Journal Home > Volume 16 , Issue 1

Lithium-ion batteries are considered a promising energy storage technology in portable electronics and electric vehicles due to their high energy density, competitive cost, and environmental friendliness. Improving cathode materials is an effective way to meet the demand for better batteries, of which the utilization of high-voltage cathode materials is an important development trend. In recent years, lithium-rich layered oxides have gained great attention due to their desirable energy density. This review presents the relationships between lattice structure and electrochemical properties, the underlying degradation mechanisms, and corresponding modification strategies. The recent progress and strategies are then highlighted, including element doping, surface coating, morphology design, size control, etc. Finally, a concise perspective for future developments and practical applications of lithium-rich layered oxides has been provided.


menu
Abstract
Full text
Outline
About this article

Challenges and strategies of lithium-rich layered oxides for Li-ion batteries

Show Author's information Lu NieShaojie ChenWei Liu( )
School of Physical Science and Technology, ShanghaiTech University, Shanghai 201210, China

Abstract

Lithium-ion batteries are considered a promising energy storage technology in portable electronics and electric vehicles due to their high energy density, competitive cost, and environmental friendliness. Improving cathode materials is an effective way to meet the demand for better batteries, of which the utilization of high-voltage cathode materials is an important development trend. In recent years, lithium-rich layered oxides have gained great attention due to their desirable energy density. This review presents the relationships between lattice structure and electrochemical properties, the underlying degradation mechanisms, and corresponding modification strategies. The recent progress and strategies are then highlighted, including element doping, surface coating, morphology design, size control, etc. Finally, a concise perspective for future developments and practical applications of lithium-rich layered oxides has been provided.

Keywords: lithium-ion batteries, lithium-rich layered oxides, degradation mechanism, lattice structure, element doping

References(134)

[1]

Zhang, X.; Yang, Y. G.; Zhou, Z. Towards practical lithium-metal anodes. Chem. Soc. Rev. 2020, 49, 3040–3071.

[2]

Wu, F. X.; Maier, J.; Yu, Y. Guidelines and trends for next-generation rechargeable lithium and lithium-ion batteries. Chem. Soc. Rev. 2020, 49, 1569–1614.

[3]

Fan, E. S.; Li, L.; Wang, Z. P.; Lin, J.; Huang, Y. X.; Yao, Y.; Chen, R. J.; Wu, F. Sustainable recycling technology for Li-ion batteries and beyond: Challenges and future prospects. Chem. Rev. 2020, 120, 7020–7063.

[4]

Sharifi-Asl, S.; Lu, J.; Amine, K.; Shahbazian-Yassar, R. Oxygen release degradation in Li-ion battery cathode materials: Mechanisms and mitigating approaches. Adv. Energy Mater. 2019, 9, 1900551.

[5]

Susai, F. A.; Sclar, H.; Shilina, Y.; Penki, T. R.; Raman, R.; Maddukuri, S.; Maiti, S.; Halalay, I. C.; Luski, S.; Markovsky, B. et al. Horizons for Li-ion batteries relevant to electro-mobility: High-specific-energy cathodes and chemically active separators. Adv. Mater. 2018, 30, 1801348.

[6]

Jiang, M.; Danilov, D. L.; Eichel, R. A.; Notten, P. H. L. A Review of degradation mechanisms and recent achievements for Ni-rich cathode-based Li-ion batteries. Adv. Energy Mater. 2021, 11, 2103005.

[7]

Kraytsberg, A.; Ein-Eli, Y. Higher, stronger, better… A review of 5 volt cathode materials for advanced lithium-ion batteries. Adv. Energy Mater. 2012, 2, 922–939.

[8]

Feng, Z.; Rajagopalan, R.; Sun, D.; Tang, Y. G.; Wang, H. Y. In-situ formation of hybrid Li3PO4-AlPO4-Al(PO3)3 coating layer on LiNi0. 8Co0. 1Mn0. 1O2 cathode with enhanced electrochemical properties for lithium-ion battery. Chem. Eng. J. 2020, 382, 122959.

[9]

Liu, X. S.; Zheng, B. Z.; Zhao, J.; Zhao, W. M.; Liang, Z. T.; Su, Y.; Xie, C. P.; Zhou, K.; Xiang, Y. X.; Zhu, J. P. et al. Electrochemo-mechanical effects on structural integrity of Ni-rich cathodes with different microstructures in all solid-state batteries. Adv. Energy Mater. 2021, 11, 2003583.

[10]

Xu, X.; Huo, H.; Jian, J. Y.; Wang, L. G.; Zhu, H.; Xu, S.; He, X. S.; Yin, G. P.; Du, C. Y.; Sun, X. L. Radially oriented single-crystal primary nanosheets enable ultrahigh rate and cycling properties of LiNi0.8Co0.1Mn0.1O2 cathode material for lithium-ion batteries. Adv. Energy Mater. 2019, 9, 1803963.

[11]

Wang, L. L.; Ma, J.; Wang, C.; Yu, X. R.; Liu, R.; Jiang, F.; Sun, X. W.; Du, A. B.; Zhou, X. H.; Cui, G. L. A novel bifunctional self-stabilized strategy enabling 4.6 V LiCoO2 with excellent long-term cyclability and high-rate capability. Adv. Sci. 2019, 6, 1900355.

[12]
ZhangJ. N.LiQ. H.OuyangC. Y.YuX. Q.GeM. Y.HuangX. J.HuE. Y.MaC.LiS. F.XiaoR. J. Trace doping of multiple elements enables stable battery cycling of LiCoO2 at 4.6 VNat. Energy2019459460310.1038/s41560-019-0409-z

Zhang, J. N.; Li, Q. H.; Ouyang, C. Y.; Yu, X. Q.; Ge, M. Y.; Huang, X. J.; Hu, E. Y.; Ma, C.; Li, S. F.; Xiao, R. J. et al. Trace doping of multiple elements enables stable battery cycling of LiCoO2 at 4.6 V. Nat. Energy 2019, 4, 594–603.

[13]

Lyu, Y. C.; Wu, X.; Wang, K.; Feng, Z. J.; Cheng, T.; Liu, Y.; Wang, M.; Chen, R. M.; Xu, L. M.; Zhou, J. J. et al. An overview on the advances of LiCoO2 cathodes for lithium-ion batteries. Adv. Energy Mater. 2021, 11, 2000982.

[14]

Bai, P.; Cogswell, D. A.; Bazant, M. Z. Suppression of phase separation in LiFePO4 nanoparticles during battery discharge. Nano Lett. 2011, 11, 4890–4896.

[15]

Malik, R.; Zhou, F.; Ceder, G. Kinetics of non-equilibrium lithium incorporation in LiFePO4. Nat. Mater. 2011, 10, 587–590.

[16]

Liu, H.; Strobridge, F. C.; Borkiewicz, O. J.; Wiaderek, K. M.; Chapman, K. W.; Chupas, P. J.; Grey, C. P. Capturing metastable structures during high-rate cycling of LiFePO4 nanoparticle electrodes. Science 2014, 344, 1252817.

[17]

Tang, W.; Hou, Y. Y.; Wang, F. X.; Liu, L. L.; Wu, Y. P.; Zhu, K. LiMn2O4 nanotube as cathode material of second-level charge capability for aqueous rechargeable batteries. Nano Lett. 2013, 13, 2036–2040.

[18]

Lee, S.; Cho, Y.; Song, H. K.; Lee, K. T.; Cho, J. Carbon-coated single-crystal LiMn2O4 nanoparticle clusters as cathode material for high-energy and high-power lithium-ion batteries. Angew. Chem. , Int. Ed. 2012, 51, 8748–8752.

[19]

Xiao, J. F.; Li, J.; Xu, Z. M. Recycling metals from lithium ion battery by mechanical separation and vacuum metallurgy. J. Hazard. Mater. 2017, 338, 124–131.

[20]

Li, W. D.; Song, B. H.; Manthiram, A. High-voltage positive electrode materials for lithium-ion batteries. Chem. Soc. Rev. 2017, 46, 3006–3059.

[21]

Xu, J.; Sun, M. L.; Qiao, R. M.; Renfrew, S. E.; Ma, L.; Wu, T. P.; Hwang, S.; Nordlund, D.; Su, D.; Amine, K. et al. Elucidating anionic oxygen activity in lithium-rich layered oxides. Nat. Commun. 2018, 9, 947.

[22]

Eum, D.; Kim, B.; Kim, S. J.; Park, H.; Wu, J. P.; Cho, S. P.; Yoon, G.; Lee, M. H.; Jung, S. K.; Yang, W. L. et al. Voltage decay and redox asymmetry mitigation by reversible cation migration in lithium-rich layered oxide electrodes. Nat. Mater. 2020, 19, 419–427.

[23]

Nie, L.; Wang, Z. Y.; Zhao, X. W.; Chen, S. J.; He, Y. J.; Zhao, H. J.; Gao, T. Y.; Zhang, Y.; Dong, L.; Kim, F. et al. Cation/anion codoped and cobalt-free Li-rich layered cathode for high-performance Li-ion batteries. Nano Lett. 2021, 21, 8370–8377.

[24]

Assat, G.; Foix, D.; Delacourt, C.; Iadecola, A.; Dedryvère, R.; Tarascon, J. M. Fundamental interplay between anionic/cationic redox governing the kinetics and thermodynamics of lithium-rich cathodes. Nat. Commun. 2017, 8, 2219.

[25]

Gent, W. E.; Lim, K.; Liang, Y. F.; Li, Q. H.; Barnes, T.; Ahn, S. J.; Stone, K. H.; McIntire, M.; Hong, J.; Song, J. H. et al. Coupling between oxygen redox and cation migration explains unusual electrochemistry in lithium-rich layered oxides. Nat. Commun. 2017, 8, 2091.

[26]

Hong, J.; Gent, W. E.; Xiao, P. H.; Lim, K.; Seo, D. H.; Wu, J. P.; Csernica, P. M.; Takacs, C. J.; Nordlund, D.; Sun, C. J. et al. Metal-oxygen decoordination stabilizes anion redox in Li-rich oxides. Nat. Mater. 2019, 18, 256–265.

[27]

Koichi, N.; Chie, S.; Shoji, Y. Synthesis of solid solutions in a system of LiCoO2-Li2MnO3 for cathode materials of secondary lithium batteries. Chem. Lett. 1997, 26, 725–726.

[28]

Singer, A.; Zhang, M.; Hy, S.; Cela, D.; Fang, C.; Wynn, T. A.; Qiu, B.; Xia, Y.; Liu, Z.; Ulvestad, A. et al. Nucleation of dislocations and their dynamics in layered oxide cathode materials during battery charging. Nat. Energy 2018, 3, 641–647.

[29]

Li, X.; Qiao, Y.; Guo, S. H.; Xu, Z. M.; Zhu, H.; Zhang, X. Y.; Yuan, Y.; He, P.; Ishida, M.; Zhou, H. Direct visualization of the reversible O2-/O- redox process in Li-rich cathode materials. Adv. Mater. 2018, 30, 1705197.

[30]

Luo, K.; Roberts, M. R.; Guerrini, N.; Tapia-Ruiz, N.; Hao, R.; Massel, F.; Pickup, D. M.; Ramos, S.; Liu, Y. S.; Guo, J. H. et al. Anion redox chemistry in the cobalt free 3D transition metal oxide intercalation electrode Li[Li0.2Ni0.2Mn0. 6]O2. J. Am. Chem. Soc. 2016, 138, 11211–11218.

[31]

Zhao, E. Y.; Zhang, M. H.; Wang, X. L.; Hu, E. Y.; Liu, J.; Yu, X. Q.; Olguin, M.; Wynn, T. A.; Meng, Y. S.; Page, K. et al. Local structure adaptability through multi cations for oxygen redox accommodation in Li-rich layered oxides. Energy Storage Mater. 2020, 24, 384–393.

[32]

Nie, L.; Li, Y. F.; Chen, S. J.; Li, K.; Huang, Y. Q.; Zhu, Y. B.; Sun, Z. T.; Zhang, J. C.; He, Y. J.; Cui, M. K. et al. Biofilm nanofiber-coated separators for dendrite-free lithium metal anode and ultrahigh-rate lithium batteries. ACS Appl. Mater. Interfaces 2019, 11, 32373–32380.

[33]

Nie, L.; Liang, C.; Chen, S. J.; He, Y. J.; Liu, W. Y.; Zhao, H. J.; Gao, T. Y.; Sun, Z. T.; Hu, Q. L.; Zhang, Y. et al. Improved electrochemical performance of Li-rich layered oxide cathodes enabled by a two-step heat treatment. ACS Appl. Mater. Interfaces 2021, 13, 13281–13288.

[34]

Fan, Y. M.; Zhang, W. C.; Zhao, Y. L.; Guo, Z. P.; Cai, Q. Fundamental understanding and practical challenges of lithium-rich oxide cathode materials: Layered and disordered-rocksalt structure. Energy Storage Mater. 2021, 40, 51–71.

[35]

Zhao, S. Q.; Guo, Z. Q.; Yan, K.; Wan, S. W.; He, F. R.; Sun, B.; Wang, G. X. Towards high-energy-density lithium-ion batteries: Strategies for developing high-capacity lithium-rich cathode materials. Energy Storage Mater. 2021, 34, 716–734.

[36]

Li, N.; Hwang, S.; Sun, M. L.; Fu, Y. B.; Battaglia, V. S.; Su, D.; Tong, W. Unraveling the voltage decay phenomenon in Li-rich layered oxide cathode of No oxygen activity. Adv. Energy Mater. 2019, 9, 1902258.

[37]

Peralta, D.; Colin, J. F.; Boulineau, A.; Simonin, L.; Fabre, F.; Bouvet, J.; Feydi, P.; Chakir, M.; Chapuis, M.; Patoux, S. Role of the composition of lithium-rich layered oxide materials on the voltage decay. J. Power Sources 2015, 280, 687–694.

[38]

Yang, J. S.; Xiao, L. F.; He, W.; Fan, J. W.; Chen, Z. X.; Ai, X. P.; Yang, H. X.; Cao, Y. L. Understanding voltage decay in lithium-rich manganese-based layered cathode materials by limiting cutoff voltage. ACS Appl. Mater. Interfaces 2016, 8, 18867–18877.

[39]

Xiao, P. H.; Deng, Z. Q.; Manthiram, A.; Henkelman, G. Calculations of oxygen stability in lithium-rich layered cathodes. J. Phys. Chem. C 2012, 116, 23201–23204.

[40]

Huang, Z.; Xiong, T. F.; Lin, X.; Tian, M. Y.; Zeng, W. H.; He, J. W.; Shi, M. Y.; Li, J. N.; Zhang, G. B.; Mai, L. Q. et al. Carbon dioxide directly induced oxygen vacancy in the surface of lithium-rich layered oxides for high-energy lithium storage. J. Power Sources 2019, 432, 8–15.

[41]

Tian, X. Q.; Liu, S. Z.; Jiang, X. Q.; Ye, F.; Cai, R. A new lithium-rich layer-structured cathode material with improved electrochemical performance and voltage maintenance. Int. J. Energy Res. 2019, 43, 7547–7556.

[42]

He, H. B.; Zan, L.; Liu, J.; Zhang, Y. X. Template-assisted molten-salt synthesis of hierarchical lithium-rich layered oxide nanowires as high-rate and long-cycling cathode materials. Electrochim. Acta 2020, 333, 135558.

[43]

Rozier, P.; Tarascon, J. M. Review-Li-rich layered oxide cathodes for next-generation Li-ion batteries: Chances and challenges. J. Electrochem. Soc. 2015, 162, A2490–A2499.

[44]

Lee, W.; Muhammad, S.; Sergey, C.; Lee, H.; Yoon, J.; Kang, Y. M.; Yoon, W. S. Advances in the cathode materials for lithium rechargeable batteries. Angew. Chem. , Int. Ed. 2020, 59, 2578–2605.

[45]

Ye, Z. C.; Qiu, L.; Yang, W.; Wu, Z. G.; Liu, Y. X.; Wang, G. K.; Song, Y.; Zhong, B. H.; Guo, X. D. Nickel-rich layered cathode materials for lithium-ion batteries. Chem. -Eur. J. 2021, 27, 4249–4269.

[46]

Kim, S.; Cho, W.; Zhang, X. B.; Oshima, Y.; Choi, J. W. A stable lithium-rich surface structure for lithium-rich layered cathode materials. Nat. Commun. 2016, 7, 13598.

[47]

Qiu, B.; Zhang, M. H.; Lee, S. Y.; Liu, H. D.; Wynn, T. A.; Wu, L. J.; Zhu, Y. M.; Wen, W.; Brown, C. M.; Zhou, D. et al. Metastability and reversibility of anionic redox-based cathode for high-energy rechargeable batteries. Cell Rep. Phys. Sci. 2020, 1, 100028.

[48]

Assat, G.; Tarascon, J. M. Fundamental understanding and practical challenges of anionic redox activity in Li-ion batteries. Nat. Energy 2018, 3, 373–386.

[49]

Hu, S. J.; Pillai, A. S.; Liang, G. M.; Pang, W. K.; Wang, H. Q.; Li, Q. Y.; Guo, Z. P. Li-rich layered oxides and their practical challenges: Recent progress and perspectives. Electrochem. Energy Rev. 2019, 2, 277–311.

[50]

Li, Q. Y.; Zhou, D.; Zhang, L. J.; Ning, D.; Chen, Z. H.; Xu, Z. J.; Gao, R.; Liu, X. Z.; Xie, D. H.; Schumacher, G. et al. Tuning anionic redox activity and reversibility for a high-capacity Li-rich Mn-based oxide cathode via an integrated strategy. Adv. Funct. Mater. 2019, 29, 1806706.

[51]

Wang, Y. Q.; Yang, Z. Z.; Qian, Y. M.; Gu, L.; Zhou, H. S. New insights into improving rate performance of lithium-rich cathode material. Adv. Mater. 2015, 27, 3915–3920.

[52]

Wang, D.; Huang, Y.; Huo, Z. Q.; Chen, L. Synthesize and electrochemical characterization of Mg-doped Li-rich layered Li[Li0.2Ni0.2Mn0.6]O2 cathode material. Electrochim. Acta 2013, 107, 461–466.

[53]
ShenC. H.WangQ.FuF.HuangL.LinZ.ShenS. Y.SuH.ZhengX. M.XuB. B.LiJ. T. Facile synthesis of the Li-rich layered oxide Li1.23Ni0.09Co0.12Mn0.56O2 with superior lithium storage performance and new insights into structural transformation of the layered oxide material during charge-discharge cycle: In situ XRD characterizationACS Appl. Mater. Interfaces201465516552410.1002/chem.201683362

Shen, C. H.; Wang, Q.; Fu, F.; Huang, L.; Lin, Z.; Shen, S. Y.; Su, H.; Zheng, X. M.; Xu, B. B.; Li, J. T. et al. Facile synthesis of the Li-rich layered oxide Li1.23Ni0.09Co0.12Mn0.56O2 with superior lithium storage performance and new insights into structural transformation of the layered oxide material during charge-discharge cycle: In situ XRD characterization. ACS Appl. Mater. Interfaces 2014, 6, 5516–5524.

[54]

Si, M. T.; Wang, D. D.; Zhao, R.; Pan, D.; Zhang, C.; Yu, C. Y.; Lu, X.; Zhao, H. L.; Bai, Y. Local electric-field-driven fast Li diffusion kinetics at the piezoelectric LiTaO3 modified Li-rich cathode-electrolyte interphase. Adv. Sci. 2020, 7, 1902538.

[55]

Liu, Y. Y.; Yang, Z.; Zhong, J. J.; Li, J. L.; Li, R. R.; Yu, Y.; Kang, F. Y. Surface-functionalized coating for lithium-rich cathode material to achieve ultra-high rate and excellent cycle performance. ACS Nano 2019, 13, 11891–11900.

[56]

Hu, E. Y.; Yu, X. Q.; Lin, R. Q.; Bi, X. X.; Lu, J.; Bak, S.; Nam, K. W.; Xin, H. L.; Jaye, C.; Fischer, D. A. et al. Evolution of redox couples in Li- and Mn-rich cathode materials and mitigation of voltage fade by reducing oxygen release. Nat. Energy 2018, 3, 690–698.

[57]

Sun, G.; Yu, F. D.; Que, L. F.; Deng, L.; Wang, M. J.; Jiang, Y. S.; Shao, G. J.; Wang, Z. B. Local electronic structure modulation enhances operating voltage in Li-rich cathodes. Nat. Energy 2019, 66, 104102.

[58]

Han, M.; Jiao, J. Y.; Liu, Z. P.; Shen, X.; Zhang, Q. H.; Lin, H. J.; Chen, C. T.; Kong, Q. Y.; Pang, W. K.; Guo, Z. P. et al. Eliminating transition metal migration and anionic redox to understand voltage hysteresis of lithium-rich layered oxides. Adv. Energy Mater. 2020, 10, 1903634.

[59]

Lian, F.; Li, Y.; He, Y.; Guan, H. Y.; Yan, K.; Qiu, W. H.; Chou, K. C.; Axmann, P.; Wohlfahrt-Mehrens, M. Preparation of LiBOB via rheological phase method and its application to mitigate voltage fade of Li1.16[Mn0.75Ni0.25]0. 84O2 cathode. RSC Adv. 2015, 5, 86763–86770.

[60]

Wu, F. L.; Kim, G. T.; Kuenzel, M.; Zhang, H.; Asenbauer, J.; Geiger, D.; Kaiser, U.; Passerini, S. Elucidating the effect of iron doping on the electrochemical performance of Cobalt-free lithium-rich layered cathode materials. Adv. Energy Mater. 2019, 9, 1902445.

[61]

Wang, C. C.; Manthiram, A. Influence of cationic substitutions on the first charge and reversible capacities of lithium-rich layered oxide cathodes. J. Mater. Chem. A 2013, 1, 10209–10217.

[62]

Zhuo, Z. Q.; Dai, K. H.; Qiao, R. M.; Wang, R.; Wu, J. P.; Liu, Y. L.; Peng, J. Y.; Chen, L. Q.; Chuang, Y. D.; Pan, F. et al. Cycling mechanism of Li2MnO3: Li-CO2 batteries and commonality on oxygen redox in cathode materials. Joule 2021, 5, 975–997.

[63]

Zhao, T. L.; Zhou, N.; Zhang, X. X.; Xue, Q.; Wang, Y. H.; Yang, M. L.; Li, L.; Chen, R. J. Structure evolution from layered to spinel during synthetic control and cycling process of Fe-containing Li-rich cathode materials for lithium-ion batteries. ACS Omega 2017, 2, 5601–5610.

[64]

Qing, R. P.; Shi, J. L.; Xiao, D. D.; Zhang, X. D.; Yin, Y. X.; Zhai, Y. B.; Gu, L.; Guo, Y. G. Enhancing the kinetics of Li-rich cathode materials through the pinning effects of gradient surface Na+ doping. Adv. Energy Mater. 2016, 6, 1501914.

[65]

Wang, D. D.; Xu, T. H.; Li, Y. P.; Pan, D.; Lu, X.; Hu, Y. S.; Dai, S.; Bai, Y. Integrated surface functionalization of Li-rich cathode materials for Li-ion batteries. ACS Appl. Mater. Interfaces 2018, 10, 41802–41813.

[66]

Oh, P.; Myeong, S.; Cho, W.; Lee, M. J.; Ko, M.; Jeong, H. Y.; Cho, J. Superior long-term energy retention and volumetric energy density for Li-rich cathode materials. Nano Lett. 2014, 14, 5965–5972.

[67]

Ding, X. K.; Luo, D.; Cui, J. X.; Xie, H. X.; Ren, Q. Q.; Lin, Z. An Ultra-long-life lithium-rich Li1.2Mn0.6Ni0.2O2 cathode by three-in-one surface modification for lithium-ion batteries. Angew. Chem. , Int. Ed. 2020, 59, 7778–7782.

[68]

Lee, J.; Kitchaev, D. A.; Kwon, D. H.; Lee, C. W.; Papp, J. K.; Liu, Y. S.; Lun, Z. Y.; Clement, R. J.; Shi, T.; McCloskey, B. D. et al. Reversible Mn2+/Mn4+ double redox in lithium-excess cathode materials. Nature 2018, 556, 185–190.

[69]

Sun, Z. H.; Xu, L. Q.; Dong, C. Q.; Zhang, H. T.; Zhang, M. T.; Ma, Y. F.; Liu, Y. Y.; Li, Z. J.; Zhou, Y.; Han, Y. et al. A facile gaseous sulfur treatment strategy for Li-rich and Ni-rich cathode materials with high cycling and rate performance. Nano Energy 2019, 63, 103887.

[70]

He, W.; Guo, W. B.; Wu, H. L.; Lin, L.; Liu, Q.; Han, X.; Xie, Q. S.; Liu, P. F.; Zheng, H. F.; Wang, L. S. et al. Challenges and recent advances in high capacity Li-rich cathode materials for high energy density lithium-ion batteries. Adv. Mater. 2021, 33, 2005937.

[71]

Mohanty, D.; Li, J. L.; Abraham, D. P.; Huq, A.; Payzant, E. A.; Wood III, D. L.; Daniel, C. Unraveling the voltage-fade mechanism in high-energy-density lithium-ion batteries: Origin of the tetrahedral cations for spinel conversion. Chem. Mater. 2014, 26, 6272–6280.

[72]

Zhang, J. C.; Zhang, Q. H.; Wong, D.; Zhang, N.; Ren, G. X.; Gu, L.; Schulz, C.; He, L. H.; Yu, Y.; Liu, X. F. Addressing voltage decay in Li-rich cathodes by broadening the gap between metallic and anionic bands. Nat. Commun. 2021, 12, 3071.

[73]

Liu, S.; Liu, Z. P.; Shen, X.; Wang, X. L.; Liao, S. C.; Yu, R. C.; Wang, Z. X.; Hu, Z. W.; Chen, C. T.; Yu, X. Q. et al. Li-Ti cation mixing enhanced structural and performance stability of Li-rich layered oxide. Adv. Energy Mater. 2019, 9, 1901530.

[74]

Li, J. F.; Zhan, C.; Lu, J.; Yuan, Y. F.; Shahbazian-Yassar, R.; Qiu, X. P.; Amine, K. Improve first-cycle efficiency and rate performance of layered-layered Li1.2Mn0.6Ni0.2O2 using oxygen stabilizing dopant. ACS Appl. Mater. Interfaces 2015, 7, 16040–16045.

[75]

Liu, D. M.; Fan, X. J.; Li, Z. H.; Liu, T.; Sun, M. H.; Qian, C.; Ling, M.; Liu, Y. J.; Liang, C. D. A cation/anion co-doped Li1.12Na0.08Ni0.2Mn0.6O1.95F0.05 cathode for lithium ion batteries. Nano Energy 2019, 58, 786–796.

[76]

Sun, Z. H.; Xu, L. Q.; Dong, C. Q.; Zhang, H. T.; Zhang, M. T.; Liu, Y. Y.; Zhou, Y.; Han, Y.; Chen, Y. S. Enhanced cycling stability of boron-doped lithium-rich layered oxide cathode materials by suppressing transition metal migration. J. Mater. Chem. A 2019, 7, 3375–3383.

[77]

Zhao, Y.; Liu, J. T.; Wang, S. B.; Ji, R.; Xia, Q. B.; Ding, Z. P.; Wei, W. F.; Liu, Y.; Wang, P.; Ivey, D. G. Surface structural transition induced by gradient polyanion-doping in Li-rich layered oxides: Implications for enhanced electrochemical performance. Adv. Funct. Mater. 2016, 26, 4760–4767.

[78]

Ran, X. X.; Tao, J. M.; Chen, Z. Y.; Yan, Z. R.; Yang, Y. M.; Li, J. X.; Lin, Y. B.; Huang, Z. G. Surface heterostructure induced by TiO2 modification in Li-rich cathode materials for enhanced electrochemical performances. Electrochim. Acta 2020, 353, 135959.

[79]

Shi, S. J.; Tu, J. P.; Tang, Y. Y.; Liu, X. Y.; Zhang, Y. Q.; Wang, X. L.; Gu, C. D. Enhanced cycling stability of Li[Li0.2Mn0.54Ni0.13Co0.13]O2 by surface modification of MgO with melting impregnation method. Electrochim. Acta 2013, 88, 671–679.

[80]

Kobayashi, G.; Irii, Y.; Matsumoto, F.; Ito, A.; Ohsawa, Y.; Yamamoto, S.; Cui, Y. T.; Son, J. Y.; Sato, Y. Improving cycling performance of Li-rich layered cathode materials through combination of Al2O3-based surface modification and stepwise precycling. J. Power Sources 2016, 303, 250–256.

[81]

Wang, Z. Y.; Liu, E. Z.; Guo, L. C.; Shi, C. S.; He, C. N.; Li, J. J.; Zhao, N. Q. Cycle performance improvement of Li-rich layered cathode material Li[Li0.2Mn0.54Ni0.13Co0.13]O2 by ZrO2 coating. Surf. Coat. Technol. 2013, 235, 570–576.

[82]

Kong, J. Z.; Zhai, H. F.; Qian, X.; Wang, M.; Wang, Q. Z.; Li, A. D.; Li, H.; Zhou, F. Improved electrochemical performance of Li1.2Mn0.54Ni0.13Co0.13O2 cathode material coated with ultrathin ZnO. J. Alloys Compd. 2017, 694, 848–856.

[83]

Mei, J.; Chen, Y. Z.; Xu, W. J.; He, W.; Wang, L. S.; Xie, Q. S.; Peng, D. L. Multi-strategy synergistic Li-rich layered oxides with fluorine-doping and surface coating of oxygen vacancy bearing CeO2 to achieve excellent cycling stability. Chem. Eng. J. 2022, 431, 133799.

[84]

Dai, S. C.; Yan, G. J.; Wang, L.; Luo, L. M.; Li, Y. P.; Yang, Y. T.; Liu, H. H.; Liu, Y.; Yuan, M. L. Enhanced electrochemical performance and thermal properties of Ni-rich LiNi0.8Co0.1Mn0.1O2 cathode material via CaF2 coating. J. Electroanal. Chem. 2019, 847, 113197.

[85]

Pang, S. L.; Wang, Y. G.; Chen, T.; Shen, X. Q.; Xi, X. M.; Liao, D. Q. The effect of AlF3 modification on the physicochemical and electrochemical properties of Li-rich layered oxide. Ceram. Int. 2016, 42, 5397–5402.

[86]

Zhu, W.; Chong, S. K.; Sun, J. J.; Guo, S. W.; Tai, Z. G.; Wang, Y. J.; Liu, Y. N. The enhanced electrochemical performance of Li1.2Ni0.2Mn0.6O2 through coating MnF2 nano protective layer. Energy Technol. 2019, 7, 1900443.

[87]

Li, C. D.; Yao, Z. L.; Xu, J.; Tang, P.; Xiong, X. Surface-modified Li[Li0.2Mn0.54Ni0.13Co0.13]O2 nanoparticles with LaF3 as cathode for Li-ion battery. Ionics 2017, 23, 549–558.

[88]

Wang, F. X.; Xiao, S. Y.; Li, M. X.; Wang, X. W.; Zhu, Y. S.; Wu, Y. P.; Shirakawa, A.; Peng, J. A nanocomposite of Li2MnO3 coated by FePO4 as cathode material for lithium ion batteries. J. Power Sources 2015, 287, 416–421.

[89]

Xiao, B. W.; Wang, B. Q.; Liu, J.; Kaliyappan, K.; Sun, Q.; Liu, Y. L.; Dadheech, G.; Balogh, M. P.; Yang, L.; Sham, T. K. et al. Highly stable Li1.2Mn0.54Co0.13Ni0.13O2 enabled by novel atomic layer deposited AlPO4 coating. Nano Energy 2017, 34, 120–130.

[90]

Huang, C.; Wang, Z. J.; Fang, Z. Q.; Zhao, S. X.; Ci, L. J. Achieving high initial coulombic efficiency and low voltage dropping in Li-rich Mn-based cathode materials by Metal-Organic frameworks-derived coating. J. Power Sources 2021, 499, 229967.

[91]

Wu, F.; Liu, J. R.; Li, L.; Zhang, X. X.; Luo, R.; Ye, Y. S.; Chen, R. J. Surface modification of Li-rich cathode materials for lithium-ion batteries with a PEDOT: PSS conducting polymer. ACS Appl. Mater. Interfaces 2016, 8, 23095–23104.

[92]

Zhang, J.; Lu, Q. W.; Fang, J. H.; Wang, J. L.; Yang, J.; NuLi, Y. N. Polyimide encapsulated lithium-rich cathode material for high voltage lithium-ion battery. ACS Appl. Mater. Interfaces 2014, 6, 17965–17973.

[93]

Ma, Y. T.; Liu, P. F.; Xie, Q. S.; Zhang, G. B.; Zheng, H. F.; Cai, Y. X.; Li, Z.; Wang, L. S.; Zhu, Z. Z.; Mai, L. Q. et al. Double-shell Li-rich layered oxide hollow microspheres with sandwich-like carbon@spinel@layered@spinel@carbon shells as high-rate lithium ion battery cathode. Nano Energy 2019, 59, 184–196.

[94]

Xia, Q. B.; Zhao, X. F.; Xu, M. Q.; Ding, Z. P.; Liu, J. T.; Chen, L. B.; Ivey, D. G.; Wei, W. F. A Li-rich Layered@Spinel@Carbon heterostructured cathode material for high capacity and high rate lithium-ion batteries fabricated via an in situ synchronous carbonization-reduction method. J. Mater. Chem. A 2015, 3, 3995–4003.

[95]

Zhuo, H. T.; Zhang, Y.; Wang, D. Z.; He, C. X.; Zhu, C. Z.; Zhang, Q. L.; Li, C. H.; Sun, L. N.; Liu, J. H.; Chen, S. J. Insight into lithium-rich layered cathode materials Li[Li0.1Ni0.45Mn0.45]O2 in situ coated with graphene-like carbon. Electrochim. Acta 2014, 149, 42–48.

[96]

Zhang, X. D.; Shi, J. L.; Liang, J. Y.; Yin, Y. X.; Zhang, J. N.; Yu, X. Q.; Guo, Y. G. Suppressing surface lattice oxygen release of Li-rich cathode materials via heterostructured spinel Li4Mn5O12 coating. Adv. Mater. 2018, 30, 1801751.

[97]

Dong, S. D.; Zhou, Y.; Hai, C. X.; Zeng, J. B.; Sun, Y. X.; Ma, Y. F.; Shen, Y.; Li, X.; Ren, X. F.; Sun, C. et al. Enhanced cathode performance: Mixed Al2O3 and LiAlO2 coating of Li1.2Ni0.13Co0.13Mn0. 54O2. ACS Appl. Mater. Interfaces 2020, 12, 38153–38162.

[98]

Liu, J. D.; Wu, Z. H.; Yu, M.; Hu, H. L.; Zhang, Y. D.; Zhang, K.; Du, Z. X.; Cheng, F. Y.; Chen, J. Building homogenous Li2TiO3 coating layer on primary particles to stabilize Li-rich Mn-based cathode materials. Small 2022, 18, 2106337.

[99]

Fu, F.; Yao, Y. Z.; Wang, H. Y.; Xu, G. L.; Amine, K.; Sun, S. G.; Shao, M. H. Structure dependent electrochemical performance of Li-rich layered oxides in lithium-ion batteries. Nano Energy 2017, 35, 370–378.

[100]

Gao, Z.; Sun, W. L.; Pan, X. L.; Xie, S. K.; Liu, L. J.; Xie, C. N.; Yuan, H. L. Li1.2Mn0. 54Ni0.13Co0.13O2 nanosheets with porous structure as a high-performance cathode material for lithium-ion batteries. RSC Adv. 2021, 11, 36588–36595.

[101]

Min, J. W.; Kalathil, A. K.; Yim, C. J.; Im, W. B. Morphological effects on the electrochemical performance of lithium-rich layered oxide cathodes, prepared by electrospinning technique, for lithium-ion battery applications. Mater. Charact. 2014, 92, 118–126.

[102]

Liu, W.; Liu, N.; Sun, J.; Hsu, P. C.; Li, Y. Z.; Lee, H. W.; Cui, Y. Ionic conductivity enhancement of polymer electrolytes with ceramic nanowire fillers. Nano Lett. 2015, 15, 2740–2745.

[103]

Chen, M.; Chen, D. R.; Liao, Y. H.; Zhong, X. X.; Li, W. S.; Zhang, Y. G. Layered lithium-rich oxide nanoparticles doped with spinel phase: Acidic sucrose-assistant synthesis and excellent performance as cathode of lithium ion battery. ACS Appl. Mater. Interfaces 2016, 8, 4575–4584.

[104]

Wang, D. P.; Belharouak, I.; Zhou, G. W.; Amine, K. Nanoarchitecture multi-structural cathode materials for high capacity lithium batteries. Adv. Funct. Mater. 2013, 23, 1070–1075.

[105]

Qiu, B.; Yin, C.; Xia, Y. G.; Liu, Z. P. Synthesis of three-dimensional nanoporous Li-rich layered cathode oxides for high volumetric and power energy density lithium-ion batteries. ACS Appl. Mater. Interfaces 2017, 9, 3661–3666.

[106]

Zhang, L. J.; Li, N.; Wu, B. R.; Xu, H. L.; Wang, L.; Yang, X. Q.; Wu, F. Sphere-shaped hierarchical cathode with enhanced growth of nanocrystal planes for high-rate and cycling-stable Li-ion batteries. Nano Lett. 2015, 15, 656–661.

[107]

Luo, D.; Ding, X. K.; Fan, J. M.; Zhang, Z. H.; Liu, P. Z.; Yang, X. H.; Guo, J. J.; Sun, S. H.; Lin, Z. Accurate control of initial Coulombic efficiency for lithium-rich manganese-based layered oxides by surface multicomponent integration. Angew. Chem. , Int. Ed. 2020, 59, 23061–23066.

[108]

Zhao, H.; Li, W. T.; Li, J. X.; Xu, H. Y.; Zhang, C.; Li, J.; Han, C.; Li, Z. L.; Chu, M.; Qiu, X. P. Enhance performances of Co-free Li-rich cathode by eutesctic melting salt treatment. Nano Energy 2022, 92, 106760.

[109]

Lin, T. G.; Schulli, T. U.; Hu, Y. X.; Zhu, X. B.; Gu, Q. F.; Luo, B.; Cowie, B.; Wang, L. Z. Faster activation and slower capacity/voltage fading: A bifunctional urea treatment on lithium-rich cathode materials. Adv. Funct. Mater. 2020, 30, 1909192.

[110]
Zhuang, Y. ; Lei, Y. Q. ; Guan, M. Y. ; Du, F. H. ; Cao, H. S. ; Dai, H. ; Zhou, Q. ; Adkins, J. ; Zheng, J. W. 4-Aminobenzoic acid as a novel electrolyte additive for improved electrochemical performance of Li1.2Ni0.2Mn0.6O2 cathodes via in situ electrochemical polymerization. Electrochim. Acta 2020, 331, 135465.
[111]

Zhu, H.; Zhang, Y. L.; Li, M. Y.; Luo, J. H.; Wei, W. F.; Zhang, S. Y. Constructing a stable interface by 2, 4, 6-trimethoxyboroxine as an electrolyte additive for Li-rich layered oxide cathode under high voltage. J. Electroanal. Chem. 2021, 899, 115682.

[112]

Zhou, Y.; Hou, X. H.; Shen, K. X.; Wang, S. F.; Chen, F. M.; Li, Y. J.; Chen, H. D.; Wang, B. Li1.1Na0.1Mn0.534Ni0.133Co0.133O2 as cathode with ameliorated electrochemical performance based on dual Li+/Na+ electrolyte. Ionics 2019, 25, 51–59.

[113]

Chai, K.; Zhang, J. C.; Li, Q. Y.; Wong, D.; Zheng, L. R.; Schulz, C.; Bartkowiak, M.; Smirnov, D.; Liu, X. F. Facilitating reversible cation migration and suppressing O2 escape for high performance Li-rich oxide cathodes. Small 2022, 18, 2201014.

[114]

Zhang, C. X.; Feng, Y. Z.; Wei, B.; Liang, C. P.; Zhou, L. J.; Ivey, D. G.; Wang, P.; Wei, W. F. Heteroepitaxial oxygen-buffering interface enables a highly stable cobalt-free Li-rich layered oxide cathode. Nano Energy 2020, 75, 104995.

[115]

Luo, D.; Fang, S. H.; Yang, L.; Hirano, S. I. Improving the electrochemical performance of layered Li-rich transition-metal oxides by alleviating the blockade effect of surface lithium. J. Mater. Chem. A 2016, 4, 5184–5190.

[116]

Li, Y. X.; Li, W. K.; Shimizu, R.; Cheng, D. Y.; Nguyen, H.; Paulsen, J.; Kumakura, S.; Zhang, M. H.; Meng, Y. S. Elucidating the effect of borate additive in high-voltage electrolyte for Li-rich layered oxide materials. Adv. Energy Mater. 2022, 12, 2103033.

[117]

Ma, Q. X.; Chen, Z. J.; Zhong, S. W.; Meng, J. X.; Lai, F. L.; Li, Z. F.; Cheng, C.; Zhang, L.; Liu, T. F. Na-substitution induced oxygen vacancy achieving high transition metal capacity in commercial Li-rich cathode. Nano Energy 2021, 81, 105622.

[118]

Li, L.; Song, B. H.; Chang, Y. L.; Xia, H.; Yang, J. R.; Lee, K. S.; Lu, L. Retarded phase transition by fluorine doping in Li-rich layered Li1.2Mn0.54Ni0.13Co0.13O2 cathode material. J. Power Sources 2015, 283, 162–170.

[119]

Peng, Z. D.; Mu, K. C.; Cao, Y. B.; Xu, L.; Du, K.; Hu, G. R. Enhanced electrochemical performance of layered Li-rich cathode materials for lithium ion batteries via aluminum and boron dual-doping. Ceram. Int. 2019, 45, 4184–4192.

[120]

Huang, X. P.; Zhang, Z. Y.; He, J. L.; Bai, Z.; Lu, L.; Li, J. Effects of chromium/fluorine co-doping on the electrochemical performance of Li1.2Ni0.13Co0.13Mn0.54O2 cathode material for lithium-ion batteries. J. Mater. Sci. 2021, 56, 9836–9851.

[121]

Zhou, L.; Liu, J.; Huang, L. S.; Jiang, N.; Zheng, Q. J.; Lin, D. M. Sn-doped Li1.2Mn0. 54Ni0.13Co0.13O2 cathode materials for lithium-ion batteries with enhanced electrochemical performance. J. Solid State Electrochem. 2017, 21, 3467–3477.

[122]

Ma, Q. X.; Li, R. H.; Zheng, R. J.; Liu, Y. L.; Huo, H.; Dai, C. S. Improving rate capability and decelerating voltage decay of Li-rich layered oxide cathodes via selenium doping to stabilize oxygen. J. Power Sources 2016, 331, 112–121.

[123]

Lu, C.; Yang, S. Q.; Wu, H.; Zhang, Y.; Yang, X. J.; Liang, T. H. Enhanced electrochemical performance of Li-rich Li1.2Mn0.52Co0.08Ni0.2O2 cathode materials for Li-ion batteries by vanadium doping. Electrochim. Acta 2016, 209, 448–455.

[124]

Zhao, J. K.; Wang, Z. X.; Guo, H. J.; Li, X. H.; He, Z. J.; Li, T. Synthesis and electrochemical characterization of Zn-doped Li-rich layered Li[Li0.2Mn0.54Ni0. 13Co0.13]O2 cathode material. Ceram. Int. 2015, 41, 11396–11401.

[125]

Wang, M.; Han, Y. Q.; Chu, M.; Chen, L.; Liu, M.; Gu, Y. J. Enhanced electrochemical performances of cerium-doped Li-rich Li1.2Ni0. 13Co0.13Mn0.54O2 cathode materials. J. Alloys Compd. 2021, 861, 158000.

[126]

Nayak, P. K.; Grinblat, J.; Levi, M.; Aurbach, D. Electrochemical and structural characterization of carbon coated Li1.2Mn0.56Ni0.16Co0.08O2 and Li1.2Mn0.6Ni0.2O2 as cathode materials for Li-ion batteries. Electrochim. Acta 2014, 137, 546–556.

[127]

Bao, L. Y.; Yang, Z. L.; Chen, L.; Su, Y. F.; Lu, Y.; Li, W. K.; Yuan, F. Y.; Dong, J. Y.; Fang, Y. Y.; Ji, Z. et al. The effects of trace Yb doping on the electrochemical performance of Li-rich layered oxides. ChemSusChem 2019, 12, 2294–2301.

[128]

Li, H. M.; Guo, H. J.; Wang, Z. X.; Wang, J. X.; Li, X. H.; Chen, N.; Gui, W. H. Improving rate capability and decelerating voltage decay of Li-rich layered oxide cathodes by chromium doping. Int. J. Hydrogen Energy 2018, 43, 11109–11119.

[129]

Li, N.; He, Y. S.; Wang, X. P.; Zhang, W. M.; Ma, Z. F.; Zhang, D. Y. Incorporation of rubidium cations into Li1.2Mn0.54Co0.13Ni0.13O2 layered oxide cathodes for improved cycling stability. Electrochim. Acta 2017, 231, 363–370.

[130]

Hu, X.; Guo, H. J.; Peng, W. J.; Wang, Z. X.; Li, X. H.; Hu, Q. Y. Effects of Nb doping on the performance of 0.5Li2MnO3·0.5LiNi1/3Co1/3Mn1/3O2 cathode material for lithium-ion batteries. J. Electroanal. Chem. 2018, 822, 57–65.

[131]

Tang, Y. Q.; Han, X.; Zhang, W. S.; He, Y. J. La doping and coating enabled by one-step method for high performance Li1.2Mn0.54Ni0.13Co0.13O2 Li-rich cathode. Ionics 2020, 26, 3737–3747.

[132]

Laisa, C. P.; Ramesha, R. N.; Ramesha, K. Enhanced electrochemical performance of lithium rich layered cathode materials by Ca2+ substitution. Electrochim. Acta 2017, 256, 10–18.

[133]

Zhou, H. M.; Guan, H.; Yin, C. J.; Liu, B.; Li, J. A potassium/chloride ion co-doped cathode material Li1.18K0.02Ni0.2Mn0.6O1.98Cl0.02 with enhanced electrochemical performance for lithium ion batteries. J. Mater. Sci. :Mater. Electron. 2020, 31, 572–580.

[134]

Yu, T. H.; Li, J. L.; Xu, G. F.; Li, J. G.; Ding, F. X.; Kang, F. Y. Improved cycle performance of Li[Li0.2Mn0.54Co0.13Ni0. 13]O2 by Ga doping for lithium ion battery cathode material. Solid State Ionics 2017, 301, 64–71.

Publication history
Copyright
Acknowledgements

Publication history

Received: 20 May 2022
Revised: 24 June 2022
Accepted: 26 June 2022
Published: 03 August 2022
Issue date: January 2023

Copyright

© Tsinghua University Press 2022

Acknowledgements

Acknowledgements

The authors gratefully acknowledge financial support from National Key Research and Development Program of China (No. 2019YFA0210600) and Shanghai Rising-Star Program (No. 20QA1406600).

Return