AI Chat Paper
Note: Please note that the following content is generated by AMiner AI. SciOpen does not take any responsibility related to this content.
{{lang === 'zh_CN' ? '文章概述' : 'Summary'}}
{{lang === 'en_US' ? '中' : 'Eng'}}
Chat more with AI
Article Link
Collect
Submit Manuscript
Show Outline
Outline
Show full outline
Hide outline
Outline
Show full outline
Hide outline
Research Article

Multifunctional protective aerogel with superelasticity over −196 to 500 °C

Bo-Wen LiuMin CaoYi-Ying ZhangYu-Zhong WangHai-Bo Zhao( )
The Collaborative Innovation Center for Eco-Friendly and Fire-Safety Polymeric Materials (MoE), National Engineering Laboratory of Eco-Friendly Polymeric Materials (Sichuan), State Key Laboratory of Polymer Materials Engineering, College of Chemistry, Sichuan University, Chengdu 610064, China
Show Author Information

Graphical Abstract

This work presents a bidirectionally oriented multi-walled carbon nanotubes (MWCNTs)-reinforced chitosan carbon aerogels (CS-MWCNT) that possess superelasticity, high electromagnetic interference shielding, thermal insulation, and infrared stealth at both low temperatures (such as liquid nitrogen) and high temperatures (such as alcohol flames).

Abstract

Protective materials that possess superelasticity and multifunctionality over a broad temperature range are urgently needed in various advanced applications. However, under harsh work conditions, the performance of current materials may largely deteriorate to lose protective functionality. Herein, we report a bidirectionally oriented multi-walled carbon nanotubes (MWCNTs)-reinforced chitosan carbon aerogel (CS-MWCNT) that possesses superelasticity, high electromagnetic interference shielding, thermal insulation, and infrared stealth at both low temperatures (such as liquid nitrogen) and high temperatures (such as alcohol flames). Highly oriented lamellar arch structures combined with an MWCNTs-reinforced carbon skeleton act as elastic segments to disperse the stress during compression and endow CS-MWCNT with the ability to recover to almost the original size after being compressed at −196–500 °C. The lamellar structures make CS-MWCNT thermally insulating and infrared stealth with a low thermal conductivity of ~ 0.03 W/(m·K). Furthermore, a high electromagnetic interference (EMI) shielding effect of 64 dB is realized via an absorption-dominant EMI shielding mechanism derived from the successive inherently conductive carbon lamella, and the EMI shielding performance is largely maintained after treatment under extreme conditions like low temperature, high temperature, as well as cyclic compression. This work provides a new strategy for the development of temperature-invariant multifunctional aerogels for harsh environment applications.

Electronic Supplementary Material

Download File(s)
12274_2022_4699_MOESM1_ESM.pdf (1.7 MB)

References

1

Gao, H. L.; Zhu, Y. B.; Mao, L. B.; Wang, F. C.; Luo, X. S.; Liu, Y. Y.; Lu, Y.; Pan, Z.; Ge, J.; Shen, W. et al. Super-elastic and fatigue resistant carbon material with lamellar multi-arch microstructure. Nat. Commun. 2016, 7, 12920.

2

Chen, Z. H.; Zhuo, H.; Hu, Y. J.; Lai, H. H.; Liu, L. X.; Zhong, L. X.; Peng, X. W. Wood-derived lightweight and elastic carbon aerogel for pressure sensing and energy storage. Adv. Funct. Mater. 2020, 30, 1910292.

3

Huang, H.; Zhao, Y. P.; Cong, T. Z.; Li, C. W.; Wen, N. X.; Zuo, X. Q.; Guo, Y.; Zhang, H.; Fan, Z.; Pan, L. J. Flexible and alternately layered high-loading film electrode based on 3D carbon nanocoils and PEDOT:PSS for high-energy-density supercapacitor. Adv. Funct. Mater. 2022, 32, 2110777.

4

Han, Y. X.; Ruan, K. P.; Gu, J. W. Janus (BNNS/ANF)-(AgNWs/ANF) thermal conductivity composite films with superior electromagnetic interference shielding and Joule heating performances. Nano Res. 2022, 15, 4747–4755.

5

Wang, T.; Long, M. C.; Zhao, H. B.; An, W. L.; Xu, S. M.; Deng, C.; Wang, Y. Z. Temperature-responsive intumescent chemistry toward fire resistance and super thermal insulation under extremely harsh conditions. Chem. Mater. 2021, 33, 6018–6028.

6

Mao, X.; Zhao, L.; Zhang, K.; Wang, Y. Y.; Ding, B. Highly flexible ceramic nanofibrous membranes for superior thermal insulation and fire retardancy. Nano Res. 2022, 15, 2592–2598.

7

Li, J.; Guo, P. L.; Hu, C. L.; Pang, S. Y.; Ma, J.; Zhao, R. D.; Tang, S. F.; Cheng, H. M. Fabrication of large aerogel-like carbon/carbon composites with excellent load-bearing capacity and thermal-insulating performance at 1800 °C. ACS Nano 2022, 16, 6565–6577.

8

Cheng, Y.; Zhang, X.; Qin, Y. X.; Dong, P.; Yao, W.; Matz, J.; Ajayan, P. M.; Shen, J. F.; Ye, M. X. Super-elasticity at 4 K of covalently crosslinked polyimide aerogels with negative Poisson’s ratio. Nat. Commun. 2021, 12, 4092.

9

Zhou, Y. F.; Li, W. Y.; Li, L. L.; Sun, Z. H.; Jiang, L.; Ma, J. W.; Chen, S. J.; Ning, X.; Zhou, F. L. Lightweight and highly conductive silver nanoparticles functionalized meta-aramid nonwoven fabric for enhanced electromagnetic interference shielding. J. Mater. Sci. 2021, 56, 6499–6513.

10

Yu, Y. Y.; Chao, Z.; Gong, Q.; Li, C. W.; Fu, H. L.; Lei, F.; Hu, D. M.; Zheng, L. X. Tailoring hierarchical carbon nanotube cellular structure for electromagnetic interference shielding in extreme conditions. Mater. Des. 2021, 206, 109783.

11

Wang, L.; Ma, Z. L.; Zhang, Y. L.; Chen, L. X.; Cao, D. P.; Gu, J. W. Polymer-based EMI shielding composites with 3D conductive networks: A mini-review. SusMat 2021, 1, 413–431.

12

Wang, L.; Ma, Z. L.; Zhang, Y. L.; Qiu, H.; Ruan, K. P.; Gu, J. W. Mechanically strong and folding-endurance Ti3C2Tx MXene/PBO nanofiber films for efficient electromagnetic interference shielding and thermal management. Carbon Energy 2022, 4, 200–210.

13

Ma, T. B.; Ma, H.; Ruan, K. P.; Shi, X. T.; Qiu, H.; Gao, S. Y.; Gu, J. W. Thermally conductive poly(lactic acid) composites with superior electromagnetic shielding performances via 3D printing technology. Chin. J. Polym. Sci. 2022, 40, 248–255.

14

Ma, Z. L.; Xiang, X. L.; Shao, L.; Zhang, Y. L.; Gu, J. W. Multifunctional wearable silver nanowire decorated leather nanocomposites for joule heating, electromagnetic interference shielding and piezoresistive sensing. Angew. Chem., Int. Ed. 2022, 61, e202200705.

15

Wang, Y. Q.; Zhao, H. B.; Cheng, J. B.; Liu, B. W.; Fu, Q.; Wang, Y. Z. Hierarchical Ti3C2Tx@ZnO hollow spheres with excellent microwave absorption inspired by the visual phenomenon of eyeless urchins. Nano-Micro Lett. 2022, 14, 76.

16

Shi, H. G.; Zhao, H. B.; Liu, B. W.; Wang, Y. Z. Multifunctional flame-retardant melamine-based hybrid foam for infrared stealth, thermal insulation, and electromagnetic interference shielding. ACS Appl. Mater. Interfaces 2021, 13, 26505–26514.

17

Zhao, W.; Zhao, H. B.; Cheng, J. B.; Li, W. X.; Zhang, J. Y.; Wang, Y. Z. A green, durable and effective flame-retardant coating for expandable polystyrene foams. Chem. Eng. J. 2022, 440, 135807.

18

Wang, M.; Tang, X. H.; Cai, J. H.; Wu, H.; Shen, J. B.; Guo, S. Y. Construction, mechanism and prospective of conductive polymer composites with multiple interfaces for electromagnetic interference shielding: A review. Carbon 2021, 177, 377–402.

19

Li, J.; Wang, Y.; Yue, T. N.; Gao, Y. N.; Shi, Y. D.; Shen, J. B.; Wu, H.; Wang, M. Robust electromagnetic interference shielding, joule heating, thermal conductivity, and anti-dripping performances of polyoxymethylene with uniform distribution and high content of carbon-based nanofillers. Compos. Sci. Technol. 2021, 206, 108681.

20

Gao, Y. N.; Wang, Y.; Yue, T. N.; Zhao, B.; Che, R. C.; Wang, M. Superstructure silver micro-tube composites for ultrahigh electromagnetic wave shielding. Chem. Eng. J. 2022, 430, 132949.

21

Xu, M.; Futaba, D. N.; Yamada, T.; Yumura, M.; Hata, K. Carbon nanotubes with temperature-invariant viscoelasticity from −196 to 1000 °C. Science 2010, 330, 1364–1368.

22

Kim, K. H.; Tsui, M. N.; Islam, M. F. Graphene-coated carbon nanotube aerogels remain superelastic while resisting fatigue and creep over −100 to +500 °C. Chem. Mater. 2017, 29, 2748–2755.

23

Li, C.; Ding, Y. W.; Hu, B. C.; Wu, Z. Y.; Gao, H. L.; Liang, H. W.; Chen, J. F.; Yu, S. H. Temperature-invariant superelastic and fatigue resistant carbon nanofiber aerogels. Adv. Mater. 2020, 32, 1904331.

24
Li, M. E. ; Zhao, H. B. ; Cheng, J. B. ; Wang, T. ; Fu, T. ; Zhang, A. N. ; Wang, Y. Z. An effective green porous structural adhesive for thermal insulating, flame-retardant, and smoke-suppressant expandable polystyrene foam. Engineering, in press, https://doi.org/10.1016/j.eng.2020.08.032.
25

Schaedler, T. A.; Jacobsen, A. J.; Torrents, A.; Sorensen, A. E.; Lian, J.; Greer, J. R.; Valdevit, L.; Carter, W. B. Ultralight metallic microlattices. Science 2011, 334, 962–965.

26

Meza, L. R.; Das, S.; Greer, J. R. Strong, lightweight, and recoverable three-dimensional ceramic nanolattices. Science 2014, 345, 1322–1326.

27

Lee, J. H.; Park, S. J. Recent advances in preparations and applications of carbon aerogels: A review. Carbon 2020, 163, 1–18.

28

Yu, S.; Song, S. L.; Li, R.; Fang, B. Z. The lightest solid meets the lightest gas: An overview of carbon aerogels and their composites for hydrogen related applications. Nanoscale 2020, 12, 19536–19556.

29
Liu, B. W. ; Zhao, H. B. ; Wang, Y. Z. Advanced flame-retardant methods for polymeric materials. Adv. Mater., in press, https://doi.org/10.1002/adma.202107905.
30

Torres, C. E. I.; Quezada, T. E. S.; Kharissova, O. V.; Kharisov, B. I.; De La Fuente, M. I. G. Carbon-based aerogels and xerogels: Synthesis, properties, oil sorption capacities, and DFT simulations. J. Environ. Chem. Eng. 2021, 9, 104886.

31

Liu, Y.; Liu, J. Q.; Song, P. A. Recent advances in polysaccharide-based carbon aerogels for environmental remediation and sustainable energy. Sustain. Mater. Technol. 2021, 27, e00240.

32

Liu, H. Y.; Xu, T.; Cai, C. Y.; Liu, K.; Liu, W.; Zhang, M.; Du, H. S.; Si, C. L.; Zhang, K. Multifunctional superelastic, superhydrophilic, and ultralight nanocellulose-based composite carbon aerogels for compressive supercapacitor and strain sensor. Adv. Funct. Mater. 2022, 32, 2113082.

33

Wang, J.; Xu, Z.; Eloi, J. C.; Titirici, M. M.; Eichhorn, S. J. Ice-templated, sustainable carbon aerogels with hierarchically tailored channels for sodium- and potassium-ion batteries. Adv. Funct. Mater. 2022, 32, 2110862.

34

Guo, P. L.; Li, J.; Pang, S. Y.; Hu, C. L.; Tang, S. F.; Cheng, H. M. Ultralight carbon fiber felt reinforced monolithic carbon aerogel composites with excellent thermal insulation performance. Carbon 2021, 183, 525–529.

35

Zhang, X. S.; Wang, B.; Wu, N.; Han, C.; Wang, Y. D. Multi-phase SiZrOC nanofibers with outstanding flexibility and stability for thermal insulation up to 1400 °C. Chem. Eng. J. 2021, 410, 128304.

36

Wu, K. D.; Zhou, Q.; Cao, J. X.; Qian, Z.; Niu, B.; Long, D. H. Ultrahigh-strength carbon aerogels for high temperature thermal insulation. J. Colloid Interface Sci. 2022, 609, 667–675.

37

Zhou, B.; Han, G. J.; Zhang, Z.; Li, Z. Y.; Feng, Y. Z.; Ma, J. M.; Liu, C. T.; Shen, C. Y. Aramid nanofiber-derived carbon aerogel film with skin-core structure for high electromagnetic interference shielding and solar-thermal conversion. Carbon 2021, 184, 562–570.

38

Song, P.; Liu, B.; Liang, C. B.; Ruan, K. P.; Qiu, H.; Ma, Z. L.; Guo, Y. Q.; Gu, J. W. Lightweight, flexible cellulose-derived carbon aerogel@reduced graphene oxide/PDMS composites with outstanding EMI shielding performances and excellent thermal conductivities. Nano-Micro Lett. 2021, 13, 91.

39

Zhuo, H.; Hu, Y. J.; Tong, X.; Chen, Z. H.; Zhong, L. X.; Lai, H. H.; Liu, L. X.; Jing, S. S.; Liu, Q. Z.; Liu, C. F. et al. A supercompressible, elastic, and bendable carbon aerogel with ultrasensitive detection limits for compression strain, pressure, and bending angle. Adv. Mater. 2018, 30, 1706705.

40

Feng, J. Z.; Zhang, C. R.; Feng, J. Carbon fiber reinforced carbon aerogel composites for thermal insulation prepared by soft reinforcement. Mater. Lett. 2012, 67, 266–268.

41

Kim, K. H.; Oh, Y.; Islam, M. F. Graphene coating makes carbon nanotube aerogels superelastic and resistant to fatigue. Nat. Nanotechnol. 2012, 7, 562–566.

42

Wang, P. Y.; Lei, Y.; Yue, Z. F. Experimental and numerical evaluation of the flexural properties of stitched foam core sandwich structure. Compos. Struct. 2013, 100, 243–248.

43

Wang, T.; Long, M. C.; Zhao, H. B.; Liu, B. W.; Shi, H. G.; An, W. L.; Li, S. L.; Xu, S. M.; Wang, Y. Z. An ultralow-temperature superelastic polymer aerogel with high strength as a great thermal insulator under extreme conditions. J. Mater. Chem. A 2020, 8, 18698–18706.

44

Yu, Z. L.; Qin, B.; Ma, Z. Y.; Huang, J.; Li, S. C.; Zhao, H. Y.; Li, H.; Zhu, Y. B.; Wu, H. A.; Yu, S. H. Superelastic hard carbon nanofiber aerogels. Adv. Mater. 2019, 31, 1900651.

45

Xu, X.; Zhang, Q. Q.; Hao, M. L.; Hu, Y.; Lin, Z. Y.; Peng, L. L.; Wang, T.; Ren, X. X.; Wang, C.; Zhao, Z. P. et al. Double-negative-index ceramic aerogels for thermal superinsulation. Science 2019, 363, 723–727.

46

Zhao, H. B.; Cheng, J. B.; Zhu, J. Y.; Wang, Y. Z. Ultralight CoNi/rGO aerogels toward excellent microwave absorption at ultrathin thickness. J. Mater. Chem. C 2019, 7, 441–448.

47

Cao, M.; Liu, B. W.; Zhang, L.; Peng, Z. C.; Zhang, Y. Y.; Wang, H.; Zhao, H. B.; Wang, Y. Z. Fully biomass-based aerogels with ultrahigh mechanical modulus, enhanced flame retardancy, and great thermal insulation applications. Compos. Part B: Eng. 2021, 225, 109309.

48

Zhang, Y. L.; Ma, Z. L.; Ruan, K. P.; Gu, J. W. Flexible Ti3C2Tx/(aramid nanofiber/PVA) composite films for superior electromagnetic interference shielding. Research 2022, 2022, 9780290.

49

Zeng, Z. H.; Wang, C. X.; Siqueira, G.; Han, D. X.; Huch, A.; Abdolhosseinzadeh, S.; Heier, J.; Nüesch, F.; Zhang, C. F.; Nyström, G. Nanocellulose-MXene biomimetic aerogels with orientation-tunable electromagnetic interference shielding performance. Adv. Sci. 2020, 7, 2000979.

50

Su, L.; Li, M. Z.; Wang, H. J.; Niu, M.; Lu, D.; Cai, Z. X. Resilient Si3N4 nanobelt aerogel as fire-resistant and electromagnetic wave-transparent thermal insulator. ACS Appl. Mater. Interfaces 2019, 11, 15795–15803.

51

Wan, Y. J.; Zhu, P. L.; Yu, S. H.; Sun, R.; Wong, C. P.; Liao, W. H. Ultralight, super-elastic and volume-preserving cellulose fiber/graphene aerogel for high-performance electromagnetic interference shielding. Carbon 2017, 115, 629–639.

52

Zeng, Z. H.; Wang, C. X.; Zhang, Y. F.; Wang, P. Y.; Shahabadi, S. I. S.; Pei, Y. M.; Chen, M. J.; Lu, X. H. Ultralight and highly elastic graphene/lignin-derived carbon nanocomposite aerogels with ultrahigh electromagnetic interference shielding performance. ACS Appl. Mater. Interfaces 2018, 10, 8205–8213.

53

Deng, Z. M.; Tang, P. P.; Wu, X. Y.; Zhang, H. B.; Yu, Z. Z. Superelastic, ultralight, and conductive Ti3C2Tx MXene/acidified carbon nanotube anisotropic aerogels for electromagnetic interference shielding. ACS Appl. Mater. Interfaces 2021, 13, 20539–20547.

54

Zhang, L.; Liu, B. W.; Wang, Y. Z.; Fu, T.; Zhao, H. B. P-doped PANI/AgMWs nano/micro coating towards high-efficiency flame retardancy and electromagnetic interference shielding. Compos. Part B: Eng. 2022, 238, 109944.

55

Geetha, S.; Kumar, K. K. S.; Rao, C. R. K.; Vijayan, M.; Trivedi, D. C. EMI shielding: Methods and materials—A review. J. Appl. Polym. Sci. 2009, 112, 2073–2086.

56

Zhang, Y. L.; Ruan, K. P.; Gu, J. W. Flexible sandwich-structured electromagnetic interference shielding nanocomposite films with excellent thermal conductivities. Small 2021, 17, 2101951.

Nano Research
Pages 7797-7805
Cite this article:
Liu B-W, Cao M, Zhang Y-Y, et al. Multifunctional protective aerogel with superelasticity over −196 to 500 °C. Nano Research, 2022, 15(9): 7797-7805. https://doi.org/10.1007/s12274-022-4699-2
Topics:
Part of a topical collection:

935

Views

58

Crossref

57

Web of Science

57

Scopus

2

CSCD

Altmetrics

Received: 11 June 2022
Revised: 23 June 2022
Accepted: 24 June 2022
Published: 14 July 2022
© Tsinghua University Press 2022
Return