun. 2021, 12, 2840.

[11]

Zhang, W. H.; Sun, Y.; Zhang, J. S.; Li, F. S.; Guo, M. H.; Zhao, Y. F.; Zhang, H. M.; Peng, J. P.; Xing, Y.; Wang, H. C. et al. Direct observation of high-temperature superconductivity in one-unit-cell fese films. Chin. Phys. Lett. 2014, 31, 017401.

[12]

Wang, Q. Y.; Zhang, W. H.; Chen, W. W.; Xing, Y.; Sun, Y.; Wang, Z. Q.; Mei, J. W.; Wang, Z. F.; Wang, L. L.; Ma, X. C. et al. Spin fluctuation induced linear magnetoresistance in ultrathin superconducting FeSe films. 2D Mater. 2017, 4, 034004.

[13]

Cui, W. Q.; Zheng, C.; Zhang, L. G.; Kang, Z. X.; Li, L. X.; Cai, X. Q.; Zhao, D. P.; Hu, X. P.; Chen, X.; Wang, Y. L. et al. An in situ electrical transport measurement system under ultra-high vacuum. Rev. Sci. Instrum. 2020, 91, 063902.

[14]

Faeth, B. D.; Yang, S. L.; Kawasaki, J. K.; Nelson, J. N.; Mishra, P.; Parzyck, C. T.; Li, C.; Schlom, D. G.; Shen, K. M. Incoherent cooper pairing and pseudogap behavior in single-layer FeSe/SrTiO3. Phys. Rev. X 2021, 11, 021054.

[15]

Li, F. S.; Ding, H.; Tang, C. J.; Peng, J. P.; Zhang, Q. H.; Zhang, W. H.; Zhou, G. Y.; Zhang, D.; Song, C. L.; He, K. et al. Interface-enhanced high-temperature superconductivity in single-unit-cell FeTe1 xSex films on SrTiO3. Phys. Rev. B 2015, 91, 220503(R).

[16]

Gong, G. M.; Yang, H. H.; Zhang, Q. H.; Ding, C.; Zhou, J. S.; Chen, Y. J.; Meng, F. Q.; Zhang, Z. Y.; Dong, W. F.; Zheng, F. W. et al. Oxygen vacancy modulated superconductivity in monolayer FeSe on SrTiO3-δ. Phys. Rev. B 2019, 100, 224504.

[17]

Tanaka, T.; Akiyama, K.; Ichinokura, S.; Shimizu, R.; Hitosugi, T.; Hirahara, T. Superconducting dome revealed by surface structure dependence in single unit cell FeSe on SrTiO3(001). Phys. Rev. B 2020, 101, 205421.

[18]

Si, W.; Tanaka, T.; Ichinokura, S.; Hirahara, T. Substrate-induced broken C4 symmetry and gap variation in superconducting single-layer FeSe/SrTiO3- (13×13). Phys. Rev. B 2022, 105, 104502.

[19]

Li, Z.; Peng, J. P.; Zhang, H. M.; Zhang, W. H.; Ding, H.; Deng, P.; Chang, K.; Song, C. L.; Ji, S. H.; Wang, L. L. Molecular beam epitaxy growth and post-growth annealing of FeSe films on SrTiO3: A scanning tunneling microscopy study. J. Phys.: Condens. Matter 2014, 26, 265002.

[20]

Jiao, X. T.; Gong, G. M.; Zhang, Z. Y.; Dong, W. F.; Ding, C.; Pan, M. H.; Wang, L. L.; Xue, Q. K. Post-growth Fe deposition on the superconductivity of monolayer FeSe films on SrTiO3−δ. Phys. Rev. Mater. 2022, 6, 064803.

[21]

Fan, Q.; Zhang, W. H.; Liu, X.; Yan, Y. J.; Ren, M. Q.; Peng, R.; Xu, H. C.; Xie, B. P.; Hu, J. P.; Zhang, T. et al. Plain s-wave superconductivity in single-layer FeSe on SrTiO3 probed by scanning tunnelling microscopy. Nat. Phys. 2015, 11, 946–952.

[22]

Zhang, H. M.; Ge, Z. Z.; Weinert, M.; Li, L. Sign changing pairing in single layer FeSe/SrTiO3 revealed by nonmagnetic impurity bound states. Commun. Phys. 2020, 3, 75.

[23]
HeX. B.LiG. R.ZhangJ. D.KarkiA. B.JinR. Y.SalesB. C.SefatA. S.McGuireM. A.MandrusD.PlummerE. W. Nanoscale chemical phase separation in FeTe0.55Se0.45 as seen via scanning tunneling spectroscopy Phys. Rev. B201183220502(R)10.1103/PhysRevB.83.220502

He, X. B.; Li, G. R.; Zhang, J. D.; Karki, A. B.; Jin, R. Y.; Sales, B. C.; Sefat, A. S.; McGuire, M. A.; Mandrus, D.; Plummer, E. W. Nanoscale chemical phase separation in FeTe0.55Se0.45 as seen via scanning tunneling spectroscopy. Phys. Rev. B 2011, 83, 220502(R).

[24]

Bao, W.; Qiu, Y.; Huang, Q.; Green, M. A.; Zajdel, P.; Fitzsimmons, M. R.; Zhernenkov, M.; Chang, S.; Fang, M.; Qian, B. et al. Tunable (δπ, δπ)-type antiferromagnetic order in α-Fe(Te, Se) superconductors. Phys. Rev. Lett. 2009, 102, 247001.

[25]

Liu, T. J.; Hu, J.; Qian, B.; Fobes, D.; Mao, Z. Q.; Bao, W.; Reehuis, M.; Kimber, S. A. J.; Prokeš, K.; Matas, S. et al. From (π, 0) magnetic order to superconductivity with (π, π) magnetic resonance in Fe1.02Te1 xSex. Nat. Mater. 2010, 9, 718–720.

[26]

Okamoto, H. The FeSe (iron-selenium) system. J. Phase Equilib. 1991, 12, 383–389.

[27]

Rodriguez, E. E.; Stock, C.; Zajdel, P.; Krycka, K. L.; Majkrzak, C. F.; Zavalij, P.; Green, M. A. Magnetic-crystallographic phase diagram of the superconducting parent compound Fe1+xTe. Phys. Rev. B 2011, 84, 064403.

[28]

Li, F. S.; Zhang, Q. H.; Tang, C. J.; Liu, C.; Shi, J. N.; Nie, C. N.; Zhou, G. Y.; Li, Z.; Zhang, W. H.; Song, C. L. et al. Atomically resolved FeSe/SrTiO3(001) interface structure by scanning transmission electron microscopy. 2D Mater. 2016, 3, 024002.

[29]

Tantardini, C.; Oganov, A. R. Thermochemical electronegativities of the elements. Nat. Commun. 2021, 12, 2087.

[30]

Zhang, Z. M.; Cai, M.; Li, R.; Meng, F. Q.; Zhang, Q. H.; Gu, L.; Ye, Z. J.; Xu, G.; Fu, Y. S.; Zhang, W. H. Controllable synthesis and electronic structure characterization of multiple phases of iron telluride thin films. Phys. Rev. Mater. 2020, 4, 125003.

[31]

Hanaguri, T.; Niitaka, S.; Kuroki, K.; Takagi, H. Unconventional s-wave superconductivity in Fe(Se, Te). Science 2010, 328, 474–476.

[32]

Lin, W. Z.; Li, Q.; Sales, B. C.; Jesse, S.; Sefat, A. S.; Kalinin, S. V.; Pan, M. H. Direct probe of interplay between local structure and superconductivity in FeTe0.55Se0.45. ACS Nano 2013, 7, 2634–2641.

[33]

Zhao, H.; Li, H.; Dong, L. Y.; Xu, B. J.; Schneeloch, J.; Zhong, R. D.; Fang, M. H.; Gu, G. D.; Harter, J.; Wilson, S. D. et al. Nematic transition and nanoscale suppression of superconductivity in Fe(Te, Se). Nat. Phys. 2021, 17, 903–908.

[34]

Mohanta, N.; Taraphder, A. Oxygen vacancy clustering and pseudogap behaviour at the LaAlO3/SrTiO3 interface. J. Phys.:Condens. Matter 2014, 26, 215703.

[35]

Wei, Z.; Qin, S.; Ding, C.; Hu, J.; Sun, Y.; Wang, L.; Xue, Q. K. Identifying s-wave pairing symmetry in single-layer FeSe from topologically trivial edge states. arXiv 2022, 2207, 13889.

[36]

Ruan, W.; Li, X. T.; Hu, C.; Hao, Z. Q.; Li, H. W.; Cai, P.; Zhou, X. J.; Lee, D. H.; Wang, Y. Y. Visualization of the periodic modulation of Cooper pairing in a cuprate superconductor. Nat. Phys. 2018, 14, 1178–1182.

[37]

Cho, D.; Bastiaans, K. M.; Chatzopoulos, D.; Gu, G. D.; Allan, M. P. A strongly inhomogeneous superfluid in an iron-based superconductor. Nature 2019, 571, 541–545.

[38]

Ge, Z. Z.; Yan, C. H.; Zhang, H. M.; Agterberg, D.; Weinert, M.; Li, L. Evidence for d-wave superconductivity in single layer FeSe/SrTiO3 probed by quasiparticle scattering off step edges. Nano Lett. 2019, 19, 2497–2502.

[39]

Zhang, H. M.; Zhang, D.; Lu, X. W.; Liu, C.; Zhou, G. Y.; Ma, X. C.; Wang, L. L.; Jiang, P.; Xue, Q. K.; Bao, X. H. Origin of charge transfer and enhanced electron-phonon coupling in single unit-cell FeSe films on SrTiO3. Nat. Commun. 2017, 8, 214.

[40]

He, S. L.; He, J. F.; Zhang, W. H.; Zhao, L.; Liu, D. F.; Liu, X.; Mou, D. X.; Ou, Y. B.; Wang, Q. Y.; Li, Z. et al. Phase diagram and electronic indication of high-temperature superconductivity at 65 K in single-layer FeSe films. Nat. Mater. 2013, 12, 605–610.

Publication history
Copyright
Acknowledgements

Publication history

Received: 17 May 2022
Revised: 23 June 2022
Accepted: 29 June 2022
Published: 02 September 2022
Issue date: January 2023

Copyright

© Tsinghua University Press 2022

Acknowledgements

Acknowledgements

This work was supported by the National Natural Science Foundation of China (Nos. 12074210, 51788104 and 11790311), the National Basic Research Program of China (Nos. 2017YFA0303303), and the Basic and Applied Basic Research Major Programme of Guangdong Province, China (No. 2021B0301030003) and Jihua Laboratory (No. X210141TL210).

Return