Journal Home > Volume 15 , Issue 10

Electromagnetic (EM) absorption is paving the way to overcome the challenges related to conventional shielding strategy against EM pollution through sustainable energy dissipation. As characteristic functional media that can interact with electric or magnetic field branch, EM wave absorption materials (EWAMs) have received extensive attention and realized considerable development in the past two decades, where carbon-based composites are always considered as promising candidates for high-performance EMAWs due to their synergetic loss mechanism as well as diversified composition and microstructure design. Recent progress indicates that there is more and more interest in the fabrication of carbon-based composites with unique core–shell configuration. On one hand, core–shell configuration usually ensures good chemical homogeneity of final products and provides some positive protections for the components with susceptibility to corrosion, on the other hand, it creates enough heterogeneous interfaces between different EM components, which may bring enhanced polarization effect and intensify the consumption of EM energy. In this review, we firstly introduce EM wave absorption theory, and then highlight the advances of core–shell engineering in carbon-based composites in terms of built-in carbon cores and built-out carbon shells. Moreover, we also show some special core–shell carbon-based composites, including carbon/carbon composites, assembled composites, and decorated composites. After analyzing EM absorption performance of some representative composites, we further propose some challenges and perspectives on the development of core–shell carbon-based composites.


menu
Abstract
Full text
Outline
About this article

Advances in core–shell engineering of carbon-based composites for electromagnetic wave absorption

Show Author's information Lixue GaiHonghong ZhaoFengyuan WangPan WangYonglei LiuXijiang Han( )Yunchen Du( )
MIIT Key Laboratory of Critical Materials Technology for New Energy Conversion and Storage, School of Chemistry and Chemical Engineering, Harbin Institute of Technology, Harbin 150001, China

Abstract

Electromagnetic (EM) absorption is paving the way to overcome the challenges related to conventional shielding strategy against EM pollution through sustainable energy dissipation. As characteristic functional media that can interact with electric or magnetic field branch, EM wave absorption materials (EWAMs) have received extensive attention and realized considerable development in the past two decades, where carbon-based composites are always considered as promising candidates for high-performance EMAWs due to their synergetic loss mechanism as well as diversified composition and microstructure design. Recent progress indicates that there is more and more interest in the fabrication of carbon-based composites with unique core–shell configuration. On one hand, core–shell configuration usually ensures good chemical homogeneity of final products and provides some positive protections for the components with susceptibility to corrosion, on the other hand, it creates enough heterogeneous interfaces between different EM components, which may bring enhanced polarization effect and intensify the consumption of EM energy. In this review, we firstly introduce EM wave absorption theory, and then highlight the advances of core–shell engineering in carbon-based composites in terms of built-in carbon cores and built-out carbon shells. Moreover, we also show some special core–shell carbon-based composites, including carbon/carbon composites, assembled composites, and decorated composites. After analyzing EM absorption performance of some representative composites, we further propose some challenges and perspectives on the development of core–shell carbon-based composites.

Keywords: carbon-based composites, core–shell configuration, synergetic effect, interfacial polarization, electromagnetic (EM) absorption performance

References(356)

1

Andrews, M. R.; Mitra, P. P.; Decarvalho, R. Tripling the capacity of wireless communications using electromagnetic polarization. Nature 2001, 409, 316–318.

2

Huang, C. W.; Zappone, A.; Alexandropoulos, G. C.; Debbah, M.; Yuen, C. Reconfigurable intelligent surfaces for energy efficiency in wireless communication. IEEE Trans. Wireless Commun. 2019, 18, 4157–4170.

3

Wu, Z. C.; Cheng, H. W.; Jin, C.; Yang, B. T.; Xu, C. Y.; Pei, K.; Zhang, H. B.; Yang, Z. Q.; Che, R. C. Dimensional design and core–shell engineering of nanomaterials for electromagnetic wave absorption. Adv. Mater. 2022, 34, 2107538.

4
LongairM. “. . . A paper. . . I hold to be great guns”: A commentary on maxwell (1865) “A dynamical theory of the electromagnetic field”Phil. Trans. Roy. Soc. A Math. , Phys. Eng. Sci.20153732014047310.1098/rsta.2014.0473

Longair, M. “. . A paper. . I hold to be great guns”: A commentary on maxwell (1865) “A dynamical theory of the electromagnetic field”. Phil. Trans. Roy. Soc. A Math. , Phys. Eng. Sci. 2015, 373, 20140473.

5

Zeng, Z. H.; Jiang, F. Z.; Yue, Y.; Han, D. X.; Lin, L. C.; Zhao, S. Y.; Zhao, Y. B.; Pan, Z. Y.; Li, C. J.; Nyström, G. et al. Flexible and ultrathin waterproof cellular membranes based on high-conjunction metal-wrapped polymer nanofibers for electromagnetic interference shielding. Adv. Mater. 2020, 32, 1908496.

6

Liu, L. Y.; Deng, H.; Tang, X. P.; Lu, Y. X.; Zhou, J. Y.; Wang, X. F.; Zhao, Y. Y.; Huang, B.; Shi, Y. G. Specific electromagnetic radiation in the wireless signal range increases wakefulness in mice. Proc. Natl. Acad. Sci. USA 2021, 118, e2105838118.

7

Lundgren, J.; Helander, J.; Gustafsson, M.; Sjoberg, D.; Xu, B.; Colombi, D. A near-field measurement and calibration technique: Radio-frequency electromagnetic field exposure assessment of millimeter-wave 5G devices. IEEE Antennas Propag. Mag. 2021, 63, 77–88.

8

Zhang, Y. L.; Gu, J. W. A perspective for developing polymer-based electromagnetic interference shielding composites. Nano-Micro Lett. 2022, 14, 89.

9

Abbasi, H.; Antunes, M.; Velasco, J. I. Recent advances in carbon-based polymer nanocomposites for electromagnetic interference shielding. Prog. Mater. Sci. 2019, 103, 319–373.

10

He, P.; Cao, M. S.; Cao, W. Q.; Yuan, J. Developing MXenes from wireless communication to electromagnetic attenuation. Nano-Micro Lett. 2021, 13, 115.

11

Liang, C. B.; Qiu, H.; Song, P.; Shi, X. T.; Kong, J.; Gu, J. W. Ultra-light MXene aerogel/wood-derived porous carbon composites with wall-like “mortar/brick” structures for electromagnetic interference shielding. Sci. Bull. 2020, 65, 616–622.

12

Zhang, Y. L.; Ma, Z. L.; Ruan, K. P.; Gu, J. W. Flexible Ti3C2Tx/(aramid nanofiber/PVA) composite films for superior electromagnetic interference shielding. Research 2022, 2022, 9780290.

13

Green, M.; Chen, X. B. Recent progress of nanomaterials for microwave absorption. J. Materiomics 2019, 5, 503–541.

14

Song, Q.; Ye, F.; Kong, L.; Shen, Q. L.; Han, L. Y.; Feng, L.; Yu, G. J.; Pan, Y. A.; Li, H. J. Graphene and MXene nanomaterials: Toward high-performance electromagnetic wave absorption in gigahertz band range. Adv. Funct. Mater. 2020, 30, 2000475.

15

Liang, C. B.; Gu, Z. J.; Zhang, Y. L.; Ma, Z. L.; Qiu, H.; Gu, J. W. Structural design strategies of polymer matrix composites for electromagnetic interference shielding: A review. Nano-Micro Lett. 2021, 13, 181.

16

Li, W. C.; Li, C. S.; Lin, L. H.; Wang, Y.; Zhang, J. S. All-dielectric radar absorbing array metamaterial based on silicon carbide/carbon foam material. J. Alloys Compd. 2019, 781, 883–891.

17

Wang, J. L.; Zhou, M.; Xie, Z. C.; Hao, X. Y.; Tang, S. L.; Wang, J. W.; Zou, Z. Q.; Ji, G. B. Enhanced interfacial polarization of biomass-derived porous carbon with a low radar cross-section. J. Colloid Interface Sci. 2022, 612, 146–155.

18

Wang, F. Y.; Cui, L. R.; Zhao, H. H.; Han, X. J.; Du, Y. C. High-efficient electromagnetic absorption and composites of carbon microspheres. J. Appl. Phys. 2021, 130, 230902.

19

Sun, G. B.; Dong, B. X.; Cao, M. H.; Wei, B. Q.; Hu, C. W. Hierarchical dendrite-like magnetic materials of Fe3O4, γ-Fe2O3, and Fe with high performance of microwave absorption. Chem. Mater. 2011, 23, 1587–1593.

20

Wang, T.; Han, R.; Tan, G. G.; Wei, J. Q.; Qiao, L.; Li, F. S. Reflection loss mechanism of single layer absorber for flake-shaped carbonyl-iron particle composite. J. Appl. Phys. 2012, 112, 104903.

21

Duan, W. J.; Li, X. D.; Wang, Y.; Qiang, R.; Tian, C. H.; Wang, N.; Han, X. J.; Du, Y. C. Surface functionalization of carbonyl iron with aluminum phosphate coating toward enhanced anti-oxidative ability and microwave absorption properties. Appl. Surf. Sci. 2018, 427, 594–602.

22

Qing, Y. C.; Min, D. D.; Zhou, Y. Y.; Luo, F.; Zhou, W. C. Graphene nanosheet- and flake carbonyl iron particle-filled epoxy-silicone composites as thin-thickness and wide-bandwidth microwave absorber. Carbon 2015, 86, 98–107.

23

Li, Q.; Zhang, Z.; Qi, L. P.; Liao, Q. L.; Kang, Z.; Zhang, Y. Toward the application of high frequency electromagnetic wave absorption by carbon nanostructures. Adv. Sci. 2019, 6, 1801057.

24

Wu, N. N.; Hu, Q.; Wei, R. B.; Mai, X. M.; Naik, N.; Pan, D.; Guo, Z. H.; Shi, Z. J. Review on the electromagnetic interference shielding properties of carbon based materials and their novel composites: Recent progress, challenges and prospects. Carbon 2021, 176, 88–105.

25

Cao, M. S.; Wang, X. X.; Cao, W. Q.; Yuan, J. Ultrathin graphene: Electrical properties and highly efficient electromagnetic interference shielding. J. Mater. Chem. C 2015, 3, 6589–6599.

26
Kumar, R.; Sahoo, S.; Joanni, E.; Singh, R. K.; Tan, W. K.; Moshkalev, S. A.; Matsuda, A.; Kar, K. K. Heteroatom doping of 2D graphene materials for electromagnetic interference shielding: A review of recent progress. Crit. Rev. Solid State Mater. Sci., in press, https://doi.org/10.1080/10408436.2021.1965954.
DOI
27

Meng, F. B.; Wang, H. G.; Huang, F.; Guo, Y. F.; Wang, Z. Y.; Hui, D.; Zhou, Z. W. Graphene-based microwave absorbing composites: A review and prospective. Compos. Part B-Eng. 2018, 137, 260–277.

28

Wang, C.; Han, X. J.; Xu, P.; Zhang, X. L.; Du, Y. C.; Hu, S. R.; Wang, J. Y.; Wang, X. H. The electromagnetic property of chemically reduced graphene oxide and its application as microwave absorbing material. Appl. Phys. Lett. 2011, 98, 072906.

29

Li, C.; Li, Z. H.; Qi, X. S.; Gong, X.; Chen, Y. L.; Peng, Q.; Deng, C. Y.; Jing, T.; Zhong, W. A generalizable strategy for constructing ultralight three-dimensional hierarchical network heterostructure as high-efficient microwave absorber. J. Colloid Interface Sci. 2022, 605, 13–22.

30

González, M.; Baselga, J.; Pozuelo, J. High porosity scaffold composites of graphene and carbon nanotubes as microwave absorbing materials. J. Mater. Chem. C 2016, 4, 8575–8582.

31

Zhao, Y. J.; Zhang, Y. N.; Yang, C. R.; Cheng, L. F. Ultralight and flexible SiC nanoparticle-decorated carbon nanofiber mats for broad-band microwave absorption. Carbon 2021, 171, 474–483.

32

Cui, L. R.; Han, X. J.; Wang, F. Y.; Zhao, H. H.; Du, Y. C. A review on recent advances in carbon-based dielectric system for microwave absorption. J. Mater. Sci. 2021, 56, 10782–10811.

33

Gupta, S.; Tai, N. H. Carbon materials and their composites for electromagnetic interference shielding effectiveness in X-band. Carbon 2019, 152, 159–187.

34

Zhang, X.; Qiao, J.; Jiang, Y. Y.; Wang, F. L.; Tian, X. L.; Wang, Z.; Wu, L. L.; Liu, W.; Liu, J. R. Carbon-based MOF derivatives: Emerging efficient electromagnetic wave absorption agents. Nano-Micro Lett. 2021, 13, 135.

35

Chen, Y. J.; Xiao, G.; Wang, T. S.; Ouyang, Q. Y.; Qi, L. H.; Ma, Y.; Gao, P.; Zhu, C. L.; Cao, M. S.; Jin, H. B. Porous Fe3O4/carbon core/shell nanorods: Synthesis and electromagnetic properties. J. Phys. Chem. C 2011, 115, 13603–13608.

36

Wang, F. Y.; Wang, N.; Han, X. J.; Liu, D. W.; Wang, Y. H.; Cui, L. R.; Xu, P.; Du, Y. C. Core–shell FeCo@carbon nanoparticles encapsulated in polydopamine-derived carbon nanocages for efficient microwave absorption. Carbon 2019, 145, 701–711.

37

Du, Y. C.; Liu, W. W.; Qiang, R.; Wang, Y.; Han, X. J.; Ma, J.; Xu, P. Shell thickness-dependent microwave absorption of core–shell Fe3O4@C composites. ACS Appl. Mater. Interfaces 2014, 6, 12997–13006.

38

Meng, X.; Yang, W. W.; Han, G. H.; Yu, Y. S.; Ma, S.; Liu, W.; Zhang, Z. D. Three-dimensional foam-like Fe3O4@C core–shell nanocomposites: Controllable synthesis and wideband electromagnetic wave absorption properties. J. Magn. Magn. Mater. 2020, 502, 166518.

39

Xu, X. F.; Shi, S. H.; Tang, Y. L.; Wang, G. Z.; Zhou, M. F.; Zhao, G. Q.; Zhou, X. C.; Lin, S. W.; Meng, F. B. Growth of NiAl-layered double hydroxide on graphene toward excellent anticorrosive microwave absorption application. Adv. Sci. 2021, 8, 2002658.

40

Wang, G. Z.; Gao, Z.; Tang, S. W.; Chen, C. Q.; Duan, F. F.; Zhao, S. C.; Lin, S. W.; Feng, Y. H.; Zhou, L.; Qin, Y. Microwave absorption properties of carbon nanocoils coated with highly controlled magnetic materials by atomic layer deposition. ACS Nano 2012, 6, 11009–11017.

41

Yang, K.; Cui, Y. H.; Liu, Z. H.; Liu, P.; Zhang, Q. Y.; Zhang, B. L. Design of core–shell structure NC@MoS2 hierarchical nanotubes as high-performance electromagnetic wave absorber. Chem. Eng. J. 2021, 426, 131308.

42

Zhang, Y. J.; Zhang, Y. L.; Li, Y. P.; Yao, M. H.; Miao, X. F.; Liu, C. Y.; Zhao, H. K.; Shao, Y. Y.; Xu, F. BaTiO3@C core–shell nanoparticle/paraffin composites for wide-band microwave absorption. ACS Appl. Nano Mater. 2021, 4, 13176–13184.

43

Liu, Q. H.; Cao, Q.; Bi, H.; Liang, C. Y.; Yuan, K. P.; She, W.; Yang, Y. J.; Che, R. C. CoNi@SiO2@TiO2 and CoNi@Air@TiO2 microspheres with strong wideband microwave absorption. Adv. Mater. 2016, 28, 486–490.

44

Li, H.; Bao, S. S.; Li, Y. M.; Huang, Y. Q.; Chen, J. Y.; Zhao, H.; Jiang, Z. Y.; Kuang, Q.; Xie, Z. X. Optimizing the electromagnetic wave absorption performances of designed Co3Fe7@C yolk–shell structures. ACS Appl. Mater. Interfaces 2018, 10, 28839–28849.

45

Liu, X. F.; Hao, C. C.; He, L. H.; Yang, C.; Chen, Y. B.; Jiang, C. B.; Yu, R. H. Yolk–shell structured Co-C/Void/Co9S8 composites with a tunable cavity for ultrabroadband and efficient low-frequency microwave absorption. Nano Res. 2018, 11, 4169–4182.

46

Tao, J. Q.; Zhou, J. T.; Yao, Z. J.; Jiao, Z. B.; Wei, B.; Tan, R. Y.; Li, Z. Multi-shell hollow porous carbon nanoparticles with excellent microwave absorption properties. Carbon 2021, 172, 542–555.

47

Zhu, X. J.; Dong, Y. Y.; Pan, F.; Xiang, Z.; Liu, Z. C.; Deng, B. W.; Zhang, X.; Shi, Z.; Lu, W. Covalent organic framework-derived hollow core–shell Fe/Fe3O4@porous carbon composites with corrosion resistance for lightweight and efficient microwave absorption. Compos. Commun. 2021, 25, 100731.

48

Tian, C. H.; Du, Y. C.; Xu, P.; Qiang, R.; Wang, Y.; Ding, D.; Xue, J. L.; Ma, J.; Zhao, H. T.; Han, X. J. Constructing uniform core–shell PPy@PANI composites with tunable shell thickness toward enhancement in microwave absorption. ACS Appl. Mater. Interfaces 2015, 7, 20090–20099.

49

Goodenough, J. B. Summary of losses in magnetic materials. IEEE Trans. Magn. 2002, 38, 3398–3408.

50
Yan, M.; Peng, X. L. Fundamentals of Magnetics and Magnetic Materials, 2nd ed.; Zhejiang University Press: Hangzhou, 2018.
51

Liu, D. W.; Du, Y. C.; Li, Z. N.; Wang, Y. H.; Xu, P.; Zhao, H. H.; Wang, F. Y.; Li, C. L.; Han, X. J. Facile synthesis of 3D flower-like Ni microspheres with enhanced microwave absorption properties. J. Mater. Chem. C 2018, 6, 9615–9623.

52

Wu, M. Z.; Zhang, Y. D.; Hui, S.; Xiao, T. D.; Ge, S. H.; Hines, W. A.; Budnick, J. I.; Taylor, G. W. Microwave magnetic properties of Co50/(SiO2)50 nanoparticles. Appl. Phys. Lett. 2002, 80, 4404–4406.

53

Wu, Y. H.; Han, M. G.; Tang, Z. K.; Deng, L. J. Eddy current effect on the microwave permeability of Fe-based nanocrystalline flakes with different sizes. J. Appl. Phys. 2014, 115, 163902.

54

Walz, F. The role of the skin-effect in dynamic magnetic measurements. Phys. Status Solidi A 1992, 134, 509–520.

55

Kim, S. S.; Kim, S. T.; Yoon, Y. C.; Lee, K. S. Magnetic, dielectric, and microwave absorbing properties of iron particles dispersed in rubber matrix in gigahertz frequencies. J. Appl. Phys. 2005, 97, 10F905.

56

Seo, Y.; Ko, S.; Ha, H.; Qaiser, N.; Leem, M.; Yoo, S. J.; Jeong, J. H.; Lee, K.; Hwang, B. Stretchable carbonyl iron powder/polydimethylsiloxane composites for noise suppression in gigahertz bandwidth. Compos. Sci. Technol. 2022, 218, 109150.

57

Zeng, M.; Zhang, X. X.; Yu, R. H.; Zhao, D. L.; Zhang, Y. H.; Wang, X. L. Improving high-frequency properties via selectable diameter of amorphous-ferroalloy particle. Mater. Sci. Eng. B 2014, 185, 21–25.

58

Zhu, J. H.; Wei, S. Y.; Haldolaarachchige, N.; Young, D. P.; Guo, Z. H. Electromagnetic field shielding polyurethane nanocomposites reinforced with core–shell Fe-silica nanoparticles. J. Phys. Chem. C 2011, 115, 15304–15310.

59

Stergiou, C. Magnetic, dielectric and microwave absorption properties of rare earth doped Ni-Co and Ni-Co-Zn spinel ferrites. J. Magn. Magn. Mater. 2017, 426, 629–635.

60

Xie, J. L.; Han, M. G.; Chen, L.; Kuang, R. X.; Deng, L. J. Microwave-absorbing properties of NiCoZn spinel ferrites. J. Magn. Magn. Mater. 2007, 314, 37–42.

61

Aharoni, A. Exchange resonance modes in a ferromagnetic sphere. J. Appl. Phys. 1991, 69, 7762–7764.

62

Deng, L. J.; Zhou, P. H.; Xie, J. L.; Zhang, L. Characterization and microwave resonance in nanocrystalline FeCoNi flake composite. J. Appl. Phys. 2007, 101, 103916.

63

Zhou, C. H.; Wu, C.; Yan, M. Hierarchical FeCo@MoS2 nanoflowers with strong electromagnetic wave absorption and broad bandwidth. ACS Appl. Nano Mater. 2018, 1, 5179–5187.

64

Wen, B.; Cao, M. S.; Hou, Z. L.; Song, W. L.; Zhang, L.; Lu, M. M.; Jin, H. B.; Fang, X. Y.; Wang, W. Z.; Yuan, J. Temperature dependent microwave attenuation behavior for carbon-nanotube/silica composites. Carbon 2013, 65, 124–139.

65
Kittel, C. Introduction to Solid State Physics, 8th ed.; John Wiley & Sons, Inc.: New York, 2005.
66

Zhang, J. J.; Qi, X. S.; Gong, X.; Peng, Q.; Chen, Y. L.; Xie, R.; Zhong, W. Microstructure optimization of core@shell structured MSe2/FeSe2@MoSe2 (M = Co, Ni) flower-like multicomponent nanocomposites towards high-efficiency microwave absorption. J. Mater. Sci. Technol. 2022, 128, 59–70.

67

Qin, M.; Zhang, L. M.; Wu, H. J. Dielectric loss mechanism in electromagnetic wave absorbing materials. Adv. Sci. 2022, 9, 2105553.

68

Zhao, H. H.; Xu, X. Z.; Wang, Y. H.; Fan, D. G.; Liu, D. W.; Lin, K. F.; Xu, P.; Han, X. J.; Du, Y. C. Heterogeneous interface induced the formation of hierarchically hollow carbon microcubes against electromagnetic pollution. Small 2020, 16, 2003407.

69

Zhang, Y.; Huang, Y.; Zhang, T. F.; Chang, H. C.; Xiao, P. S.; Chen, H. H.; Huang, Z. Y.; Chen, Y. S. Broadband and tunable high-performance microwave absorption of an ultralight and highly compressible graphene foam. Adv. Mater. 2015, 27, 2049–2053.

70

Cao, M. S.; Han, C.; Wang, X. X.; Zhang, M.; Zhang, Y. L.; Shu, J. C.; Yang, H. J.; Fang, X. Y.; Yuan, J. Graphene nanohybrids: Excellent electromagnetic properties for the absorbing and shielding of electromagnetic waves. J. Mater. Chem. C 2018, 6, 4586–4602.

71

Wang, Y. H.; Li, X. D.; Han, X. J.; Xu, P.; Cui, L. R.; Zhao, H. H.; Liu, D. W.; Wang, F. Y.; Du, Y. C. Ternary Mo2C/Co/C composites with enhanced electromagnetic waves absorption. Chem. Eng. J. 2020, 387, 124159.

72

Cao, M. S.; Song, W. L.; Hou, Z. L.; Wen, B.; Yuan, J. The effects of temperature and frequency on the dielectric properties, electromagnetic interference shielding and microwave-absorption of short carbon fiber/silica composites. Carbon 2010, 48, 788–796.

73

Ohlan, A.; Singh, K.; Chandra, A.; Dhawan, S. K. Microwave absorption behavior of core–shell structured poly (3,4-ethylenedioxy thiophene)-barium ferrite nanocomposites. ACS Appl. Mater. Interfaces 2010, 2, 927–933.

74

Qin, M.; Zhang, L. M.; Zhao, X. R.; Wu, H. J. Defect induced polarization loss in multi-shelled spinel hollow spheres for electromagnetic wave absorption application. Adv. Sci. 2021, 8, 2004640.

75

Liang, L. L.; Gu, W. H.; Wu, Y.; Zhang, B. S.; Wang, G. H.; Yang, Y.; Ji, G. B. Heterointerface engineering in electromagnetic absorbers: New insights and opportunities. Adv. Mater. 2022, 34, 2106195.

76

Wang, G. Z.; Gao, Z.; Wan, G. P.; Lin, S. W.; Yang, P.; Qin, Y. High densities of magnetic nanoparticles supported on graphene fabricated by atomic layer deposition and their use as efficient synergistic microwave absorbers. Nano Res. 2014, 7, 704–716.

77

Shi, X. L.; Cao, M. S.; Yuan, J.; Zhao, Q. L.; Kang, Y. Q.; Fang, X. Y.; Chen, Y. J. Nonlinear resonant and high dielectric loss behavior of CdS∕α-Fe2O3 heterostructure nanocomposites. Appl. Phys. Lett. 2008, 93, 183118.

78

Huang, W. H.; Gao, W. M.; Zuo, S. W.; Zhang, L. X.; Pei, K.; Liu, P. B.; Che, R. C.; Zhang, H. B. Hollow MoC/NC sphere for electromagnetic wave attenuation: Direct observation of interfacial polarization on nanoscale hetero-interfaces. J. Mater. Chem. A 2022, 10, 1290–1298.

79

Wu, Z. C.; Jin, C.; Yang, Z. Q.; Che, R. C. Integrating hierarchical interfacial polarization in yeast-derived Mo2C/C nanoflower/microsphere nanoarchitecture for boosting microwave absorption performance. Carbon 2022, 189, 530–538.

80

Zhang, R. X.; Wang, L.; Xu, C. Y.; Liang, C. Y.; Liu, X. H.; Zhang, X. F.; Che, R. C. Vortex tuning magnetization configurations in porous Fe3O4 nanotube with wide microwave absorption frequency. Nano Res. 2022, 15, 6743–6750.

81

Wang, Y.; Du, Y. C.; Qiang, R.; Tian, C. H.; Xu, P.; Han, X. J. Interfacially engineered sandwich-like RGO/carbon microspheres/RGO composite as an efficient and durable microwave absorber. Adv. Mater. Interfaces 2016, 3, 1500684.

82

Liu, Y.; Zeng, Z. H.; Zheng, S. N.; Qiao, J.; Liu, W.; Wu, L. L.; Liu, J. R. Facile manufacturing of Ni/MnO nanoparticle embedded carbon nanocomposite fibers for electromagnetic wave absorption. Compos. Part B-Eng. 2022, 235, 109800.

83

Samet, M.; Levchenko, V.; Boiteux, G.; Seytre, G.; Kallel, A.; Serghei, A. Electrode polarization vs. Maxwell–Wagner–Sillars interfacial polarization in dielectric spectra of materials: Characteristic frequencies and scaling laws. J. Chem. Phys. 2015, 142, 194703.

84

Dong, X. L.; Zhang, X. F.; Huang, H.; Zuo, F. Enhanced microwave absorption in Ni/polyaniline nanocomposites by dual dielectric relaxations. Appl. Phys. Lett. 2008, 92, 013127.

85

Zhang, P.; Han, X. J.; Kang, L. L.; Qiang, R.; Liu, W. W.; Du, Y. C. Synthesis and characterization of polyaniline nanoparticles with enhanced microwave absorption. RSC Adv. 2013, 3, 12694–12701.

86

Xu, H. L.; Yin, X. W.; Li, M. H.; Ye, F.; Han, M. K.; Hou, Z. X.; Li, X. L.; Zhang, L. T.; Cheng, L. F. Mesoporous carbon hollow microspheres with red blood cell like morphology for efficient microwave absorption at elevated temperature. Carbon 2018, 132, 343–351.

87

Du, L.; Du, Y. C.; Li, Y.; Wang, J. Y.; Wang, C.; Wang, X. H.; Xu, P.; Han, X. J. Surfactant-assisted solvothermal synthesis of Ba(CoTi)xFe12−2xO19 nanoparticles and enhancement in microwave absorption properties of polyaniline. J. Phys. Chem. C 2010, 114, 19600–19606.

88

Chen, N.; Mu, G. H.; Pan, X. F.; Gan, K. K.; Gu, M. Y. Microwave absorption properties of SrFe12O19/ZnFe2O4 composite powders. Mater. Sci. Eng. B 2007, 139, 256–260.

89

Zheng, S. N.; Zeng, Z. H.; Qiao, J.; Liu, Y.; Liu, J. R. Facile preparation of C/MnO/Co nanocomposite fibers for high-performance microwave absorption. Compos. Part A:Appl. Sci. Manuf. 2022, 155, 106814.

90

Kong, L. B.; Li, Z. W.; Liu, L.; Huang, R.; Abshinova, M.; Yang, Z. H.; Tang, C. B.; Tan, P. K.; Deng, C. R.; Matitsine, S. Recent progress in some composite materials and structures for specific electromagnetic applications. Int. Mater. Rev. 2013, 58, 203–259.

91

Liu, Y.; Chen, Z.; Zhang, Y.; Feng, R.; Chen, X.; Xiong, C. X.; Dong, L. J. Broadband and lightweight microwave absorber constructed by in situ growth of hierarchical CoFe2O4/reduced graphene oxide porous nanocomposites. ACS Appl. Mater. Interfaces 2018, 10, 13860–13868.

92

Zhao, H. H.; Han, X. J.; Li, Z. N.; Liu, D. W.; Wang, Y. H.; Wang, Y.; Zhou, W.; Du, Y. C. Reduced graphene oxide decorated with carbon nanopolyhedrons as an efficient and lightweight microwave absorber. J. Colloid Interface Sci. 2018, 528, 174–183.

93

Zhang, X.; Tian, X. L.; Liu, C.; Qiao, J.; Liu, W.; Liu, J. R.; Zeng, Z. H. MnCo-MOF-74 derived porous MnO/Co/C heterogeneous nanocomposites for high-efficiency electromagnetic wave absorption. Carbon 2022, 194, 257–266.

94

Xu, P.; Han, X. J.; Wang, C.; Zhao, H. T.; Wang, J. Y.; Wang, X. H.; Zhang, B. Synthesis of electromagnetic functionalized barium ferrite nanoparticles embedded in polypyrrole. J. Phys. Chem. B 2008, 112, 2775–2781.

95

Lee, K. S.; Yun, Y. C.; Kim, S. W.; Kim, S. S. Microwave absorption of λ∕4 wave absorbers using high permeability magnetic composites in quasimicrowave frequency band. J. Appl. Phys. 2008, 103, 07E504.

96

Stergiou, C.; Litsardakis, G. Design of microwave absorbing coatings with new Ni and La doped SrCo2-W hexaferrites. IEEE Trans. Magn. 2012, 48, 1516–1519.

97

Zhao, H. H.; Wang, F. Y.; Cui, L. R.; Xu, X. Z.; Han, X. J.; Du, Y. C. Composition optimization and microstructure design in MOFs-derived magnetic carbon-based microwave absorbers: A review. Nano-Micro Lett. 2021, 13, 208.

98

Fang, J. F.; Lv, H. L.; Zhao, B.; Liu, Z. W.; Li, X. H.; Xu, C. Y.; Zhang, R. X.; Zhang, H. B.; Liu, X. H.; Zhang, X. F. et al. Selective assembly of magnetic nano-antenna for electromagnetic dissipation. J. Mater. Chem. A 2022, 10, 10909–10915.

99

Liu, D. W.; Du, Y. C.; Xu, P.; Liu, N.; Wang, Y. H.; Zhao, H. H.; Cui, L. R.; Han, X. J. Waxberry-like hierarchical Ni@C microspheres with high-performance microwave absorption. J. Mater. Chem. C 2019, 7, 5037–5046.

100

Ning, M. Q.; Man, Q. K.; Tan, G. G.; Lei, Z. K.; Li, J. B.; Li, R. W. Ultrathin MoS2 nanosheets encapsulated in hollow carbon spheres: A case of a dielectric absorber with optimized impedance for efficient microwave absorption. ACS Appl. Mater. Interfaces 2020, 12, 20785–20796.

101

Du, Y. C.; Liu, T.; Yu, B.; Gao, H. B.; Xu, P.; Wang, J. Y.; Wang, X. H.; Han, X. J. The electromagnetic properties and microwave absorption of mesoporous carbon. Mater. Chem. Phys. 2012, 135, 884–891.

102

Wing, Z. N.; Wang, B.; Halloran, J. W. Permittivity of porous titanate dielectrics. J. Am. Ceram. Soc. 2006, 89, 3696–3700.

103

Ma, Z.; Zhang, Y.; Cao, C. T.; Yuan, J.; Liu, Q. F.; Wang, J. B. Attractive microwave absorption and the impedance match effect in zinc oxide and carbonyl iron composite. Phys. B:Condens. Matter 2011, 406, 4620–4624.

104

Liu, D. W.; Qiang, R.; Du, Y. C.; Wang, Y.; Tian, C. H.; Han, X. J. Prussian blue analogues derived magnetic FeCo alloy/carbon composites with tunable chemical composition and enhanced microwave absorption. J. Colloid Interface Sci. 2018, 514, 10–20.

105

Yang, W. D.; Zhao, Q. Q.; Zhou, Y.; Cui, Z. L.; Liu, Y. J. Research progress of metal organic frameworks/carbon-based composites for microwave absorption. Adv. Eng. Mater. 2022, 24, 2100964.

106

Liang, J.; Ye, F.; Cao, Y. C.; Mo, R.; Cheng, L. F.; Song, Q. Defect-engineered graphene/Si3N4 multilayer alternating core–shell nanowire membrane: A plainified hybrid for broadband electromagnetic wave absorption. Adv. Funct. Mater. 2022, 32, 2200141.

107

Peng, H. L.; Xiong, Z. Q.; Gan, Z. H.; Liu, C. B.; Xie, Y. Microcapsule MOFs@MOFs derived porous “nut-bread” composites with broadband microwave absorption. Compos. Part B-Eng. 2021, 224, 109170.

108

Qiao, J.; Zhang, X.; Liu, C.; Zeng, Z. H.; Yang, Y. F.; Wu, L. L.; Wang, F. L.; Wang, Z.; Liu, W.; Liu, J. R. Facile synthesis of MnS nanoparticle embedded porous carbon nanocomposite fibers for broadband electromagnetic wave absorption. Carbon 2022, 191, 525–534.

109

Micheli, D.; Pastore, R.; Apollo, C.; Marchetti, M.; Gradoni, G.; Primiani, V. M.; Moglie, F. Broadband electromagnetic absorbers using carbon nanostructure-based composites. IEEE Trans. Microwave Theory Techn. 2011, 59, 2633–2646.

110

Micheli, D.; Vricella, A.; Pastore, R.; Marchetti, M. Synthesis and electromagnetic characterization of frequency selective radar absorbing materials using carbon nanopowders. Carbon 2014, 77, 756–774.

111

Wu, C.; Bi, K.; Yan, M. Scalable self-supported FeNi3/Mo2C flexible paper for enhanced electromagnetic wave absorption evaluated via coaxial, waveguide and arch methods. J. Mater. Chem. C 2020, 8, 10204–10212.

112

Sun, X. X.; Yang, M. L.; Yang, S.; Wang, S. S.; Yin, W. L.; Che, R. C.; Li, Y. B. Ultrabroad band microwave absorption of carbonized waxberry with hierarchical structure. Small 2019, 15, 1902974.

113

Zhang, J. J.; Li, Z. H.; Qi, X. S.; Gong, X.; Xie, R.; Deng, C. Y.; Zhong, W.; Du, Y. W. Constructing flower-like core@shell MoSe2-based nanocomposites as a novel and high-efficient microwave absorber. Compos. Part B-Eng. 2021, 222, 109067.

114

Sotiropoulos, A.; Koulouridis, S.; Masouras, A.; Kostopoulos, V.; Anastassiu, H. T. Carbon nanotubes films in glass fiber polymer matrix forming structures with high absorption and shielding performance in X-band. Compos. Part B-Eng. 2021, 217, 108896.

115

Wang, L.; Song, P.; Lin, C. T.; Kong, J. Gu, J. W. 3D shapeable, superior electrically conductive cellulose nanofibers/Ti3C2Tx MXene aerogels/epoxy nanocomposites for promising EMI shielding. Research 2020, 2020, 4093732.

116

Han, Y. X.; Ruan, K. P.; Gu, J. W. Janus (BNNS/ANF)-(AgNWs/ANF) thermal conductivity composite films with superior electromagnetic interference shielding and Joule heating performances. Nano Res. 2022, 15, 4747–4755.

117

Jiang, J. J.; Li, D.; Geng, D. Y.; An, J.; He, J.; Liu, W.; Zhang, Z. D. Microwave absorption properties of core double-shell FeCo/C/BaTiO3 nanocomposites. Nanoscale 2014, 6, 3967–3971.

118

Liu, J. R.; Itoh, M.; Terada, M.; Horikawa, T.; Machida, K. I. Enhanced electromagnetic wave absorption properties of Fe nanowires in gigaherz range. Appl. Phys. Lett. 2007, 91, 093101.

119

Ma, Z. L.; Xiang, X. L.; Shao, L.; Zhang, Y. L.; Gu, J. W. Multifunctional wearable silver nanowire decorated leather nanocomposites for joule heating, electromagnetic interference shielding and piezoresistive sensing. Angew. Chem., Int. Ed. 2022, 61, e202200705.

120

Zeng, Z. H.; Wu, N.; Wei, J. J.; Yang, Y. F.; Wu, T. T.; Li, B.; Hauser, S. B.; Yang, W. D.; Liu, J. R.; Zhao, S. Y. Porous and ultra-flexible crosslinked MXene/polyimide composites for multifunctional electromagnetic interference shielding. Nano-Micro Lett. 2022, 14, 59.

121

Wang, L.; Ma, Z. L.; Zhang, Y. L.; Qiu, H.; Ruan, K. P.; Gu, J. W. Mechanically strong and folding-endurance Ti3C2Tx MXene/PBO nanofiber films for efficient electromagnetic interference shielding and thermal management. Carbon Energy 2022, 4, 200–210.

122

Wang, L.; Ma, Z. L.; Zhang, Y. L.; Chen, L. X.; Cao, D. P.; Gu, J. W. Polymer-based EMI shielding composites with 3D conductive networks: A mini-review. SusMat 2021, 1, 413–431.

123

Zhang, Y. L.; Ruan, K. P.; Gu, J. W. Flexible sandwich-structured electromagnetic interference shielding nanocomposite films with excellent thermal conductivities. Small 2021, 17, 2101951.

124

Kong, L.; Yin, X. W.; Ye, F.; Li, Q.; Zhang, L. T.; Cheng, L. F. Electromagnetic wave absorption properties of ZnO-based materials modified with ZnAl2O4 nanograins. J. Phys. Chem. C 2013, 117, 2135–2146.

125
Pozar, D. M. Microwave Engineering, 4th ed.; Wiley: Hoboken, 2012.
126
Kong, J. A. Electromagnetic Wave Theory; John Wiley & Sons, Inc., 1986.
127

Li, D.; Liao, H. Y.; Kikuchi, H.; Liu, T. Microporous Co@C nanoparticles prepared by dealloying CoAl@C precursors: Achieving strong wideband microwave absorption via controlling carbon shell thickness. ACS Appl. Mater. Interfaces 2017, 9, 44704–44714.

128

Luo, J. H.; Zhang, K.; Cheng, M. L.; Gu, M. M.; Sun, X. K. MoS2 spheres decorated on hollow porous ZnO microspheres with strong wideband microwave absorption. Chem. Eng. J. 2020, 380, 122625.

129

Wang, P.; Liu, D. W.; Cui, L. R.; Hu, B.; Han, X. J.; Du, Y. C. A review of recent advancements in Ni-related materials used for microwave absorption. J. Phys. D:Appl. Phys. 2021, 54, 473003.

130

Qi, X. S.; Xu, J. L.; Zhong, W.; Du, Y. W. Synthesis of high purity chain-like carbon nanospheres in ultrahigh yield, and their microwave absorption properties. RSC Adv. 2015, 5, 16010–16016.

131

Wang, N. N.; Wu, F.; Xie, A. M.; Dai, X. Q.; Sun, M. X.; Qiu, Y. Y.; Wang, Y.; Lv, X. L.; Wang, M. Y. One-pot synthesis of biomass-derived carbonaceous spheres for excellent microwave absorption at the Ku band. RSC Adv. 2015, 5, 40531–40535.

132

Wang, C.; Xu, T. T.; Wang, C. A. Microwave absorption properties of C/(C@CoFe) hierarchical core–shell spheres synthesized by using colloidal carbon spheres as templates. Ceram. Int. 2016, 42, 9178–9182.

133

Li, C. P.; Ge, Y. Q.; Jiang, X. H.; Zhang, Z. M.; Yu, L. M. The rambutan-like C@NiCo2O4 composites for enhanced microwave absorption performance. J. Mater. Sci. :Mater. Electron. 2019, 30, 3124–3136.

134

Zhao, B.; Li, Y.; Zeng, Q. W.; Fan, B. B.; Wang, L.; Zhang, R.; Che, R. C. Growth of magnetic metals on carbon microspheres with synergetic dissipation abilities to broaden microwave absorption. J. Mater. Sci. Technol. 2022, 107, 100–110.

135

Wang, Y.; Du, Y. C.; Guo, D.; Qiang, R.; Tian, C. H.; Xu, P.; Han, X. J. Precursor-directed synthesis of porous cobalt assemblies with tunable close-packed hexagonal and face-centered cubic phases for the effective enhancement in microwave absorption. J. Mater. Sci. 2017, 52, 4399–4411.

136

Lian, Y. L.; Han, B. H.; Liu, D. W.; Wang, Y. H.; Zhao, H. H.; Xu, P.; Han, X. J.; Du, Y. C. Solvent-free synthesis of ultrafine tungsten carbide nanoparticles-decorated carbon nanosheets for microwave absorption. Nano-Micro Lett. 2020, 12, 153.

137

Han, M. K.; Yin, X. W.; Ren, S.; Duan, W. Y.; Zhang, L. T.; Cheng, L. F. Core/shell structured C/ZnO nanoparticles composites for effective electromagnetic wave absorption. RSC Adv. 2016, 6, 6467–6474.

138

Xu, J.; Liu, Z. H.; Wang, J.; Liu, P.; Ahmad, M.; Zhang, Q. Y.; Zhang, B. L. Preparation of core–shell C@TiO2 composite microspheres with wrinkled morphology and its microwave absorption. J. Colloid Interface Sci. 2022, 607, 1036–1049.

139

Yu, L. J.; Zhu, Y. F.; Fu, Y. Q. Waxberry-like carbon@polyaniline microspheres with high-performance microwave absorption. Appl. Surf. Sci. 2018, 427, 451–457.

140

Zhang, F.; Zhang, W. D.; Zhu, W. F.; Cheng, B.; Qiu, H.; Qi, S. H. Core–shell nanostructured CS/MoS2: A promising material for microwave absorption. Appl. Surf. Sci. 2019, 463, 182–189.

141

Li, X. L.; Yin, X. W.; Song, C. Q.; Han, M. K.; Xu, H. L.; Duan, W. Y.; Cheng, L. F.; Zhang, L. T. Self-assembly core–shell graphene-bridged hollow MXenes spheres 3D foam with ultrahigh specific EM absorption performance. Adv. Funct. Mater. 2018, 28, 1803938.

142

Li, Z. N.; Han, X. J.; Ma, Y.; Liu, D. W.; Wang, Y. H.; Xu, P.; Li, C. L.; Du, Y. C. MOFs-derived hollow Co/C microspheres with enhanced microwave absorption performance. ACS Sustainable Chem. Eng. 2018, 6, 8904–8913.

143

Chen, G. Z.; Xu, D. W.; Chen, P.; Guo, X.; Yu, Q.; Qiu, H. F. Constructing and optimizing hollow bird-nest-patterned C@Fe3O4 composites as high-performance microwave absorbers. J. Magn. Magn. Mater. 2021, 532, 167990.

144

Hu, P. T.; Dong, S.; Yuan, F.; Li, X. T.; Hong, C. Q. Hollow carbon microspheres modified with NiCo2S4 nanosheets as a high-performance microwave absorber. Adv. Compos. Hybrid Mater. 2022, 5, 469–480.

145

Lv, H. L.; Ji, G. B.; Liu, W.; Zhang, H. Q.; Du, Y. W. Achieving hierarchical hollow carbon@Fe@Fe3O4 nanospheres with superior microwave absorption properties and lightweight features. J. Mater. Chem. C 2015, 3, 10232–10241.

146

Shen, G. Z.; Ren, J. Z.; Zhao, B.; Mei, B. Q.; Wu, H. Y.; Fang, X. M.; Xu, Y. W. Magnetic hollow mesoporous carbon composites with impedance matching for highly effective microwave absorption. J. Mater. Sci. 2019, 54, 4024–4037.

147

Wang, H. Y.; Zhang, Z. F.; Dong, C. J.; Chen, G.; Wang, Y. D.; Guan, H. T. Carbon spheres@MnO2 core–shell nanocomposites with enhanced dielectric properties for electromagnetic shielding. Sci. Rep. 2017, 7, 15841.

148

Xu, L. L.; Tao, J. Q.; Zhang, X. F.; Yao, Z. J.; Wei, B.; Yang, F.; Zhou, C. Y.; Zavabeti, A.; Zuraiqi, K.; Zhou, J. T. Hollow C@MoS2 nanospheres for microwave absorption. ACS Appl. Nano Mater. 2021, 4, 11199–11209.

149

Yang, L. J.; Lv, H. L.; Li, M.; Zhang, Y.; Liu, J. C.; Yang, Z. H. Multiple polarization effect of shell evolution on hierarchical hollow C@MnO2 composites and their wideband electromagnetic wave absorption properties. Chem. Eng. J. 2020, 392, 123666.

150

Cao, M. S.; Yang, J.; Song, W. L.; Zhang, D. Q.; Wen, B.; Jin, H. B.; Hou, Z. L.; Yuan, J. Ferroferric oxide/multiwalled carbon nanotube vs polyaniline/ferroferric oxide/multiwalled carbon nanotube multiheterostructures for highly effective microwave absorption. ACS Appl. Mater. Interfaces 2012, 4, 6949–6956.

151

Wang, Y. C.; Wen, Z. L.; Long, L.; Li, Y.; Zhou, W. Dielectric response and microwave absorption properties of SiC whisker-coated carbon fibers. J. Mater. Sci.:Mater. Electron. 2019, 30, 15075–15083.

152
WuR. B.YangZ. H.FuM. S.ZhouK. In-situ growth of SiC nanowire arrays on carbon fibers and their microwave absorption propertiesJ. Alloys Compd.201668783383810.1016/j.jallcom.2016.06.106

Wu, R. B.; Yang, Z. H.; Fu, M. S.; Zhou, K. In-situ growth of SiC nanowire arrays on carbon fibers and their microwave absorption properties. J. Alloys Compd. 2016, 687, 833–838.

153

Zhou, W.; Long, L.; Xiao, P.; Li, Y.; Luo, H.; Hu, W. D.; Yin, R. M. Silicon carbide Nano-fibers in-situ grown on carbon fibers for enhanced microwave absorption properties. Ceram. Int. 2017, 43, 5628–5634.

154

Zhang, W. D.; Zhang, X.; Zhu, Q.; Zheng, Y.; Liotta, L. F.; Wu, H. J. High-efficiency and wide-bandwidth microwave absorbers based on MoS2-coated carbon fiber. J. Colloid Interface Sci. 2021, 586, 457–468.

155

Huan, X. H.; Wang, H. T.; Deng, W. C.; Yan, J. Q.; Xu, K.; Geng, H. B.; Guo, X. D.; Jia, X. L.; Zhou, J. S.; Yang, X. P. Integrating multi-heterointerfaces in a 1D@2D@1D hierarchical structure via autocatalytic pyrolysis for ultra-efficient microwave absorption performance. Small 2022, 18, 2105411.

156

Tao, J. Q.; Jiao, Z. B.; Xu, L. L.; Yi, P. S.; Yao, Z. J.; Yang, F.; Zhou, C. Y.; Chen, P.; Zhou, J. T.; Li, Z. Construction of MOF-derived Co/C shell on carbon fiber surface to enhance multi-polarization effect towards efficient broadband electromagnetic wave absorption. Carbon 2021, 184, 571–582.

157

Zhao, Z. H.; Zhou, X. J.; Kou, K. C.; Wu, H. J. PVP-assisted transformation of ZIF-67 into cobalt layered double hydroxide/carbon fiber as electromagnetic wave absorber. Carbon 2021, 173, 80–90.

158

Dai, B. S.; Li, J. Y.; Wang, W. Z.; Liu, X. G.; Qi, Y. J.; Qi, Y. Carbon fibers with eddy current loss characteristics exhibit different microwave absorption properties in different graphitization states. Mater. Lett. 2020, 281, 128667.

159

Zhang, Y.; Yang, Z. J.; Yu, Y.; Wen, B. Y.; Liu, Y. Y.; Qiu, M. N. Tunable electromagnetic interference shielding ability in a one-dimensional bagasse fiber/polyaniline heterostructure. ACS Appl. Polym. Mater. 2019, 1, 737–745.

160

Tian, X.; Meng, F. B.; Meng, F. C.; Chen, X. N.; Guo, Y. F.; Wang, Y.; Zhu, W. J.; Zhou, Z. W. Synergistic enhancement of microwave absorption using hybridized polyaniline@helical CNTs with dual chirality. ACS Appl. Mater. Interfaces 2017, 9, 15711–15718.

161

Wang, Y.; Du, Y. C.; Wu, B.; Han, B. H.; Dong, S. M.; Han, X. J.; Xu, P. Fabrication of PPy nanosphere/RGO composites via a facile self-assembly strategy for durable microwave absorption. Polymers 2018, 10, 998.

162

Wu, T. M.; Lin, Y. W. Doped polyaniline/multi-walled carbon nanotube composites: Preparation, characterization and properties. Polymer 2006, 47, 3576–3582.

163

Wu, T. M.; Lin, Y. W.; Liao, C. S. Preparation and characterization of polyaniline/multi-walled carbon nanotube composites. Carbon 2005, 43, 734–740.

164

Wang, D. T.; Wang, X. C.; Zhang, X.; Yuan, H. R.; Chen, Y. J. Tunable dielectric properties of carbon nanotube@polypyrrole core–shell hybrids by the shell thickness for electromagnetic wave absorption. Chin. Phys. Lett. 2020, 37, 045201.

165

Wang, H. G.; Meng, F. B.; Huang, F.; Jing, C. F.; Li, Y.; Wei, W.; Zhou, Z. W. Interface modulating CNTs@PANi hybrids by controlled unzipping of the walls of CNTs to achieve tunable high-performance microwave absorption. ACS Appl. Mater. Interfaces 2019, 11, 12142–12153.

166

Cheng, J. Y.; Zhao, B.; Zheng, S. Y.; Yang, J. H.; Zhang, D. Q.; Cao, M. S. Enhanced microwave absorption performance of polyaniline-coated CNT hybrids by plasma-induced graft polymerization. Appl. Phys. A 2015, 119, 379–386.

167

Li, X.; Yu, L. M.; Zhao, W. K.; Shi, Y. Y.; Yu, L. J.; Dong, Y. B.; Zhu, Y. F.; Fu, Y. Q.; Liu, X. D.; Fu, F. Y. Prism-shaped hollow carbon decorated with polyaniline for microwave absorption. Chem. Eng. J. 2020, 379, 122393.

168

Wang, Y. Y.; Sun, W. J.; Lin, H.; Gao, P. P.; Gao, J. F.; Dai, K.; Yan, D. X.; Li, Z. M. Steric stabilizer-based promotion of uniform polyaniline shell for enhanced electromagnetic wave absorption of carbon nanotube/polyaniline hybrids. Compos. Part B-Eng. 2020, 199, 108309.

169

Kang, S.; Qiao, S. Y.; Cao, Y. T.; Hu, Z. M.; Yu, J. R.; Wang, Y.; Zhu, J. Hyper-cross-linked polymers-derived porous tubular carbon nanofibers@TiO2 toward a wide-band and lightweight microwave absorbent at a low loading content. ACS Appl. Mater. Interfaces 2020, 12, 46455–46465.

170

Lu, M. M.; Wang, X. X.; Cao, W. Q.; Yuan, J.; Cao, M. S. Carbon nanotube-CdS core–shell nanowires with tunable and high-efficiency microwave absorption at elevated temperature. Nanotechnology 2016, 27, 065702.

171

Huang, B.; Yue, J. L.; Wei, Y. S.; Huang, X. Z.; Tang, X. Z.; Du, Z. J. Enhanced microwave absorption properties of carbon nanofibers functionalized by FeCo coatings. Appl. Surf. Sci. 2019, 483, 98–105.

172

Zeng, S. F.; Feng, W. L.; Peng, S. Y.; Teng, Z.; Chen, C.; Zhang, H. B.; Peng, S. M. Dual-functional SiOC ceramics coating modified carbon fibers with enhanced microwave absorption performance. RSC Adv. 2019, 9, 30685–30692.

173

Zhou, J. J.; Wang, X. Y.; Ge, K. Y.; Yang, Z. Y.; Li, H. Q.; Guo, C. F.; Wang, J. Y.; Shan, Q.; Xia, L. Core–shell structured nanocomposites formed by silicon coated carbon nanotubes with anti-oxidation and electromagnetic wave absorption. J. Colloid Interface Sci. 2022, 607, 881–889.

174

Han, Y. H.; Yuan, J.; Zhu, Y. H.; Wang, Q. Q.; Li, L.; Cao, M. S. Implantation of WSe2 nanosheets into multi-walled carbon nanotubes for enhanced microwave absorption. J. Colloid Interface Sci. 2022, 609, 746–754.

175

Liu, L. L.; Zhang, S.; Yan, F.; Li, C. Y.; Zhu, C. L.; Zhang, X. T.; Chen, Y. J. Three-dimensional hierarchical MoS2 nanosheets/ultralong N-doped carbon nanotubes as high-performance electromagnetic wave absorbing material. ACS Appl. Mater. Interfaces 2018, 10, 14108–14115.

176

Mu, C. P.; Song, J. F.; Wang, B. C.; Zhang, C.; Xiang, J. Y.; Wen, F. S.; Liu, Z. Y. Two-dimensional materials and one-dimensional carbon nanotube composites for microwave absorption. Nanotechnology 2018, 29, 025704.

177

Wang, R.; Yang, E. Q.; Qi, X. S.; Xie, R.; Qin, S. J.; Deng, C. Y.; Zhong, W. Constructing and optimizing core@shell structure CNTs@MoS2 nanocomposites as outstanding microwave absorbers. Appl. Surf. Sci. 2020, 516, 146159.

178

Xu, X. F.; Shi, S. H.; Wan, G. P.; Hao, C. C.; He, Z. Y.; Wang, G. Z. Uniformly coating MnOx nanoflakes onto carbon nanofibers as lightweight and wideband microwave absorbers with frequency-selective absorption. Mater. Des. 2019, 183, 108167.

179

Ro, R.; Varadan, V. V.; Varadan, V. K. Electromagnetic activity and absorption in microwave chiral composites. IEE Proc. H 1992, 139, 441–448.

180

Tang, N. J.; Yang, Y.; Lin, K.; Zhong, W.; Au, C.; Du, Y. W. Synthesis of plait-like carbon nanocoils in ultrahigh yield, and their microwave absorption properties. J. Phys. Chem. C 2008, 112, 10061–10067.

181

Zhou, M. F.; Wan, G. P.; Mou, P. P.; Teng, S. J.; Lin, S. W.; Wang, G. Z. CNT@NiO/natural rubber with excellent impedance matching and low interfacial thermal resistance toward flexible and heat-conducting microwave absorption applications. J. Mater. Chem. C 2021, 9, 869–880.

182

Zhao, S. C.; Yan, L. L.; Tian, X. D.; Liu, Y. Q.; Chen, C. Q.; Li, Y. Q.; Zhang, J. K.; Song, Y.; Qin, Y. Flexible design of gradient multilayer nanofilms coated on carbon nanofibers by atomic layer deposition for enhanced microwave absorption performance. Nano Res. 2018, 11, 530–541.

183

Naghdi, S.; Jaleh, B.; Eslamipanah, M.; Moradi, A.; Abdollahi, M.; Einali, N.; Rhee, K. Y. Graphene family, and their hybrid structures for electromagnetic interference shielding applications: Recent trends and prospects. J. Alloys Compd. 2022, 900, 163176.

184

Wang, C.; Murugadoss, V.; Kong, J.; He, Z. F.; Mai, X. M.; Shao, Q.; Chen, Y. J.; Guo, L.; Liu, C. T.; Angaiah, S. et al. Overview of carbon nanostructures and nanocomposites for electromagnetic wave shielding. Carbon 2018, 140, 696–733.

185

Yu, H. L.; Wang, T. S.; Wen, B.; Lu, M. M.; Xu, Z.; Zhu, C. L.; Chen, Y. J.; Xue, X. Y.; Sun, C. W.; Cao, M. S. Graphene/polyaniline nanorod arrays: Synthesis and excellent electromagnetic absorption properties. J. Mater. Chem. 2012, 22, 21679–21685.

186

Guo, C.; Zhang, W. D.; Wang, R. M.; Qi, S. H. Enhanced electromagnetic wave absorption by optimized impedance matching: Covalently bonded polyaniline nanorods over graphene nanoplates. J. Mater. Sci.:Mater. Electron. 2019, 30, 19426–19436.

187

Wang, H. G.; Ren, H. S.; Jing, C. F.; Li, J. Z.; Zhou, Q.; Meng, F. B. Two birds with one stone: Graphene oxide@sulfonated polyaniline nanocomposites towards high-performance electromagnetic wave absorption and corrosion protection. Compos. Sci. Technol. 2021, 204, 108630.

188

Ren, Y. L.; Zhu, C. L.; Qi, L. H.; Gao, H.; Chen, Y. J. Growth of γ-Fe2O3 nanosheet arrays on graphene for electromagnetic absorption applications. RSC Adv. 2014, 4, 21510–21516.

189

Xie, A.; Sun, M. X.; Zhang, K.; Jiang, W. C.; Wu, F.; He, M. In situ growth of MoS2 nanosheets on reduced graphene oxide (RGO) surfaces:Interfacial enhancement of absorbing performance against electromagnetic pollution. Phys. Chem. Chem. Phys. 2016, 18, 24931–24936.

190

Zhang, H. M.; Zhu, C. L.; Chen, Y. J.; Gao, H. Growth of Fe3O4 nanorod arrays on graphene sheets for application in electromagnetic absorption fields. ChemPhysChem 2014, 15, 2261–2266.

191

Zhao, X. N.; Nie, X. Y.; Li, Y.; Pu, Y. H.; Sun, X.; Yu, R. H.; Liu, X. F.; Shui, J. L. A layered double hydroxide-derived exchange spring magnet array grown on graphene and its application as an ultrathin electromagnetic wave absorbing material. J. Mater. Chem. C 2019, 7, 12270–12277.

192

Sultanov, F.; Daulbayev, C.; Bakbolat, B.; Daulbayev, O. Advances of 3D graphene and its composites in the field of microwave absorption. Adv. Colloid Interface Sci. 2020, 285, 102281.

193

Zhi, D. D.; Li, T.; Li, J. Z.; Ren, H. S.; Meng, F. B. A review of three-dimensional graphene-based aerogels: Synthesis, structure and application for microwave absorption. Compos. Part B-Eng. 2021, 211, 108642.

194

Gu, W. H.; Tan, J. W.; Chen, J. B.; Zhang, Z.; Zhao, Y.; Yu, J. W.; Ji, G. B. Multifunctional bulk hybrid foam for infrared stealth, thermal insulation, and microwave absorption. ACS Appl. Mater. Interfaces 2020, 12, 28727–28737.

195

Hou, Y. L.; Sheng, Z. Z.; Fu, C.; Kong, J.; Zhang, X. T. Hygroscopic holey graphene aerogel fibers enable highly efficient moisture capture, heat allocation and microwave absorption. Nat. Commun. 2022, 13, 1227.

196

Hu, C. G.; Xue, J. L.; Dong, L. Y.; Jiang, Y.; Wang, X. P.; Qu, L. T.; Dai, L. M. Scalable preparation of multifunctional fire-retardant ultralight graphene foams. ACS Nano 2016, 10, 1325–1332.

197

Li, Y.; Liu, X. F.; Nie, X. Y.; Yang, W. W.; Wang, Y. D.; Yu, R. H.; Shui, J. L. Multifunctional organic-inorganic hybrid aerogel for self-cleaning, heat-insulating, and highly efficient microwave absorbing material. Adv. Funct. Mater. 2019, 29, 1807624.

198

Wang, L.; Shi, X. T.; Zhang, J. L.; Zhang, Y. L.; Gu, J. W. Lightweight and robust RGO/sugarcane derived hybrid carbon foams with outstanding EMI shielding performance. J. Mater. Sci. Technol. 2020, 52, 119–126.

199

Li, S. S.; Tang, X. W.; Zhang, Y. W.; Lan, Q. Q.; Hu, Z. W.; Li, L.; Zhang, N.; Ma, P. M.; Dong, W. F.; Tjiu, W. et al. Corrosion-resistant graphene-based magnetic composite foams for efficient electromagnetic absorption. ACS Appl. Mater. Interfaces 2022, 14, 8297–8310.

200

Lu, X. K.; Li, X.; Wang, Y. J.; Hu, W.; Zhu, W. J.; Zhu, D. M.; Qing, Y. C. Construction of ZnIn2S4 nanosheets/3D carbon heterostructure with Schottky contact for enhancing electromagnetic wave absorption performance. Chem. Eng. J. 2022, 431, 134078.

201

Sharma, A.; Kumar, R.; Gupta, A.; Agrawal, P. R.; Dwivedi, N.; Mondal, D. P.; Srivastava, A. K.; Dhakate, S. R. Enhanced electromagnetic interference shielding properties of phenolic resin derived lightweight carbon foam decorated with electrospun zinc oxide nanofibers. Mater. Today Commun. 2022, 30, 103055.

202

Yang, X.; Duan, Y. P.; Li, S. Q.; Huang, L. X.; Pang, H. F.; Ma, B.; Wang, T. M. Constructing three-dimensional reticulated carbonyl iron/carbon foam composites to achieve temperature-stable broadband microwave absorption performance. Carbon 2022, 188, 376–384.

203

Zhao, Y. P.; Zuo, X. Q.; Guo, Y.; Huang, H.; Zhang, H.; Wang, T.; Wen, N. X.; Chen, H.; Cong, T. Z.; Muhammad, J. et al. Structural engineering of hierarchical aerogels comprised of multi-dimensional gradient carbon nanoarchitectures for highly efficient microwave absorption. Nano-Micro Lett. 2021, 13, 144.

204

Cheng, Y. H.; Tan, M. Y.; Hu, P.; Zhang, X. H.; Sun, B. Q.; Yan, L. W.; Zhou, S. B.; Han, W. B. Strong and thermostable SiC nanowires/graphene aerogel with enhanced hydrophobicity and electromagnetic wave absorption property. Appl. Surf. Sci. 2018, 448, 138–144.

205

Han, M. K.; Yin, X. W.; Hou, Z. X.; Song, C. Q.; Li, X. L.; Zhang, L. T.; Cheng, L. F. Flexible and thermostable graphene/SiC nanowire foam composites with tunable electromagnetic wave absorption properties. ACS Appl. Mater. Interfaces 2017, 9, 11803–11810.

206

Zhang, Z. L.; Wang, S.; Lv, Y. Y.; Chen, X. Q.; Wu, Z.; Zou, Y. H. MnO2 nanostructures deposited on graphene foams for broadband and lightweight electromagnetic absorption. J. Alloys Compd. 2019, 810, 151744.

207

Song, P.; Liu, B.; Liang, C. B.; Ruan, K. P.; Qiu, H.; Ma, Z. L.; Guo, Y. Q.; Gu, J. W. Lightweight, flexible cellulose-derived carbon aerogel@reduced graphene Oxide/PDMS composites with outstanding EMI shielding performances and excellent thermal conductivities. Nano-Micro Lett. 2021, 13, 91.

208

Yang, X. T.; Fan, S. G.; Li, Y.; Guo, Y. Q.; Li, Y. G.; Ruan, K. P.; Zhang, S. M.; Zhang, J. L.; Kong, J.; Gu, J. W. Synchronously improved electromagnetic interference shielding and thermal conductivity for epoxy nanocomposites by constructing 3D copper nanowires/thermally annealed graphene aerogel framework. Compos. Part A:Appl. Sci. Manuf. 2020, 128, 105670.

209

Ye, X. L.; Chen, Z. F.; Ai, S. F.; Hou, B.; Zhang, J. X.; Liang, X. H.; Zhou, Q. B.; Liu, H. Z.; Cui, S. Effects of SiC coating on microwave absorption of novel three-dimensional reticulated sic/porous carbon foam. Ceram. Int. 2019, 45, 8660–8668.

210

Ye, X. L.; Chen, Z. F.; Ai, S. F.; Hou, B.; Zhang, J. X.; Liang, X. H.; Zhou, Q. B.; Liu, H. Z.; Cui, S. Porous SiC/melamine-derived carbon foam frameworks with excellent electromagnetic wave absorbing capacity. J. Adv. Ceram. 2019, 8, 479–488.

211

Ye, X. L.; Chen, Z. F.; Zhang, J. X.; Wu, C.; Zhou, Q. B.; Ai, S. F.; Liu, H. Z.; Cui, S. Double network nested foam composites with tunable electromagnetic wave absorption performances. Inorg. Chem. Front. 2019, 6, 1579–1586.

212

Lyu, L. F.; Zheng, S. N.; Wang, F. L.; Liu, Y.; Liu, J. R. High-performance microwave absorption of MOF-derived Co3O4@N-doped carbon anchored on carbon foam. J. Colloid Interface Sci. 2021, 602, 197–206.

213

Wei, B.; Wang, M. Q.; Yao, Z. J.; Chen, Z. P.; Chen, P.; Tao, X. W.; Liu, Y. J.; Zhou, J. T. Bimetallic nanoarrays embedded in three-dimensional carbon foam as lightweight and efficient microwave absorbers. Carbon 2022, 191, 486–501.

214

Yadav, K.; Bagal, R.; Parmar, S.; Patro, T. U.; Abhyankar, A. C. In situ coating of needle-like NiCo2O4 magnetic nanoparticles on lightweight reticulated vitreous carbon foam toward achieving improved electromagnetic wave absorption. Ind. Eng. Chem. Res. 2021, 60, 14225–14238.

215

Zhi, D. D.; Li, T.; Qi, Z. H.; Li, J. Z.; Tian, Y. R.; Deng, W. T.; Meng, F. B. Core–shell heterogeneous graphene-based aerogel microspheres for high-performance broadband microwave absorption via resonance loss and sequential attenuation. Chem. Eng. J. 2022, 433, 134496.

216

Che, R. C.; Peng, L. M.; Duan, X. F.; Chen, Q.; Liang, X. L. Microwave absorption enhancement and complex permittivity and permeability of Fe encapsulated within carbon nanotubes. Adv. Mater. 2004, 16, 401–405.

217

Hu, Y.; Jiang, R. J.; Zhang, J. B.; Zhang, C. S.; Cui, G. D. Synthesis and properties of magnetic multi-walled carbon nanotubes loaded with Fe4N nanoparticles. J. Mater. Sci. Technol. 2018, 34, 886–890.

218

Poudel, Y. R.; Li, W. Z. Synthesis, properties, and applications of carbon nanotubes filled with foreign materials: A review. Mater. Today Phys. 2018, 7, 7–34.

219

Zhao, D. L.; Li, X.; Shen, Z. M. Preparation and electromagnetic and microwave absorbing properties of Fe-filled carbon nanotubes. J. Alloys Compd. 2009, 471, 457–460.

220

Zhao, D. L.; Zhang, J. M.; Li, X.; Shen, Z. M. Electromagnetic and microwave absorbing properties of Co-filled carbon nanotubes. J. Alloys Compd. 2010, 505, 712–716.

221

Lin, H. Y.; Zhu, H.; Guo, H. F.; Yu, L. F. Investigation of the microwave-absorbing properties of Fe-filled carbon nanotubes. Mater. Lett. 2007, 61, 3547–3550.

222

Lin, H. Y.; Zhu, H.; Guo, H. F.; Yu, L. F. Microwave-absorbing properties of Co-filled carbon nanotubes. Mater. Res. Bull. 2008, 43, 2697–2702.

223

Zhao, H. T.; Han, X. J.; Han, M. F.; Zhang, L. F.; Xu, P. Preparation and electromagnetic properties of multiwalled carbon nanotubes/Ni composites by γ-irradiation technique. Mater. Sci. Eng. B 2010, 167, 1–5.

224

Zhang, L.; Zhu, H. Dielectric, magnetic, and microwave absorbing properties of multi-walled carbon nanotubes filled with Sm2O3 nanoparticles. Mater. Lett. 2009, 63, 272–274.

225

Zhang, L.; Zhu, H.; Song, Y.; Zhang, Y. M.; Huang, Y. The electromagnetic characteristics and absorbing properties of multi-walled carbon nanotubes filled with Er2O3 nanoparticles as microwave absorbers. Mater. Sci. Eng. B. 2008, 153, 78–82.

226

Zhao, D. L.; Li, X.; Shen, Z. M. Microwave absorbing property and complex permittivity and permeability of epoxy composites containing Ni-coated and Ag filled carbon nanotubes. Compos. Sci. Technol. 2008, 68, 2902–2908.

227

Zhao, D. L.; Li, X.; Shen, Z. M. Electromagnetic and microwave absorbing properties of multi-walled carbon nanotubes filled with Ag nanowires. Mater. Sci. Eng. B 2008, 150, 105–110.

228

Zhu, H.; Zhang, L.; Zhang, L. Z.; Song, Y.; Huang, Y.; Zhang, Y. M. Electromagnetic absorption properties of Sn-filled multi-walled carbon nanotubes synthesized by pyrolyzing. Mater. Lett. 2010, 64, 227–230.

229

Zhou, J. H.; He, J. P.; Li, G. X.; Wang, T.; Sun, D.; Ding, X. C.; Zhao, J. Q.; Wu, S. C. Direct incorporation of magnetic constituents within ordered mesoporous carbon-silica nanocomposites for highly efficient electromagnetic wave absorbers. J. Phys. Chem. C 2010, 114, 7611–7617.

230

Li, G. X.; Guo, Y. X.; Sun, X.; Wang, T.; Zhou, J. H.; He, J. P. Synthesis and microwave absorbing properties of FeNi alloy incorporated ordered mesoporous carbon-silica nanocomposite. J. Phys. Chem. Solids 2012, 73, 1268–1273.

231

Mordina, B.; Kumar, R.; Tiwari, R. K.; Setua, D. K.; Sharma, A. Fe3O4 nanoparticles embedded hollow mesoporous carbon nanofibers and polydimethylsiloxane-based nanocomposites as efficient microwave absorber. J. Phys. Chem. C 2017, 121, 7810–7820.

232

Wu, H. J.; Wang, L. D.; Wang, Y. M.; Guo, S. L.; Shen, Z. Y. Enhanced microwave performance of highly ordered mesoporous carbon coated by Ni2O3 nanoparticles. J. Alloys Compd. 2012, 525, 82–86.

233

Wang, J. C.; Zhou, H.; Zhuang, J. D.; Liu, Q. Magnetic γ-Fe2O3, Fe3O4, and Fe nanoparticles confined within ordered mesoporous carbons as efficient microwave absorbers. Phys. Chem. Chem. Phys. 2015, 17, 3802–3812.

234

Wang, T.; He, J. P.; Zhou, J. H.; Ding, X. C.; Zhao, J. Q.; Wu, S. C.; Guo, Y. X. Electromagnetic wave absorption and infrared camouflage of ordered mesoporous carbon-alumina nanocomposites. Microporous Mesoporous Mater. 2010, 134, 58–64.

235

Wang, T.; He, J. P.; Zhou, J. H.; Tang, J.; Guo, Y. X.; Ding, X. C.; Wu, S. C.; Zhao, J. Q. Microwave absorption properties and infrared emissivities of ordered mesoporous C-TiO2 nanocomposites with crystalline framework. J. Solid State Chem. 2010, 183, 2797–2804.

236

Chu, W. L.; Wang, Y.; Du, Y. C.; Qiang, R.; Tian, C. H.; Han, X. J. FeCo alloy nanoparticles supported on ordered mesoporous carbon for enhanced microwave absorption. J. Mater. Sci. 2017, 52, 13636–13649.

237

Guo, S. L.; Wang, L. D.; Wu, H. J. Facile synthesis and enhanced electromagnetic wave absorption of thorny-like Fe-Ni alloy/ordered mesoporous carbon composite. Adv. Powder Technol. 2015, 26, 1250–1255.

238

Li, G. M.; Wang, L. C.; Li, W. X.; Xu, Y. Mesoporous Fe/C and core–shell Fe-Fe3C@C composites as efficient microwave absorbents. Microporous Mesoporous Mater. 2015, 211, 97–104.

239
ChaiL.WangY. Q.ZhouN. F.DuY.ZengX. D.ZhouS. Y.HeQ. C.WuG. L. In-situ growth of core–shell ZnFe2O4@porous hollow carbon microspheres as an efficient microwave absorberJ. Colloid Interface Sci.202158147548410.1016/j.jcis.2020.07.102

Chai, L.; Wang, Y. Q.; Zhou, N. F.; Du, Y.; Zeng, X. D.; Zhou, S. Y.; He, Q. C.; Wu, G. L. In-situ growth of core–shell ZnFe2O4@porous hollow carbon microspheres as an efficient microwave absorber. J. Colloid Interface Sci. 2021, 581, 475–484.

240

Cheng, Y.; Cao, J. M.; Li, Y.; Li, Z. Y.; Zhao, H. Q.; Ji, G. B.; Du, Y. W. The outside-in approach to construct Fe3O4 nanocrystals/mesoporous carbon hollow spheres core–shell hybrids toward microwave absorption. ACS Sustainable Chem. Eng. 2018, 6, 1427–1435.

241

Ruoff, R. S.; Lorents, D. C.; Chan, B.; Malhotra, R.; Subramoney, S. Single crystal metals encapsulated in carbon nanoparticles. Science 1993, 259, 346–348.

242

Dong, X. L.; Zhang, Z. D.; Xiao, Q. F.; Zhao, X. G.; Chuang, Y. C.; Jin, S. R.; Sun, W. M.; Li, Z. J.; Zheng, Z. X.; Yang, H. Characterization of ultrafine γ-Fe(C), α-Fe(C) and Fe3C particles synthesized by arc-discharge in methane. J. Mater. Sci. 1998, 33, 1915–1919.

243

Zhang, X. F.; Dong, X. L.; Huang, H.; Liu, Y. Y.; Wang, W. N.; Zhu, X. G.; Lv, B.; Lei, J. P.; Lee, C. G. Microwave absorption properties of the carbon-coated nickel nanocapsules. Appl. Phys. Lett. 2006, 89, 053115.

244

Zhang, X. F.; Dong, X. L.; Huang, H.; Lv, B.; Lei, J. P.; Choi, C. J. Microstructure and microwave absorption properties of carbon-coated iron nanocapsules. J. Phys. D: Appl. Phys. 2007, 40, 5383–5387.

245

Zhang, X. F.; Guan, P. F.; Dong, X. L. Multidielectric polarizations in the core/shell Co/graphite nanoparticles. Appl. Phys. Lett. 2010, 96, 223111.

246

Wu, N. D.; Liu, X. G.; Zhao, C. Y.; Cui, C. Y.; Xia, A. L. Effects of particle size on the magnetic and microwave absorption properties of carbon-coated nickel nanocapsules. J. Alloys Compd. 2016, 656, 628–634.

247

Wang, H.; Guo, H. H.; Dai, Y. Y.; Geng, D. Y.; Han, Z.; Li, D.; Yang, T.; Ma, S.; Liu, W.; Zhang, Z. D. Optimal electromagnetic-wave absorption by enhanced dipole polarization in Ni/C nanocapsules. Appl. Phys. Lett. 2012, 101, 083116.

248

Du, Y. C.; Wang, J. Y.; Cui, C. K.; Liu, X. R.; Wang, X. H.; Han, X. J. Pure carbon microwave absorbers from anion-exchange resin pyrolysis. Synth. Met. 2010, 160, 2191–2196.

249

Du, Y. C. Advances in carbon-based microwave absorbing materials. Materials 2022, 15, 1359.

250

Liu, T.; Xie, X. B.; Pang, Y.; Kobayashi, S. Co/C nanoparticles with low graphitization degree: A high performance microwave-absorbing material. J. Mater. Chem. C 2016, 4, 1727–1735.

251

Li, Y. X.; Liu, X. F.; Liu, R. G.; Pang, X. Y.; Zhang, Y. H.; Qin, G. W.; Zhang, X. F. Improved microwave absorption properties by atomic-scale substitutions. Carbon 2018, 139, 181–188.

252

Li, Y. X.; Liu, R. G.; Pang, X. Y.; Zhao, X. N.; Zhang, Y. H.; Qin, G. W.; Zhang, X. F. Fe@C nanocapsules with substitutional sulfur heteroatoms in graphitic shells for improving microwave absorption at gigahertz frequencies. Carbon 2018, 126, 372–381.

253

Liu, R. G.; Li, Y. X.; Yu, J. Y.; Zhang, X. F. Fe@graphite nanocapsules with atomic-scale substitutional oxygen in graphitic shells for improving gigahertz dielectric losses and microwave absorption properties. J. Alloys Compd. 2019, 792, 291–296.

254

Yu, Z. X.; Zhang, N.; Yao, Z. P.; Han, X. J.; Jiang, Z. H. Synthesis of hierarchical dendritic micro-nano structure CoxFe1−x alloy with tunable electromagnetic absorption performance. J. Mater. Chem. A 2013, 1, 12462–12470.

255

Duan, Y. P.; Zhang, Y. H.; Wang, T. M.; Gu, S. C.; Li, X.; Lv, X. J. Evolution study of microstructure and electromagnetic behaviors of Fe-Co-Ni alloy with mechanical alloying. Mater. Sci. Eng. B 2014, 185, 86–93.

256

Liu, X. G.; Ou, Z. Q.; Geng, D. Y.; Han, Z.; Jiang, J. J.; Liu, W.; Zhang, Z. D. Influence of a graphite shell on the thermal and electromagnetic characteristics of FeNi nanoparticles. Carbon 2010, 48, 891–897.

257

Qu, X. H.; Zhou, Y. L.; Li, X. Y.; Javid, M.; Huang, F. R.; Zhang, X. F.; Dong, X. L.; Zhang, Z. D. Nitrogen-doped graphene layer-encapsulated NiFe bimetallic nanoparticles synthesized by an arc discharge method for a highly efficient microwave absorber. Inorg. Chem. Front. 2020, 7, 1148–1160.

258

Wang, H.; Dai, Y. Y.; Gong, W. J.; Geng, D. Y.; Ma, S.; Li, D.; Liu, W.; Zhang, Z. D. Broadband microwave absorption of CoNi@C nanocapsules enhanced by dual dielectric relaxation and multiple magnetic resonances. Appl. Phys. Lett. 2013, 102, 223113.

259

Xie, Z. G.; Geng, D. Y.; Liu, X. G.; Ma, S.; Zhang, Z. D. Magnetic and microwave-absorption properties of graphite-coated (Fe, Ni) nanocapsules. J. Mater. Sci. Technol. 2011, 27, 607–614.

260

Han, Z.; Li, D.; Wang, H.; Liu, X. G.; Li, J.; Geng, D. Y.; Zhang, Z. D. Broadband electromagnetic-wave absorption by FeCo/C nanocapsules. Appl. Phys. Lett. 2009, 95, 023114.

261

Lei, Z. X.; Li, S. Z.; Zhang, A. Q.; Song, Y. H.; He, N.; Li, M. Z.; Geng, D. Y.; Liu, W.; Ma, S.; Zhang, Z. D. Electromagnetic wave absorption superalloy/graphite magnetic nanocapsules applied in wide temperature range. Compos. Part B-Eng. 2022, 234, 109692.

262

Han, D. D.; Or, S. W.; Dong, X. R.; Liu, B. FeSn2/defective onion-like carbon core–shell structured nanocapsules for high-frequency microwave absorption. J. Alloys Compd. 2017, 695, 2605–2611.

263

Hua, A.; Pan, D. S.; Li, Y.; Luan, J.; Wang, Y.; He, J.; Geng, D. Y.; Liu, W.; Ma, S.; Zhang, Z. D. Fe3Si-core/amorphous-C-shell nanocapsules with enhanced microwave absorption. J. Magn. Magn. Mater. 2019, 471, 561–567.

264

Zhang, X. F.; Rao, Y.; Guo, J. J.; Qin, G. W. Multiple-phase carbon-coated FeSn2/Sn nanocomposites for high-frequency microwave absorption. Carbon 2016, 96, 972–979.

265

Liu, X. G.; Ou, Z. Q.; Geng, D. Y.; Han, Z.; Wang, H.; Li, B.; Brück, E.; Zhang, Z. D. Enhanced absorption bandwidth in carbon-coated supermalloy FeNiMo nanocapsules for a thin absorb thickness. J. Alloys Compd. 2010, 506, 826–830.

266

Li, Y. X.; Liao, Y. J.; Ji, L. Z.; Hu, C. L.; Zhang, Z. H.; Zhang, Z. Y.; Zhao, R. Z.; Rong, H. W.; Qin, G. W.; Zhang, X. F. Quinary high-entropy-alloy@graphite nanocapsules with tunable interfacial impedance matching for optimizing microwave absorption. Small 2022, 18, 2107265.

267

Javid, M.; Qu, X. H.; Zhao, Y. P.; Huang, F. R.; Farid, A.; Zhang, H.; Shah, A.; Sammed, K. A.; Duan, Y. P.; Zhang, Z. D. et al. Synthesis of hexagonal-shaped Cr3C2@C nanoplatelets and role of their intrinsic properties towards microwave absorption. Mater. Lett. 2021, 288, 129329.

268

Rong, H. W.; Zhang, Z. Q.; Li, Y. X.; Zhang, X. F.; Li, L. W. Significant magnetocaloric and microwave absorption performances in ultrafine ErC2@C core–shell structural nanocomposites. Compos. Commun. 2019, 12, 123–127.

269

Wang, Z. H.; Han, Z.; Geng, D. Y.; Zhang, Z. D. Synthesis, characterization and microwave absorption of carbon-coated Sn nanorods. Chem. Phys. Lett. 2010, 489, 187–190.

270

Zhou, Y. L.; Wang, N.; Qu, X. H.; Huang, F. R.; Duan, Y. P.; Zhang, X. F.; Dong, X. L.; Zhang, Z. D. Arc-discharge synthesis of nitrogen-doped C embedded TiCN nanocubes with tunable dielectric/magnetic properties for electromagnetic absorbing applications. Nanoscale 2019, 11, 19994–20005.

271

Cui, C. K.; Du, Y. C.; Li, T. H.; Zheng, X. Y.; Wang, X. H.; Han, X. J.; Xu, P. Synthesis of electromagnetic functionalized Fe3O4 microspheres/polyaniline composites by two-step oxidative polymerization. J. Phys. Chem. B 2012, 116, 9523–9531.

272

Li, C. P.; Chen, G. B.; Jiang, W. T.; Jiang, X. H.; Yan, X. F. High-performance electromagnetic wave absorption of FeNi/N, S-codoped carbon composites in 2–40 GHz. Carbon 2021, 174, 201–213.

273

Wu, T.; Liu, Y.; Zeng, X.; Cui, T. T.; Zhao, Y. T.; Li, Y. N.; Tong, G. X. Facile hydrothermal synthesis of Fe3O4/C core–shell nanorings for efficient low-frequency microwave absorption. ACS Appl. Mater. Interfaces 2016, 8, 7370–7380.

274

Ding, D.; Wang, Y.; Li, X. D.; Qiang, R.; Xu, P.; Chu, W. L.; Han, X. J.; Du, Y. C. Rational design of core–shell Co@C microspheres for high-performance microwave absorption. Carbon 2017, 111, 722–732.

275

Chen, X. L.; Wang, Y.; Liu, H. L.; Jin, S.; Wu, G. L. Interconnected magnetic carbon@NixCo1−xFe2O4 nanospheres with core–shell structure: An efficient and thin electromagnetic wave absorber. J. Colloid Interface Sci. 2022, 606, 526–536.

276

Dai, W. Y.; Chen, F.; Luo, H.; Xiong, Y.; Wang, X.; Cheng, Y. Z.; Gong, R. Z. Synthesis of yolk–shell structured carbonyl iron@void@nitrogen doped carbon for enhanced microwave absorption performance. J. Alloys Compd. 2020, 812, 152083.

277

Shen, X.; Yang, S. H.; Yin, P. G.; Li, C. Q.; Ye, J. R.; Wang, G. S. Enhancement in microwave absorption properties by adjusting the sintering conditions and carbon shell thickness of Ni@C submicrospheres. CrystEngComm 2022, 24, 765–774.

278

Wang, B. L.; Chen, H. Y.; Wang, S.; Shi, Y.; Liu, X. D.; Fu, Y. G.; Liu, T. Construction of core–shell structured Co7Fe3@C nanocapsules with strong wideband microwave absorption at ultra-thin thickness. Carbon 2021, 184, 223–231.

279

Guan, Z. J.; Jiang, J. T.; Chen, N.; Gong, Y. X.; Zhen, L. Carbon-coated CoFe-CoFe2O4 composite particles with high and dual-band electromagnetic wave absorbing properties. Nanotechnology 2018, 29, 305604.

280

Cui, L. R.; Tian, C. H.; Tang, L. L.; Han, X. J.; Wang, Y. H.; Liu, D. W.; Xu, P.; Li, C. L.; Du, Y. C. Space-confined synthesis of core–shell BaTiO3@carbon microspheres as a high-performance binary dielectric system for microwave absorption. ACS Appl. Mater. Interfaces 2019, 11, 31182–31190.

281

Liang, C. Y.; Wang, Z. J. Controllable fabricating dielectric-dielectric SiC@C core–shell nanowires for high-performance electromagnetic wave attenuation. ACS Appl. Mater. Interfaces 2017, 9, 40690–40696.

282

Xu, D. M.; Yang, Y. F.; Lyu, L.; Ouyang, A. C.; Liu, W.; Wang, Z.; Wu, L. L.; Yang, F.; Liu, J. R.; Wang, F. L. One-dimensional MnO@N-doped carbon nanotubes as robust dielectric loss electromagnetic wave absorbers. Chem. Eng. J. 2021, 410, 128295.

283

Yan, L. L.; Zhang, M.; Zhao, S. C.; Sun, T. J.; Zhang, B.; Cao, M. S.; Qin, Y. Wire-in-tube ZnO@carbon by molecular layer deposition: Accurately tunable electromagnetic parameters and remarkable microwave absorption. Chem. Eng. J. 2020, 382, 122860.

284

Dong, S.; Zhang, W. Z.; Zhang, X. H.; Hu, P.; Han, J. C. Designable synthesis of core–shell SiCw@C heterostructures with thickness-dependent electromagnetic wave absorption between the whole X-band and Ku-band. Chem. Eng. J. 2018, 354, 767–776.

285

Lv, H. L.; Yang, Z. H.; Xu, H. B.; Wang, L. Y.; Wu, R. B. An electrical switch-driven flexible electromagnetic absorber. Adv. Funct. Mater. 2020, 30, 1907251.

286

Lv, H. L.; Yang, Z. H.; Wang, P. L.; Ji, G. B.; Song, J. Z.; Zheng, L. R.; Zeng, H. B.; Xu, Z. J. A voltage-boosting strategy enabling a low-frequency, flexible electromagnetic wave absorption device. Adv. Mater. 2018, 30, 1706343.

287

Liu, X. F.; Cui, X. R.; Chen, Y. X.; Zhang, X. J.; Yu, R. H.; Wang, G. S.; Ma, H. Modulation of electromagnetic wave absorption by carbon shell thickness in carbon encapsulated magnetite nanospindles-poly(vinylidene fluoride) composites. Carbon 2015, 95, 870–878.

288

Liu, Y.; Fu, Y. W.; Liu, L.; Li, W.; Guan, J. G.; Tong, G. X. Low-cost carbothermal reduction preparation of monodisperse Fe3O4/C core–shell nanosheets for improved microwave absorption. ACS Appl. Mater. Interfaces 2018, 10, 16511–16520.

289

Wang, X.; Pan, F.; Xiang, Z.; Zeng, Q. W.; Pei, K.; Che, R. C.; Lu, W. Magnetic vortex core–shell Fe3O4@C nanorings with enhanced microwave absorption performance. Carbon 2020, 157, 130–139.

290

Cui, X. Q.; Liang, X. H.; Chen, J. B.; Gu, W. H.; Ji, G. B.; Du, Y. W. Customized unique core–shell Fe2N@N-doped carbon with tunable void space for microwave response. Carbon 2020, 156, 49–57.

291

Gao, S. T.; Zhang, Y. C.; Xing, H. L.; Li, H. X. Controlled reduction synthesis of yolk–shell magnetic@void@C for electromagnetic wave absorption. Chem. Eng. J. 2020, 387, 124149.

292

Li, B.; Liu, M. J.; Zhong, W. X.; Xu, J.; Zhang, X.; Zhang, X. L.; Zhang, X. T.; Chen, Y. J. Partially contacted NixSy@N, S-codoped carbon yolk–shelled structures for efficient microwave absorption. Carbon 2021, 182, 276–286.

293

Ma, W. J.; He, P.; Wang, T. Y.; Xu, J.; Liu, X. Y.; Zhuang, Q. X.; Cui, Z. K.; Lin, S. L. Microwave absorption of carbonization temperature-dependent uniform yolk–shell H-Fe3O4@C microspheres. Chem. Eng. J. 2021, 420, 129875.

294

Park, J. H.; Lee, S.; Ro, J. V.; Suh, S. J. Yolk–shell Fe-Fe3O4@C nanoparticles with excellent reflection loss and wide bandwidth as electromagnetic wave absorbers in the high-frequency band. Appl. Surf. Sci. 2022, 573, 151469.

295

Wang, B. L.; Fu, Y. G.; Li, J.; Liu, T. Yolk–shelled Co@SiO2@mesoporous carbon microspheres: Construction of multiple heterogeneous interfaces for wide-bandwidth microwave absorption. J. Colloid Interface Sci. 2022, 607, 1540–1550.

296

Wang, K.; Wan, G. P.; Wang, G. L.; He, Z. Y.; Shi, S. H.; Wu, L. H.; Wang, G. Z. The construction of carbon-coated Fe3O4 yolk–shell nanocomposites based on volume shrinkage from the release of oxygen anions for wide-band electromagnetic wave absorption. J. Colloid Interface Sci. 2018, 511, 307–317.

297

Han, M. K.; Yin, X. W.; Kong, L.; Li, M.; Duan, W. Y.; Zhang, L. T.; Cheng, L. F. Graphene-wrapped ZnO hollow spheres with enhanced electromagnetic wave absorption properties. J. Mater. Chem. A 2014, 2, 16403–16409.

298

Huang, Y.; Xing, W. J.; Fan, J. L.; Dai, J. X.; Liu, Q.; Hu, F.; Xu, G. L. Preparation and microwave absorption properties of the hollow ZnFe2O4@C composites with core–shell structure. J. Magn. Magn. Mater. 2020, 502, 166543.

299

Xu, L. L.; Tao, J. Q.; Zhang, X. F.; Yao, Z. J.; Zavabeti, A.; Zhou, J. T. Co@N-doped double-shell hollow carbon via self-templating-polymerization strategy for microwave absorption. Carbon 2022, 188, 34–44.

300

Wang, F. Y.; Liu, Y. L.; Zhao, H. H.; Cui, L. R.; Gai, L. X.; Han, X. J.; Du, Y. C. Controllable seeding of nitrogen-doped carbon nanotubes on three-dimensional Co/C foam for enhanced dielectric loss and microwave absorption characteristics. Chem. Eng. J. 2022, 450, 138160.

301

Cui, L. R.; Wang, Y. H.; Han, X. J.; Xu, P.; Wang, F. Y.; Liu, D. W.; Zhao, H. H.; Du, Y. C. Phenolic resin reinforcement: A new strategy for hollow NiCo@C microboxes against electromagnetic pollution. Carbon 2021, 174, 673–682.

302

Müller, C.; Leonhardt, A.; Kutz, M. C.; Büchner, B.; Reuther H. Growth aspects of iron-filled carbon nanotubes obtained by catalytic chemical vapor deposition of ferrocene. J. Phys. Chem. C 2009, 113, 2736–2740.

303

Lv, R. T.; Kang, F. Y.; Cai, D. Y.; Wang, C.; Gu, J. L.; Wang, K. L.; Wu, D. H. Long continuous FeNi nanowires inside carbon nanotubes: Synthesis, property and application. J. Phys. Chem. Solids 2008, 69, 1213–1217.

304

Lv, R. T.; Kang, F. Y.; Gu, J. L.; Gui, X. C.; Wei, J. Q.; Wang, K. L.; Wu, D. H. Carbon nanotubes filled with ferromagnetic alloy nanowires: Lightweight and wide-band microwave absorber. Appl. Phys. Lett. 2008, 93, 223105.

305

Su, Q. M.; Li, J.; Zhong, G.; Du, G. H.; Xu, B. S. In situ synthesis of iron/nickel sulfide nanostructures-filled carbon nanotubes and their electromagnetic and microwave-absorbing properties. J. Phys. Chem. C 2011, 115, 1838–1842.

306

Zhu, H.; Lin, H. Y.; Guo, H. F.; Yu, L. F. Microwave absorbing property of Fe-filled carbon nanotubes synthesized by a practical route. Mater. Sci. Eng. B 2007, 138, 101–104.

307

Xu, Z.; Du, Y. C.; Liu, D. W.; Wang, Y. H.; Ma, W. J.; Wang, Y.; Xu, P.; Han, X. J. Pea-like Fe/Fe3C nanoparticles embedded in nitrogen-doped carbon nanotubes with tunable dielectric/magnetic loss and efficient electromagnetic absorption. ACS Appl. Mater. Interfaces 2019, 11, 4268–4277.

308

Liu, X. Y.; Zhang, X.; Shen, Y.; Yan, F.; Chen, Y. J. Fabrication of Fe/Fe3C-nanoparticles encapsulated nitrogen-doped carbon nanotubes with thin wall thickness as high-efficiency electromagnetic wave absorbing materials. J. Alloys Compd. 2022, 898, 162833.

309

Zeng, B.; Zhang, P.; Li, H. J.; Peng, Y. H.; Qin, L. L.; Qu, Z. W.; Qiu, L. L.; Gao, X. H.; Huang, S. X.; Deng, L. W. Flammulina velutipes-like Co@NCNTs enhancing the electromagnetic wave absorption performance. Results Phys. 2021, 29, 104751.

310

Zhang, Y.; Huang, Y. A.; Liang, X. H.; Yang, Y.; Zhang, R. L.; Huang, R. S. Preparation and microwave absorption of nitrogen-doped carbon nanotubes with iron particles. IEEE Trans. Magn. 2018, 54, 2300606.

311

Zhu, X. Y.; Qiu, H. F.; Chen, P.; Liu, J. L.; Chen, G. Z. Environmentally friendly synthesis of velutipes-shaped Ni@CNTs composites as efficient thin microwave absorbers. J. Electron. Mater. 2020, 49, 5368–5378.

312

Sun, Y. P.; Liu, X. G.; Feng, C.; Fan, J. C.; Lv, Y. H.; Wang, Y. R.; Li, C. T. A facile synthesis of FeNi3@C nanowires for electromagnetic wave absorber. J. Alloys Compd. 2014, 586, 688–692.

313

Wu, G. L.; Cheng, Y. H.; Ren, Y. Y.; Wang, Y. Q.; Wang, Z. D.; Wu, H. J. Synthesis and characterization of γ-Fe2O3@C nanorod-carbon sphere composite and its application as microwave absorbing material. J. Alloys Compd. 2015, 652, 346–350.

314

Wang, Y. H.; Han, X. J.; Xu, P.; Liu, D. W.; Cui, L. R.; Zhao, H. H.; Du, Y. C. Synthesis of pomegranate-like Mo2C@C nanospheres for highly efficient microwave absorption. Chem. Eng. J. 2019, 372, 312–320.

315

Liu, L.; He, P. G.; Zhou, K. C.; Chen, T. F. Microwave absorption properties of helical carbon nanofibers-coated carbon fibers. AIP Adv. 2013, 3, 082112.

316

Singh, S. K.; Akhtar, M. J.; Kar, K. K. Hierarchical carbon nanotube-coated carbon fiber: Ultra lightweight, thin, and highly efficient microwave absorber. ACS Appl. Mater. Interfaces 2018, 10, 24816–24828.

317

Zhang, X. X.; Wang, J.; Su, X. G.; Huo, S. Q. Facile synthesis of reduced graphene oxide-wrapped CNFs with controllable chemical reduction degree for enhanced microwave absorption performance. J. Colloid Interface Sci. 2019, 553, 402–408.

318

Zhao, H. H.; Xu, X. Z.; Fan, D. G.; Xu, P.; Wang, F. Y.; Cui, L. R.; Han, X. J.; Du, Y. C. Anchoring porous carbon nanoparticles on carbon nanotubes as a high-performance composite with a unique core–sheath structure for electromagnetic pollution precaution. J. Mater. Chem. A 2021, 9, 22489–22500.

319

Tian, C. H.; Du, Y. C.; Cui, C. S.; Deng, Z. L.; Xue, J. L.; Xu, P.; Qiang, R.; Wang, Y.; Han, X. J. Synthesis and microwave absorption enhancement of yolk–shell Fe3O4@C microspheres. J. Mater. Sci. 2017, 52, 6349–6361.

320

Tian, C. H.; Du, Y. C.; Xu, H. Y.; Xue, J. L.; Chu, W. L.; Qiang, R.; Han, X. J.; Xu, P. Differential shrinkage induced formation of yolk–shell carbon microspheres toward enhanced microwave absorption. Appl. Phys. Lett. 2017, 111, 133103.

321

Qiang, R.; Du, Y. C.; Wang, Y.; Wang, N.; Tian, C. H.; Ma, J.; Xu, P.; Han, X. J. Rational design of yolk–shell C@C microspheres for the effective enhancement in microwave absorption. Carbon 2016, 98, 599–606.

322

Wang, Y. C.; Zhou, W.; Zeng, G. L.; Chen, H.; Luo, H.; Fan, X. M.; Li, Y. Rational design of multi-shell hollow carbon submicrospheres for high-performance microwave absorbers. Carbon 2021, 175, 233–242.

323

Sun, H.; Che, R. C.; You, X.; Jiang, Y. S.; Yang, Z. B.; Deng, J.; Qiu, L. B.; Peng, H. S. Cross-stacking aligned carbon-nanotube films to tune microwave absorption frequencies and increase absorption intensities. Adv. Mater. 2014, 26, 8120–8125.

324

Yuan, K. P.; Che, R. C.; Cao, Q.; Sun, Z. K.; Yue, Q.; Deng, Y. H. Designed fabrication and characterization of three-dimensionally ordered arrays of core–shell magnetic mesoporous carbon microspheres. ACS Appl. Mater. Interfaces 2015, 7, 5312–5319.

325

Song, Y.; Yin, F. X.; Zhang, C. W.; Guo, W. B.; Han, L. Y.; Yuan, Y. Three-dimensional ordered mesoporous carbon spheres modified with ultrafine zinc oxide nanoparticles for enhanced microwave absorption properties. Nano-Micro Lett. 2021, 13, 76.

326

Zhang, C. W.; Peng, Y.; Song, Y.; Li, J. J.; Yin, F. X.; Yuan, Y. Periodic three-dimensional nitrogen-doped mesoporous carbon spheres embedded with Co/Co3O4 nanoparticles toward microwave absorption. ACS Appl. Mater. Interfaces 2020, 12, 24102–24111.

327

Lü, Y. Y.; Wang, Y. T.; Li, H. L.; Lin, Y.; Jiang, Z. Y.; Xie, Z. X.; Kuang, Q.; Zheng, L. S. MOF-derived porous Co/C nanocomposites with excellent electromagnetic wave absorption properties. ACS Appl. Mater. Interfaces 2015, 7, 13604–13611.

328

Yan, J.; Huang, Y.; Yan, Y. H.; Ding, L.; Liu, P. B. High-performance electromagnetic wave absorbers based on two kinds of nickel-based MOF-derived Ni@C microspheres. ACS Appl. Mater. Interfaces 2019, 11, 40781–40792.

329

Yang, Z. H.; Lv, H. L.; Wu, R. B. Rational construction of graphene oxide with MOF-derived porous NiFe@C nanocubes for high-performance microwave attenuation. Nano Res. 2016, 9, 3671–3682.

330

Qiu, Y.; Lin, Y.; Yang, H. B.; Wang, L.; Wang, M. Q.; Wen, B. Hollow Ni/C microspheres derived from Ni-metal organic framework for electromagnetic wave absorption. Chem. Eng. J. 2020, 383, 123207.

331

Wang, L.; Huang, M. Q.; Yu, X. F.; You, W. B.; Zhang, J.; Liu, X. H.; Wang, M.; Che, R. C. MOF-derived Ni1−xCox@carbon with tunable nano-microstructure as lightweight and highly efficient electromagnetic wave absorber. Nano-Micro Lett. 2020, 12, 150.

332

Quan, B.; Liang, X. H.; Zhang, X.; Xu, G. Y.; Ji, G. B.; Du, Y. W. Functionalized carbon nanofibers enabling stable and flexible absorbers with effective microwave response at low thickness. ACS Appl. Mater. Interfaces 2018, 10, 41535–41543.

333

Ding, J. W.; Song, K.; Gong, C. C.; Wang, C. X.; Guo, Y.; Shi, C. S.; He, F. Design of conical hollow ZnS arrays vertically grown on carbon fibers for lightweight and broadband flexible absorbers. J. Colloid Interface Sci. 2022, 607, 1287–1299.

334

Li, X.; Wang, L.; You, W. B.; Xing, L. S.; Yang, L. T.; Yu, X. F.; Zhang, J.; Li, Y. S.; Che, R. C. Enhanced polarization from flexible hierarchical MnO2 arrays on cotton cloth with excellent microwave absorption. Nanoscale 2019, 11, 13269–13281.

335
Liu, P. B. ; Zhu, C. Y. ; Gao, S. ; Guan, C. ; Huang, Y. ; He, W. J. N-doped porous carbon nanoplates embedded with CoS2 vertically anchored on carbon cloths for flexible and ultrahigh microwave absorption. Carbon 2020, 163, 348–359.
DOI
336

Wang, L.; Li, X.; Li, Q. Q.; Yu, X. F.; Zhao, Y. H.; Zhang, J.; Wang, M.; Che, R. C. Oriented polarization tuning broadband absorption from flexible hierarchical ZnO arrays vertically supported on carbon cloth. Small 2019, 15, 1900900.

337

Cui, C.; Guo, R. H.; Ren, E. H.; Xiao, H. Y.; Zhou, M.; Lai, X. X.; Qin, Q.; Jiang, S. X.; Qin, W. F. MXene-based rGO/Nb2CTx/Fe3O4 composite for high absorption of electromagnetic wave. Chem. Eng. J. 2021, 405, 126626.

338

Wang, J. Q.; Cui, Y. H.; Wu, F.; Shah, T.; Ahmad, M.; Zhang, A. B.; Zhang, Q. Y.; Zhang, B. L. Core–shell structured Fe/Fe3O4@TCNFs@TiO2 magnetic hybrid nanofibers: Preparation and electromagnetic parameters regulation for enhanced microwave absorption. Carbon 2020, 165, 275–285.

339

Liu, Y.; Jia, Z. R.; Zhan, Q. Q.; Dong, Y. H.; Xu, Q. M.; Wu, G. L. Magnetic manganese-based composites with multiple loss mechanisms towards broadband absorption. Nat. Catal. 2022, 15, 5590–5600.

340

Shi, X. F.; You, W. B.; Zhao, Y. H.; Li, X.; Shao, Z. Z.; Che, R. C. Multi-scale magnetic coupling of Fe@SiO2@C-Ni yolk@triple-shell microspheres for broadband microwave absorption. Nanoscale 2019, 11, 17270–17276.

341

Chen, X. L.; Jia, Z. R.; Feng, A. L.; Wang, B. B.; Tong, X. H.; Zhang, C. H.; Wu, G. L. Hierarchical Fe3O4@carbon@MnO2 hybrid for electromagnetic wave absorber. J. Colloid Interface Sci. 2019, 553, 465–474.

342

Liu, Y.; Jia, Z. R.; Zhan, Q. Q.; Dong, Y. H.; Xu, Q. M.; Wu, G. L. Magnetic manganese-based composites with multiple loss mechanisms towards broadband absorption. Nano Res. 2022, 15, 5590–5600.

343

Ning, M. Q.; Lei, Z. K.; Tan, G. G.; Man, Q. K.; Li, J. B.; Li, R. W. Dumbbell-like Fe3O4@N-doped carbon@2H/1T-MoS2 with tailored magnetic and dielectric loss for efficient microwave absorbing. ACS Appl. Mater. Interfaces 2021, 13, 47061–47071.

344

Tong, Z. Y.; Liao, Z. J.; Liu, Y. Y.; Ma, M. L.; Bi, Y. X.; Huang, W. B.; Ma, Y.; Qiao, M. T.; Wu, G. L. Hierarchical Fe3O4/Fe@C@MoS2 core–shell nanofibers for efficient microwave absorption. Carbon 2021, 179, 646–654.

345

Wang, L.; Yu, X. F.; Li, X.; Zhang, J.; Wang, M.; Che, R. C. MOF-derived yolk–shell Ni@C@ZnO Schottky contact structure for enhanced microwave absorption. Chem. Eng. J. 2020, 383, 123099.

346

Wang, S. S.; Zhu, H. H.; Jiao, Q. Z.; Jiao, X. G.; Feng, C. H.; Li, H. S.; Shi, D. X.; Wu, Q.; Zhao, Y. Controllable synthesis of multi-shelled SiO2@C@NiCo2O4 yolk–shell composites for enhancing microwave absorbing properties. New J. Chem. 2021, 45, 20928–20936.

347

Xu, C.; Wu, F.; Duan, L. Q.; Xiong, Z. M.; Xia, Y. L.; Yang, Z. Q.; Sun, M. X.; Xie, A. M. Dual-interfacial polarization enhancement to design tunable microwave absorption nanofibers of SiC@C@PPy. ACS Appl. Electron. Mater. 2020, 2, 1505–1513.

348

Yang, Z. H.; Li, M.; Zhang, Y.; Yang, L. J.; Liu, J. C.; Wang, Y. H.; He, Q. J. Constructing uniform Fe3O4@C@MnO2 microspheres with yolk–shell interior toward enhancement in microwave absorption. J. Alloys Compd. 2020, 817, 152795.

349

You, W. B.; Bi, H.; She, W.; Zhang, Y.; Che, R. C. Dipolar-distribution cavity γ-Fe2O3@C@α-MnO2 nanospindle with broadened microwave absorption bandwidth by chemically etching. Small 2017, 13, 1602779.

350

Han, X. P.; Huang, Y.; Gao, S.; Zhang, G. Z.; Li, T. H.; Liu, P. B. A hierarchical carbon fiber@MXene@ZnO core-sheath synergistic microstructure for efficient microwave absorption and photothermal conversion. Carbon 2021, 183, 872–883.

351

Lv, H. L.; Ji, G. B.; Zhang, H. Q.; Du, Y. W. Facile synthesis of a CNT@Fe@SiO2 ternary composite with enhanced microwave absorption performance. RSC Adv. 2015, 5, 76836–76843.

352

Wang, J. Q.; Liu, L.; Jiao, S. L.; Ma, K. J.; Lv, J.; Yang, J. J. Hierarchical carbon fiber@MXene@MoS2 core–sheath synergistic microstructure for tunable and efficient microwave absorption. Adv. Funct. Mater. 2020, 30, 2002595.

353

Huang, M. Q.; Wang, L.; Liu, Q.; You, W. B.; Che, R. C. Interface compatibility engineering of Multi-shell Fe@C@TiO2@MoS2 heterojunction expanded microwave absorption bandwidth. Chem. Eng. J. 2022, 429, 132191.

354

Liu, D. W.; Du, Y. C.; Xu, P.; Wang, F. Y.; Wang, Y. H.; Cui, L. R.; Zhao, H. H.; Han, X. J. Rationally designed hierarchical N-doped carbon nanotubes wrapping waxberry-like Ni@C microspheres for efficient microwave absorption. J. Mater. Chem. A 2021, 9, 5086–5096.

355
QiuY.YangH. B.MaL.LinY.ZongH. W.WenB.BaiX. Y.WangM. Q. In situ-derived carbon nanotube-decorated nitrogen-doped carbon-coated nickel hybrids from MOF/melamine for efficient electromagnetic wave absorptionJ. Colloid Interface Sci.202158178379310.1016/j.jcis.2020.07.151

Qiu, Y.; Yang, H. B.; Ma, L.; Lin, Y.; Zong, H. W.; Wen, B.; Bai, X. Y.; Wang, M. Q. In situ-derived carbon nanotube-decorated nitrogen-doped carbon-coated nickel hybrids from MOF/melamine for efficient electromagnetic wave absorption. J. Colloid Interface Sci. 2021, 581, 783–793.

356

Xu, C. Y.; Wang, L.; Li, X.; Qian, X.; Wu, Z. C.; You, W. B.; Pei, K.; Qin, G.; Zeng, Q. W.; Yang, Z. Q. et al. Hierarchical magnetic network constructed by CoFe nanoparticles suspended within “tubes on rods” matrix toward enhanced microwave absorption. Nano-Micro Lett. 2021, 13, 47.

Publication history
Copyright
Acknowledgements

Publication history

Received: 21 May 2022
Revised: 18 June 2022
Accepted: 22 June 2022
Published: 03 August 2022
Issue date: October 2022

Copyright

© Tsinghua University Press 2022

Acknowledgements

Acknowledgements

This work was financially supported by the National Natural Science Foundation of China (No. 21676065).

Return