Journal Home > Volume 16 , Issue 1

Compared with the gas-solid phase reactions, the epoxidation of light olefins in the liquid phase could realize the highly selective preparation of epoxides at a lower temperature. Nevertheless, the C=C bond of light olefins is more difficult to activate, and it is still a challenge to realize the dual activation of the oxidant and light olefins in one reaction system. In this contribution, an oxametallacycle reinforced nanocomposite (Mo(O2)2@RT) is prepared via an oxidative pretreatment strategy, and its epoxidation performance to 2-methylpropene in liquid-phase with tert-butyl hydroperoxide (TBHP) as an oxidant is evaluated. A set of advanced characterizations including field emission scanning electron microscopy, X-ray photoelectron spectroscopy, in-situ Fourier transform infrared spectroscopy (FT-IR), electron spin-resonance spectroscopy, and high-resolution mass spectrometer are implemented to confirm the physicochemical properties and the catalytic behaviors of Mo(O2)2@RT. This catalyst has a fast kinetic response and exhibits excellent catalytic activity in 2-methylpropene epoxidation to produce 2-methylpropylene oxide (MPO; select.: 99.7%; yield: 92%), along with good reusability and scalability. Moreover, the main epoxidation mechanism is deduced that TBHP is activated by Mo(O2)2@RT to generate the highly active tert-butyl peroxide radical, which realizes the epoxidation of 2-methylpropene to yield MPO.


menu
Abstract
Full text
Outline
Electronic supplementary material
About this article

High selective epoxidation of 2-methylpropene over a Mo-based oxametallacycle reinforced nano composite

Show Author's information Chao Xiong1Hao Liu1Jie Zhou1Dejing Xu2Yichao Liang2Xiantai Zhou2Can Xue2( )Hongbing Ji1( )
Fine Chemical Industry Research Institute, School of Chemistry, Sun Yat-Sen University, Guangzhou 510275, China
School of Chemical Engineering and Technology, Sun Yat-Sen University, Zhuhai 519082, China

Abstract

Compared with the gas-solid phase reactions, the epoxidation of light olefins in the liquid phase could realize the highly selective preparation of epoxides at a lower temperature. Nevertheless, the C=C bond of light olefins is more difficult to activate, and it is still a challenge to realize the dual activation of the oxidant and light olefins in one reaction system. In this contribution, an oxametallacycle reinforced nanocomposite (Mo(O2)2@RT) is prepared via an oxidative pretreatment strategy, and its epoxidation performance to 2-methylpropene in liquid-phase with tert-butyl hydroperoxide (TBHP) as an oxidant is evaluated. A set of advanced characterizations including field emission scanning electron microscopy, X-ray photoelectron spectroscopy, in-situ Fourier transform infrared spectroscopy (FT-IR), electron spin-resonance spectroscopy, and high-resolution mass spectrometer are implemented to confirm the physicochemical properties and the catalytic behaviors of Mo(O2)2@RT. This catalyst has a fast kinetic response and exhibits excellent catalytic activity in 2-methylpropene epoxidation to produce 2-methylpropylene oxide (MPO; select.: 99.7%; yield: 92%), along with good reusability and scalability. Moreover, the main epoxidation mechanism is deduced that TBHP is activated by Mo(O2)2@RT to generate the highly active tert-butyl peroxide radical, which realizes the epoxidation of 2-methylpropene to yield MPO.

Keywords: oxidative pretreatment, 2-methylpropene epoxidation, dual activation, radical mechanism, Mo(O2)2@RT composite

References(39)

[1]

Monai, M.; Gambino, M.; Wannakao, S.; Weckhuysen, B. M. Propane to olefins tandem catalysis: A selective route towards light olefins production. Chem. Soc. Rev. 2021, 50, 11503–11529.

[2]

He, Y.; Shi, H. Z.; Johnson, O.; Joseph, B.; Kuhn, J. N. Selective and stable in-promoted Fe catalyst for syngas conversion to light olefins. ACS Catal. 2021, 11, 15177–15186.

[3]

Wang, S.; Zhang, L.; Wang, P. F.; Liu, X. C.; Chen, Y. Y.; Qin, Z. F.; Dong, M.; Wang, J. G.; He, L.; Olsbye, U. et al. Highly effective conversion of CO2 into light olefins abundant in ethene. Chem 2022, 8, 1376–1394.

[4]

Jorgensen, K. A. Transition-metal-catalyzed epoxidations. Chem. Rev. 1989, 89, 431–458.

[5]

Amini, M.; Haghdoost, M. M.; Bagherzadeh, M. Monomeric and dimeric oxido-peroxido tungsten(VI) complexes in catalytic and stoichiometric epoxidation. Coord. Chem. Rev. 2014, 268, 83–100.

[6]

Li, L. X.; Huang, S. S.; Song, J. J.; Yang, N. T.; Liu, J. W.; Chen, Y. Y.; Sun, Y. H.; Jin, R. C.; Zhu, Y. Ultrasmall Au10 clusters anchored on pyramid-capped rectangular TiO2 for olefin oxidation. Nano Res. 2016, 9, 1182–1192.

[7]

Yan, W. J.; Zhang, G. Y.; Yan, H.; Liu, Y. B.; Chen, X. B.; Feng, X.; Jin, X.; Yang, C. H. Liquid-phase epoxidation of light olefins over W and Nb nanocatalysts. ACS Sustainable Chem. Eng. 2018, 6, 4423–4452.

[8]

Khatib, S. J.; Oyama, S. T. Direct oxidation of propylene to propylene oxide with molecular oxygen: A review. Catal. Rev. 2015, 57, 306–344.

[9]

Li, T. H.; Zuo, Y.; Guo, Y. Z.; Yang, H.; Liu, M.; Guo, X. W. Highly stable TS-1 extrudates for 1-butene epoxidation through improving the heat conductivity. Catal. Sci. Technol. 2020, 10, 6152–6160.

[10]

Xiong, C.; He, Y. R.; Xu, D. J.; Liu, X. H.; Xue, C.; Zhou, X. T.; Ji, H. B. Enhanced oxygen transfer over bifunctional Mo-based oxametallacycle catalyst for epoxidation of propylene. J. Colloid Interface Sci. 2022, 611, 564–577.

[11]

Zhan, C.; Wang, Q. X.; Zhou, L. Y.; Han, X.; Wanyan, Y.; Chen, J. Y.; Zheng, Y. P.; Wang, Y.; Fu, G.; Xie, Z. X. et al. Critical roles of doping Cl on Cu2O nanocrystals for direct epoxidation of propylene by molecular oxygen. J. Am. Chem. Soc. 2020, 142, 14134–14141.

[12]

Leow, W. R.; Lum, Y.; Ozden, A.; Wang, Y. H.; Nam, D. H.; Chen, B.; Wicks, J.; Zhuang, T. T.; Li, F. W.; Sinton, D. et al. Chloride-mediated selective electrosynthesis of ethylene and propylene oxides at high current density. Science 2020, 368, 1228–1233.

[13]

Gordon, C. P.; Engler, H.; Tragl, A. S.; Plodinec, M.; Lunkenbein, T.; Berkessel, A.; Teles, J. H.; Parvulescu, A. N.; Copéret, C. Efficient epoxidation over dinuclear sites in titanium silicalite-1. Nature 2020, 586, 708–713.

[14]

Ko, M.; Kim, Y.; Woo, J.; Lee, B.; Mehrotra, R.; Sharma, P.; Kim, J.; Hwang, S. W.; Jeong, H. Y.; Lim, H. et al. Direct propylene epoxidation with oxygen using a photo-electro-heterogeneous catalytic system. Nat. Catal. 2022, 5, 37–44.

[15]

Xiong, W.; Gu, X. K.; Zhang, Z. H.; Chai, P.; Zang, Y. J.; Yu, Z. Y.; Li, D.; Zhang, H.; Liu, Z.; Huang, W. X. Fine cubic Cu2O nanocrystals as highly selective catalyst for propylene epoxidation with molecular oxygen. Nat. Commun. 2021, 12, 5921.

[16]

Lei, Y.; Mehmood, F.; Lee, S.; Greeley, J.; Lee, B.; Seifert, S.; Winans, R. E.; Elam, J. W.; Meyer, R. J.; Redfern, P. C. et al. Increased silver activity for direct propylene epoxidation via subnanometer size effects. Science 2010, 328, 224–228.

[17]

Barton, J. L. Electrification of the chemical industry. Science 2020, 368, 1181–1182.

[18]

Bregante, D. T.; Tan, J. Z.; Schultz, R. L.; Ayla, E. Z.; Potts, D. S.; Torres, C.; Flaherty, D. W. Catalytic consequences of oxidant, alkene, and pore structures on alkene epoxidations within titanium silicates. ACS Catal. 2020, 10, 10169–10184.

[19]

Xi, Z. W.; Zhou, N.; Sun, Y.; Li, K. L. Reaction-controlled phase-transfer catalysis for propylene epoxidation to propylene oxide. Science 2001, 292, 1139–1141.

[20]

Xia, Q. H.; Ge, H. Q.; Ye, C. P.; Liu, Z. M.; Su, K. X. Advances in homogeneous and heterogeneous catalytic asymmetric epoxidation. Chem. Rev. 2005, 105, 1603–1662.

[21]

McGarrigle, E. M.; Gilheany, D. G. Chromium- and manganese-salen promoted epoxidation of alkenes. Chem. Rev. 2005, 105, 1563–1602.

[22]

Lane, B. S.; Burgess, K. Metal-catalyzed epoxidations of alkenes with hydrogen peroxide. Chem. Rev. 2003, 103, 2457–2474.

[23]

Monnier, J. R. The direct epoxidation of higher olefins using molecular oxygen. Appl. Catal. A 2001, 221, 73–91.

[24]

Dai, Y. M.; Chen, Z. J.; Guo, Y. L.; Lu, G. Z.; Zhao, Y. F.; Wang, H. F.; Hu, P. Significant enhancement of the selectivity of propylene epoxidation for propylene oxide: A molecular oxygen mechanism. Phys. Chem. Chem. Phys. 2017, 19, 25129–25139.

[25]

Deubel, D. V.; Frenking, G.; Gisdakis, P.; Herrmann, W. A.; Rösch, N.; Sundermeyer, J. Olefin epoxidation with inorganic peroxides. Solutions to four long-standing controversies on the mechanism of oxygen transfer. Acc. Chem. Res. 2004, 37, 645–652.

[26]

Ray, K.; Pfaff, F. F.; Wang, B.; Nam, W. Status of reactive non-heme metal-oxygen intermediates in chemical and enzymatic reactions. J. Am. Chem. Soc. 2014, 136, 13942–13958.

[27]

Zhang, J. N.; Lei, Y. F.; Cao, S.; Hu, W. P.; Piao, L.; Chen, X. B. Photocatalytic hydrogen production from seawater under full solar spectrum without sacrificial reagents using TiO2 nanoparticles. Nano Res. 2022, 15, 2013–2022.

[28]

Chen, D.; Yue, X. Y.; Li, X. L.; Bao, J.; Qiu, Q. Q.; Wu, X. J.; Zhang, X.; Zhou, Y. Freestanding double-layer MoO3/CNT@S membrane: A promising flexible cathode for lithium-sulfur batteries. ACS Appl. Mater. Interfaces 2020, 12, 2354–2361.

[29]

Wang, C. X.; Mao, H. Y.; Wang, C. X.; Fu, S. H. Dispersibility and hydrophobicity analysis of titanium dioxide nanoparticles grafted with silane coupling agent. Ind. Eng. Chem. Res. 2011, 50, 11930–11934.

[30]

Boruah, J. J.; Kalita, D.; Das, S. P.; Paul, S.; Islam, N. S. Polymer-anchored peroxo compounds of vanadium(V) and molybdenum(VI): Synthesis, stability, and their activities with alkaline phosphatase and catalase. Inorg. Chem. 2011, 50, 8046–8062.

[31]

Maiti, S. K.; Malik, K. M. A.; Gupta, S.; Chakraborty, S.; Ganguli, A. K.; Mukherjee, A. K.; Bhattacharyya, R. Oxo- and oxoperoxo- molybdenum(VI) complexes with aryl hydroxamates: Synthesis, structure, and catalytic uses in highly efficient, selective, and ecologically benign peroxidic epoxidation of olefins. Inorg. Chem. 2006, 45, 9843–9857.

[32]

Lv, Y.; Yue, L.; Khan, I. M.; Zhou, Y.; Cao, W. B.; Niazi, S.; Wang, Z. P. Fabrication of magnetically recyclable yolk−shell Fe3O4@TiO2 nanosheet/Ag/g-C3N4 microspheres for enhanced photocatalytic degradation of organic pollutants. Nano Res. 2021, 14, 2363–2371.

[33]

Chenakin, S.; Kruse, N. Combining XPS and ToF-SIMS for assessing the CO oxidation activity of Au/TiO2 catalysts. J. Catal. 2018, 358, 224–236.

[34]

Wu, Y. X.; Liang, H. L.; Chen, X.; Chen, C.; Wang, X. Z.; Dai, C. Y.; Hu, L. M.; Chen, Y. F. Effect of preparation methods on denitration performance of V-Mo/TiO2 catalyst. J. Fuel Chem. Technol. 2020, 48, 189–196.

[35]

Veiros, L. F.; Prazeres, Â.; Costa, P. J.; Romão, C. C.; Kühnd, F. E.; Calhorda, M. J. Olefin epoxidation with tert-butyl hydroperoxide catalyzed by MoO2X2L complexes: A DFT mechanistic study. Dalton Trans. 2006, 1383–1389.

[36]

Al-Ajlouni, A.; Valente, A. A.; Nunes, C. D.; Pillinger, M.; Santos, A. M.; Zhao, J.; Romão, C. C.; Gonçalves, I. S.; Kühn, F. E. Kinetics of cyclooctene epoxidation with tert-butyl hydroperoxide in the presence of [MoO2X2L]-type catalysts (L = bidentate Lewis base). Eur. J. Inorg. Chem. 2005, 2005, 1716–1723.

[37]

Ma, H. B.; Zhang, Y. F.; Zhu, L. H.; Majima, T.; Wang, N. Efficient activation of peroxymonosulfate on cobalt hydroxychloride nanoplates through hydrogen bond for degradation of tetrabromobisphenol A. Chem. Eng. J. 2021, 413, 127480.

[38]

Xue, X. F.; Hanna, K.; Abdelmoula, M.; Deng, N. S. Adsorption and oxidation of PCP on the surface of magnetite: Kinetic experiments and spectroscopic investigations. Appl. Catal. B:Environ. 2009, 89, 432–440.

[39]

Sharpless, K. B.; Townsend, J. M.; Williams, D. R. Mechanism of epoxidation of olefins by covalent peroxides of molybdenum(VI). J. Am. Chem. Soc. 1972, 94, 295–296.

File
12274_2022_4686_MOESM1_ESM.pdf (4.1 MB)
Publication history
Copyright
Acknowledgements

Publication history

Received: 25 March 2022
Revised: 25 May 2022
Accepted: 21 June 2022
Published: 14 July 2022
Issue date: January 2023

Copyright

© Tsinghua University Press 2022

Acknowledgements

This work was financially supported by the National Key Research and Development Program Nanotechnology Specific Project (No. 2020YFA0210900), the National Natural Science Foundation of China (Nos. 21908256, 21938001, and 21878344), Guangdong Provincial Key R&D Program (No. 2019B110206002), and the Fundamental Research Funds for the Central Universities, Sun Yat-sen University (No. 2021qntd13).

Return