Journal Home > Volume 16 , Issue 1

As an emerging high-energy compound, 3-nitro-1,2,4-triazol-5-one (NTO) is used in military explosives and rocket propellants. However, the strong acidic corrosion of NTO, and the high sensitivity and poor thermostability of its salts, severely restrict their practical applications. Therefore, a novel strategy to design and construct energetic covalent organic frameworks (COFs) is proposed in this study. We have successfully prepared a two-dimensional crystalline energetic COF (named ECOF-1) assembled from triaminoguanidine salt, in which NTO anions are trapped in the porous framework via the ionic interaction and hydrogen bonds. The results show that ECOF-1 exhibits superior thermal stability than energetic salt of NTO. It also exhibits insensitivity and excellent heat of detonation of 7,971.71 kJ·kg−1. ECOF-1 greatly inhibits the corrosiveness of NTO. In prospect, energetic COFs are promising as a functional platform to design high-energy and insensitive energetic materials.


menu
Abstract
Full text
Outline
Electronic supplementary material
About this article

Designing energetic covalent organic frameworks for stabilizing high-energy compounds

Show Author's information Yansong Shi1Jian Song1( )Fengchao Cui2Xiaosong Duli1Yuyang Tian2Shaohua Jin1Qinghai Shu1( )Guangshan Zhu2( )
School of Materials Science & Engineering, Beijing Institute of Technology, Beijing 100081, China
Faculty of Chemistry, Northeast Normal University, Changchun 130024, China

Abstract

As an emerging high-energy compound, 3-nitro-1,2,4-triazol-5-one (NTO) is used in military explosives and rocket propellants. However, the strong acidic corrosion of NTO, and the high sensitivity and poor thermostability of its salts, severely restrict their practical applications. Therefore, a novel strategy to design and construct energetic covalent organic frameworks (COFs) is proposed in this study. We have successfully prepared a two-dimensional crystalline energetic COF (named ECOF-1) assembled from triaminoguanidine salt, in which NTO anions are trapped in the porous framework via the ionic interaction and hydrogen bonds. The results show that ECOF-1 exhibits superior thermal stability than energetic salt of NTO. It also exhibits insensitivity and excellent heat of detonation of 7,971.71 kJ·kg−1. ECOF-1 greatly inhibits the corrosiveness of NTO. In prospect, energetic COFs are promising as a functional platform to design high-energy and insensitive energetic materials.

Keywords: energetic materials, covalent organic frameworks (COFs), 3-nitro-1,2,4-triazol-5-one (NTO), high-energy insensitive materials

References(37)

[1]

O’Sullivan, O. T.; Zdilla, M. J. Properties and promise of catenated nitrogen systems as high-energy-density materials. Chem. Rev. 2020, 120, 5682–5744.

[2]

Yin, P.; Zhang, Q. H.; Shreeve, J. M. Dancing with energetic nitrogen atoms: Versatile N-functionalization strategies for N-heterocyclic frameworks in high energy density materials. Acc. Chem. Res. 2016, 49, 4–16.

[3]

Zhang, M.; Li, C.; Gao, H. Q.; Fu, W.; Li, Y. Y.; Tang, L. W.; Zhou, Z. M. Promising hydrazinium 3-nitro-1,2,4-triazol-5-one and its analogs. J. Mater. Sci. 2016, 51, 10849–10862.

[4]

Ma, J. C.; Chinnam, A. K.; Cheng, G. B.; Yang, H. W.; Zhang, J. H.; Shreeve, J. M. 1,3,4-Oxadiazole bridges: A strategy to improve energetics at the molecular level. Angew. Chem., Int. Ed. 2021, 60, 5497–5504.

[5]

Tang, Y. X.; Huang, W.; Imler, G. H.; Parrish, D. A.; Shreeve, J. M. Enforced planar FOX-7-like molecules: A strategy for thermally stable and insensitive π-conjugated energetic materials. J. Am. Chem. Soc. 2020, 142, 7153–7160.

[6]

Yin, P.; Mitchell, L. A.; Parrish, D. A.; Shreeve, J. M. Energetic N-nitramino/N-oxyl-functionalized pyrazoles with versatile π–π stacking: Structure–property relationships of high-performance energetic materials. Angew. Chem., Int. Ed. 2016, 55, 14409–14411.

[7]

Tang, Y. X.; Gao, H. X.; Mitchell, L. A.; Parrish, D. A.; Shreeve, J. M. Enhancing energetic properties and sensitivity by incorporating amino and nitramino groups into a 1,2,4-oxadiazole building block. Angew. Chem., Int. Ed. 2016, 55, 1147–1150.

[8]

Bennion, J. C.; Matzger, A. J. Development and evolution of energetic cocrystals. Acc. Chem. Res. 2021, 54, 1699–1710.

[9]

Bolton, O.; Matzger, A. J. Improved stability and smart-material functionality realized in an energetic cocrystal. Angew. Chem., Int. Ed. 2011, 50, 8960–8963.

[10]

Bellas, M. K.; Matzger, A. J. Achieving balanced energetics through cocrystallization. Angew. Chem., Int. Ed. 2019, 58, 17185–17188.

[11]

Titi, H. M.; Arhangelskis, M.; Rachiero, G. P.; Friščić, T.; Rogers, R. D. Hypergolic triggers as co-crystal formers: Co-crystallization for creating new hypergolic materials with tunable energy content. Angew. Chem., Int. Ed. 2019, 58, 18399–18404.

[12]

Li, S. H.; Wang, Y.; Qi, C.; Zhao, X. X.; Zhang, J. C.; Zhang, S. W.; Pang, S. P. 3D energetic metal-organic frameworks: Synthesis and properties of high energy materials. Angew. Chem., Int. Ed. 2013, 52, 14031–14035.

[13]

Zhang, Q. H.; Shreeve, J. M. Metal-organic frameworks as high explosives: A new concept for energetic materials. Angew. Chem., Int. Ed. 2014, 53, 2540–2542.

[14]

Zhang, S.; Yang, Q.; Liu, X. Y.; Qu, X. N.; Wei, Q.; Xie, G.; Chen, S. P.; Gao, S. L. High-energy metal-organic frameworks (HE-MOFs): Synthesis, structure and energetic performance. Coord. Chem. Rev. 2016, 307, 292–312.

[15]

Titi, H. M.; Marrett, J. M.; Dayaker, G.; Arhangelskis, M.; Mottillo, C.; Morris, A. J.; Rachiero, G. P.; Friščić, T.; Rogers, R. D. Hypergolic zeolitic imidazolate frameworks (ZIFs) as next-generation solid fuels: Unlocking the latent energetic behavior of ZIFs. Sci. Adv. 2019, 5, eaav9044.

[16]

Sebastiao, E.; Cook, C.; Hu, A. G.; Murugesu, M. Recent developments in the field of energetic ionic liquids. J. Mater. Chem. A 2014, 2, 8153–8173.

[17]

Gao, H. X.; Joo, Y. H.; Twamley, B.; Zhou, Z. Q.; Shreeve, J. M. Hypergolic ionic liquids with the 2,2-dialkyltriazanium cation. Angew. Chem., Int. Ed. 2009, 48, 2792–2795.

[18]

Zhang, J. C.; Feng, Y. G.; Staples, R. J.; Zhang, J. H.; Shreeve, J. M. Taming nitroformate through encapsulation with nitrogen-rich hydrogen-bonded organic frameworks. Nat. Commun. 2021, 12, 2146.

[19]

Eymann, J.; Joucla, L.; Jacob, G.; Raynaud, J.; Darwich, C.; Lacôte, E. Energetic nitrogen-rich polymers with a tetrazene-based backbone. Angew. Chem. , Int. Ed. 2021, 60, 1578–1582.

[20]

Song, J.; Shi, Y. S.; Lu, Y.; Shu, Q. H.; Tian, Y. Y.; Cui, F. C.; Duli, X. S.; Lv, X. J.; Jin, S. H.; Zhu, G. S. High energy and insensitive explosives based on energetic porous aromatic frameworks. Nano Res. 2022, 15, 1698–1705.

[21]

Côté, A. P.; Benin, A. I.; Ockwig, N. W.; O’Keeffe, M.; Matzger, A. J.; Yaghi, O. M. Porous, crystalline, covalent organic frameworks. Science 2005, 310, 1166–1170.

[22]

Lin, S.; Diercks, C. S.; Zhang, Y. B.; Kornienko, N.; Nichols, E. M.; Zhao, Y. B.; Paris, A. R.; Kim, D.; Yang, P. D.; Yaghi, O’ M. et al. Covalent organic frameworks comprising cobalt porphyrins for catalytic CO2 reduction in water. Science 2015, 349, 1208–1213.

[23]

Keller, N.; Bessinger, D.; Reuter, S.; Calik, M.; Ascherl, L.; Hanusch, F. C.; Auras, F.; Bein, T. Oligothiophene-bridged conjugated covalent organic frameworks. J. Am. Chem. Soc. 2017, 139, 8194–8199.

[24]

Huang, N.; Wang, P.; Jiang, D. L. Covalent organic frameworks: A materials platform for structural and functional designs. Nat. Rev. Mater. 2016, 1, 16068.

[25]

Guan, X. Y.; Li, H.; Ma, Y. C.; Xue, M.; Fang, Q. R.; Yan, Y. S.; Valtchev, V.; Qiu, S. L. Chemically stable polyarylether-based covalent organic frameworks. Nat. Chem. 2019, 11, 587–594.

[26]

Jiang, S. Y.; Gan, S. X.; Zhang, X.; Li, H.; Qi, Q. Y.; Cui, F. Z.; Lu, J.; Zhao, X. Aminal-linked covalent organic frameworks through condensation of secondary amine with aldehyde. J. Am. Chem. Soc. 2019, 141, 14981–14986.

[27]

Yahiaoui, O.; Fitch, A. N.; Hoffmann, F.; Fröba, M.; Thomas, A.; Roeser, J. 3D anionic silicate covalent organic framework with srs topology. J. Am. Chem. Soc. 2018, 140, 5330–5333.

[28]

Lin, G. Q.; Ding, H. M.; Yuan, D. Q.; Wang, B. S.; Wang, C. A pyrene-based, fluorescent three-dimensional covalent organic framework. J. Am. Chem. Soc. 2016, 138, 3302–3305.

[29]

Ma, T. Q.; Kapustin, E. A.; Yin, S. X.; Liang, L.; Zhou, Z. Y.; Niu, J.; Li, L. H.; Wang, Y. Y.; Su, J.; Li, J. et al. Single-crystal x-ray diffraction structures of covalent organic frameworks. Science 2018, 361, 48–52.

[30]

Liu, L.; Yin, L. Y.; Cheng, D. M.; Zhao, S.; Zang, H. Y.; Zhang, N.; Zhu, G. S. Surface-mediated construction of an ultrathin free-standing covalent organic framework membrane for efficient proton conduction. Angew. Chem., Int. Ed. 2021, 60, 14875–14880.

[31]

Li, J.; Jing, X. C.; Li, Q. Q.; Li, S. W.; Gao, X.; Feng, X.; Wang, B. Bulk COFs and COF nanosheets for electrochemical energy storage and conversion. Chem. Soc. Rev. 2020, 49, 3565–3604.

[32]

Liu, Y. H.; Li, W.; Yuan, C.; Jia, L.; Liu, Y.; Huang, A. S.; Cui, Y. Two-dimensional fluorinated covalent organic frameworks with tunable hydrophobicity for ultrafast oil–water separation. Angew. Chem., Int. Ed. 2022, 61, e202113348.

[33]

Mitra, S.; Kandambeth, S.; Biswal, B. P.; Khayum, M. A.; Choudhury, C. K.; Mehta, M.; Kaur, G.; Banerjee, S.; Prabhune, A.; Verma, S. et al. Self-exfoliated guanidinium-based ionic covalent organic nanosheets (iCONs). J. Am. Chem. Soc. 2016, 138, 2823–2828.

[34]

Chen, H. W.; Tu, H. Y.; Hu, C. J.; Liu, Y.; Dong, D. R.; Sun, Y. F.; Dai, Y. F.; Wang, S. L.; Qian, H.; Lin, Z. Y. et al. Cationic covalent organic framework nanosheets for fast Li-ion conduction. J. Am. Chem. Soc. 2018, 140, 896–899.

[35]

Zhang, J. C.; Du, Y.; Dong, K.; Su, H.; Zhang, S. W.; Li, S. H.; Pang, S. P. Taming dinitramide anions within an energetic metal-organic framework: A new strategy for synthesis and tunable properties of high energy materials. Chem. Mater. 2016, 28, 1472–1480.

[36]

Liu, H.; Fan, B. M.; Fan, G. F.; Ma, Y. C.; Hao, H.; Zhang, W. Anti-corrosive mechanism of poly(N-ethylaniline)/sodium silicate electrochemical composites for copper: Correlated experimental and in-silico studies. J. Mater. Sci. Technol. 2021, 72, 202–216.

[37]

Chugh, B.; Thakur, S.; Pani, B.; Murmu, M.; Banerjee, P.; Al-Mohaimeed, A. M.; Ebenso, E. E.; Singh, M.; Singh, J.; Singh, A. K. Investigation of phenol-formaldehyde resins as corrosion impeding agent in acid solution. J. Mol. Liq. 2021, 330, 115649.

File
12274_2022_4697_MOESM1_ESM.pdf (1.1 MB)
Publication history
Copyright
Acknowledgements

Publication history

Received: 26 May 2022
Revised: 24 June 2022
Accepted: 24 June 2022
Published: 26 July 2022
Issue date: January 2023

Copyright

© Tsinghua University Press 2022

Acknowledgements

Acknowledgements

This work was financially supported by the Key Project of National Defense Basic Research Program of China (No. 2019-JCJQ-ZD-139-00), and the Postdoctoral Science Foundation of China (No. 2021M700418).

Return