AI Chat Paper
Note: Please note that the following content is generated by AMiner AI. SciOpen does not take any responsibility related to this content.
{{lang === 'zh_CN' ? '文章概述' : 'Summary'}}
{{lang === 'en_US' ? '中' : 'Eng'}}
Chat more with AI
Article Link
Collect
Submit Manuscript
Show Outline
Outline
Show full outline
Hide outline
Outline
Show full outline
Hide outline
Research Article

In-situ formation of hierarchical solid-electrolyte interphase for ultra-long cycling of aqueous zinc-ion batteries

Shaojie Zhang1Jiajia Ye2Huaisheng Ao2Mingying Zhang2Xilong Li2Zhibin Xu2Zhiguo Hou2( )Yitai Qian1( )
School of Chemistry and Chemical Engineering, Shandong University, Jinan 250100, China
School of Chemistry and Material Science, University of Science and Technology of China, Hefei 230026, China
Show Author Information

Graphical Abstract

We develop an in-situ formed hierarchical solid-electrolyte interphase composed of InF3|InF3-In|ZnF2 layers by InF3 coating. The as-prepared zinc anode achieves dendrite-free zinc plating/stripping for more than 6,000 h, and combined with the MnO2 cathode, showing an ultra-long stable cycle.

Abstract

Aqueous rechargeable zinc ion batteries have received widespread attention due to their high energy density and low cost. However, zinc metal anodes face fatal dendrite growth and detrimental side reactions, which affect the cycle stability and practical application of zinc ion batteries. Here, an in-situ formed hierarchical solid-electrolyte interphase composed of InF3, In, and ZnF2 layers with outside-in orientation on the Zn anode (denoted as Zn@InF3) is developed by a sample InF3 coating. The inner ultrathin ZnF2 interface between Zn anode and InF3 layer formed by the spontaneous galvanic replacement reaction between InF3 and Zn, is conductive to achieving uniform Zn deposition and inhibits the growth of Zinc dendrites due to the high electrical resistivity and Zn2+ conductivity. Meanwhile, the middle uniformly generated metallic In and outside InF3 layers functioning as corrosion inhibitor suppressing the side reaction due to the waterproof surfaces, good chemical inactivity, and high hydrogen evolution overpotential. Besides, the as-prepared zinc anode enables dendrite-free Zn plating/stripping for more than 6,000 h at nearly 100% coulombic efficiency (CE). Furthermore, coupled with the MnO2 cathode, the full battery exhibits the long cycle of up to 1,000 cycles with a low negative-to-positive electrode capacity (N/P) ratio of 2.8.

Electronic Supplementary Material

Download File(s)
12274_2022_4688_MOESM1_ESM.pdf (2.7 MB)

References

[1]

Du, W. C.; Huang, S.; Zhang, Y. F.; Ye, M. H.; Li, C. C. Enable commercial Zinc powders for dendrite-free Zinc anode with improved utilization rate by pristine graphene hybridization. Energy Stor. Mater. 2022, 45, 465–473.

[2]

Hao, J. N.; Yuan, L. B.; Johannessen, B.; Zhu, Y. L.; Jiao, Y.; Ye, C.; Xie, F. X.; Qiao, S. Z. Studying the conversion mechanism to broaden cathode options in aqueous zinc-ion batteries. Angew. Chem. 2021, 133, 25318–25325.

[3]

Yuan, D.; Zhao, J.; Ren, H.; Chen, Y. Q.; Chua, R.; Jie, E. T. J.; Cai, Y.; Edison, E.; Manalastas, W. Jr; Wong, M. W. et al. Anion texturing towards dendrite-free Zn anode for aqueous rechargeable batteries. Angew. Chem., Int. Ed. 2021, 60, 7213–7219.

[4]

Zhong, Z. P.; Li, J. Y.; Li, L. Y.; Xi, X. Y.; Luo, Z. G.; Fang, G. H.; Liang, S. Q.; Wang, X. Y. Improving performance of zinc-manganese battery via efficient deposition/dissolution chemistry. Energy Stor. Mater. 2022, 46, 165–174.

[5]

Liu, J. H.; Zhou, W. H.; Zhao, R. Z.; Yang, Z. D.; Li, W.; Chao, D. L.; Qiao, S. Z.; Zhao, D. Y. Sulfur-based aqueous batteries: Electrochemistry and strategies. J. Am. Chem. Soc. 2021, 143, 15475–15489.

[6]

Chao, D. L.; Zhou, W. H.; Xie, F. X.; Ye, C.; Li, H.; Jaroniec, M.; Qiao, S. Z. Roadmap for advanced aqueous batteries: From design of materials to applications. Sci. Adv. 2020, 6, eaba4098.

[7]

Yuan, L. B.; Hao, J. N.; Kao, C. C.; Wu, C.; Liu, H. K.; Dou, S. X.; Qiao, S. Z. Regulation methods for the Zn/electrolyte interphase and the effectiveness evaluation in aqueous Zn-ion batteries. Energy Environ. Sci. 2021, 14, 5669–5689.

[8]

Cao, J.; Zhang, D. D.; Zhang, X. Y.; Zeng, Z. Y.; Qin, J. Q.; Huang, Y. H. Strategies of regulating Zn2+ solvation structures for dendrite-free and side reaction-suppressed zinc-ion batteries. Energy Environ. Sci. 2022, 15, 499–528.

[9]

Du, W. C.; Ang, E. H.; Yang, Y.; Zhang, Y. F.; Ye, M. H.; Li, C. C. Challenges in the material and structural design of zinc anode towards high-performance aqueous zinc-ion batteries. Energy Environ. Sci. 2020, 13, 3330–3360.

[10]

He, W. X.; Zuo, S. Y.; Xu, X. J.; Zeng, L. Y.; Liu, L.; Zhao, W. M.; Liu, J. Challenges and strategies of zinc anode for aqueous zinc-ion batteries. Mater. Chem. Front. 2021, 5, 2201–2217.

[11]

Li, C. W.; Wang, L. T.; Zhang, J. C.; Zhang, D. J.; Du, J. M.; Yao, Y. G.; Hong, G. Roadmap on the protective strategies of zinc anodes in aqueous electrolyte. Energy Stor. Mater. 2022, 44, 104–135.

[12]

Li, Q.; Zhao, Y. W.; Mo, F. N.; Wang, D. H.; Yang, Q.; Huang, Z. D.; Liang, G. J.; Chen, A.; Zhi, C. Y. Dendrites issues and advances in Zn anode for aqueous rechargeable Zn-based batteries. EcoMat 2020, 2, e12035.

[13]

Zhang, N. N.; Huang, S.; Yuan, Z. S.; Zhu, J. C.; Zhao, Z. F.; Niu, Z. Q. Direct self-assembly of MXene on Zn anodes for dendrite-free aqueous zinc-ion batteries. Angew. Chem. 2021, 133, 2897–2901.

[14]

Bhoyate, S. D.; Mhin, S.; Jeon, J. E.; Park, K. R.; Kim, J.; Choi, W. Stable and high-energy-density Zn-Ion rechargeable batteries based on a MoS2-coated Zn anode. ACS Appl. Mater. Interfaces 2020, 12, 27249–27257.

[15]

Li, D.; Cao, L. S.; Deng, T.; Liu, S. F.; Wang, C. S. Design of a solid electrolyte interphase for aqueous Zn batteries. Angew. Chem., Int. Ed. 2021, 60, 13035–13041.

[16]

Cao, L. S.; Li, D.; Deng, T.; Li, Q.; Wang, C. S. Hydrophobic organic-electrolyte-protected zinc anodes for aqueous zinc batteries. Angew. Chem., Int. Ed. 2020, 59, 19292–19296.

[17]

Xie, X. S.; Liang, S. Q.; Gao, J. W.; Guo, S.; Guo, J. B.; Wang, C.; Xu, G. Y.; Wu, X. W.; Chen, G.; Zhou, J. Manipulating the ion-transfer kinetics and interface stability for high-performance zinc metal anodes. Energy Environ. Sci. 2020, 13, 503–510.

[18]

Ma, L. T.; Li, Q.; Ying, Y. R.; Ma, F. X.; Chen, S. M.; Li, Y. Y.; Huang, H. T.; Zhi, C. Y. Toward practical high-areal-capacity aqueous zinc-metal batteries: Quantifying hydrogen evolution and a solid-ion conductor for stable zinc anodes. Adv. Mater. 2021, 33, 2007406.

[19]

Yuksel, R.; Buyukcakir, O.; Seong, W. K.; Ruoff, R. S. Metal-organic framework integrated anodes for aqueous Zinc-ion batteries. Adv. Energy Mater. 2020, 10, 1904215.

[20]

Guo, S.; Qin, L. P.; Zhang, T. S.; Zhou, M.; Zhou, J.; Fang, G. Z.; Liang, S. Q. Fundamentals and perspectives of electrolyte additives for aqueous Zinc-ion batteries. Energy Stor. Mater. 2021, 34, 545–562.

[21]

Yan, M. D.; Xu, C. L.; Sun, Y.; Pan, H. L.; Li, H. Manipulating Zn anode reactions through salt anion involving hydrogen bonding network in aqueous electrolytes with PEO additive. Nano Energy 2021, 82, 105739.

[22]

Hou, Z. G.; Dong, M. F.; Xiong, Y. L.; Zhang, X. Q.; Ao, H. S.; Liu, M. K.; Zhu, Y. C.; Qian, Y. T. A high-energy and long-life aqueous Zn/birnessite battery via reversible water and Zn2+ coinsertion. Small 2020, 16, 2001228.

[23]

Wang, L.; Yan, S.; Quilty, C. D.; Kuang, J.; Dunkin, M. R.; Ehrlich, S. N.; Ma, L.; Takeuchi, K. J.; Takeuchi, E. S.; Marschilok, A. C. Achieving stable molybdenum oxide cathodes for aqueous Zinc-ion batteries in water-in-salt electrolyte. Adv. Mater. Interfaces 2021, 8, 2002080.

[24]

Chen, G. H.; Zhang, F.; Zhou, Z. M.; Li, J. R.; Tang, Y. B. A flexible dual-ion battery based on PVDF-HFP-modified gel polymer electrolyte with excellent cycling performance and superior rate capability. Adv. Energy Mater. 2018, 8, 1801219.

[25]

Huang, S.; Wan, F.; Bi, S. S.; Zhu, J. C.; Niu, Z. Q.; Chen, J. A self-healing integrated all-in-one zinc-ion battery. Angew. Chem. 2019, 131, 4357–4361.

[26]

Li, H. F.; Han, C. P.; Huang, Y.; Huang, Y.; Zhu, M. S.; Pei, Z. X.; Xue, Q.; Wang, Z. F.; Liu, Z. X.; Tang, Z. J. et al. An extremely safe and wearable solid-state zinc ion battery based on a hierarchical structured polymer electrolyte. Energy Environ. Sci. 2018, 11, 941–951.

[27]

Cao, L. S.; Li, D.; Pollard, T.; Deng, T.; Zhang, B.; Yang, C. Y.; Chen, L.; Vatamanu, J.; Hu, E. Y.; Hourwitz, M. J. et al. Fluorinated interphase enables reversible aqueous zinc battery chemistries. Nat. Nanotechnol. 2021, 16, 902–910.

[28]

Li, Y.; Bettge, M.; Bareño, J.; Trask, S. E.; Abraham, D. P. Exploring electrochemistry and interface characteristics of lithium-ion cells with Li12Ni0.15Mn0.55Co0.1O2 positive and Li4Ti5O12 negative electrodes. J. Electrochem. Soc. 2015, 162, A7049–A7059.

[29]

Pang, Q.; Liang, X.; Kochetkov, I. R.; Hartmann, P.; Nazar, L. F. Stabilizing lithium plating by a biphasic surface layer formed in situ. Angew. Chem., Int. Ed. 2018, 57, 9795–9798.

[30]

Yang, Y.; Liu, C. Y.; Lv, Z. H.; Yang, H.; Zhang, Y. F.; Ye, M. H.; Chen, L. B.; Zhao, J. B.; Li, C. C. Synergistic manipulation of Zn2+ ion flux and desolvation effect enabled by anodic growth of a 3D ZnF2 matrix for long-lifespan and dendrite-free Zn metal anodes. Adv. Mater. 2021, 33, 2007388.

[31]

Valdes, N. H.; Jones, K. J.; Opila, R. L.; Shafarman, W. N. Influence of Ga and Ag on the KF treatment chemistry for CIGS solar cells. IEEE J. Photovolt. 2019, 9, 1846–1851.

[32]

Liu, X. Q.; Yang, F.; Xu, W.; Zeng, Y. X.; He, J. J.; Lu, X. H. Zeolitic imidazolate frameworks as Zn2+ modulation layers to enable dendrite-free Zn anodes. Adv. Sci. 2020, 7, 2002173.

[33]

Yang, X. Z.; Li, C.; Sun, Z. T.; Yang, S.; Shi, Z. X.; Huang, R.; Liu, B. Z.; Li, S.; Wu, Y. H.; Wang, M. L. et al. Interfacial manipulation via in situ grown ZnSe cultivator toward highly reversible Zn metal anodes. Adv. Mater. 2021, 33, 2105951.

[34]

Han, D. L.; Wu, S. C.; Zhang, S. W.; Deng, Y. Q.; Cui, C. J.; Zhang, L. N.; Long, Y.; Li, H.; Tao, Y.; Weng, Z. et al. A corrosion-resistant and dendrite-free zinc metal anode in aqueous systems. Small 2020, 16, 2001736.

[35]

Wang, L. Y.; Huang, W. W.; Guo, W. B.; Guo, Z. H.; Chang, C. Y.; Gao, L.; Pu, X. Sn alloying to inhibit hydrogen evolution of Zn metal anode in rechargeable aqueous batteries. Adv. Funct. Mater. 2022, 32, 2108533.

[36]

Liang, G. J.; Zhu, J. X.; Yan, B. X.; Li, Q.; Chen, A.; Chen, Z.; Wang, X. Q.; Xiong, B.; Fan, J.; Xu, J. et al. Gradient fluorinated alloy to enable highly reversible Zn-metal anode chemistry. Energy Environ. Sci. 2022, 15, 1086–1096.

[37]

Li, H. P.; Guo, C.; Zhang, T. S.; Xue, P.; Zhao, R. Z.; Zhou, W. H.; Li, W.; Elzatahry, A.; Zhao, D. Y.; Chao, D. Hierarchical confinement effect with zincophilic and spatial traps stabilized Zn-based aqueous battery. Nano Lett. 2022, 22, 4223–4231.

[38]

Cao, P. H.; Zhou, X. Y.; Wei, A. R.; Meng, Q.; Ye, H.; Liu, W. P.; Tang, J. J.; Yang, J. Fast-charging and ultrahigh-capacity zinc metal anode for high-performance aqueous Zinc-ion batteries. Adv. Funct. Mater. 2021, 31, 2100398.

[39]

Liang, P. C.; Yi, J.; Liu, X. Y.; Wu, K.; Wang, Z.; Cui, J.; Liu, Y. Y.; Wang, Y. G.; Xia, Y. Y.; Zhang, J. J. Highly reversible Zn anode enabled by controllable formation of nucleation sites for Zn-based batteries. Adv. Funct. Mater. 2020, 30, 1908528.

[40]

Hao, J. N.; Li, B.; Li, X. L.; Zeng, X. H.; Zhang, S. L.; Yang, F. H.; Liu, S. L.; Li, D.; Wu, C.; Guo, Z. P. An in-depth study of Zn metal surface chemistry for advanced aqueous Zn-ion batteries. Adv. Mater. 2020, 32, 2003021.

Nano Research
Pages 449-457
Cite this article:
Zhang S, Ye J, Ao H, et al. In-situ formation of hierarchical solid-electrolyte interphase for ultra-long cycling of aqueous zinc-ion batteries. Nano Research, 2023, 16(1): 449-457. https://doi.org/10.1007/s12274-022-4688-5
Topics:

913

Views

27

Crossref

24

Web of Science

27

Scopus

0

CSCD

Altmetrics

Received: 20 April 2022
Revised: 08 June 2022
Accepted: 21 June 2022
Published: 23 July 2022
© Tsinghua University Press 2022
Return