Discover the SciOpen Platform and Achieve Your Research Goals with Ease.
Search articles, authors, keywords, DOl and etc.
Compared with the gas-solid phase reactions, the epoxidation of light olefins in the liquid phase could realize the highly selective preparation of epoxides at a lower temperature. Nevertheless, the C=C bond of light olefins is more difficult to activate, and it is still a challenge to realize the dual activation of the oxidant and light olefins in one reaction system. In this contribution, an oxametallacycle reinforced nanocomposite (Mo(O2)2@RT) is prepared via an oxidative pretreatment strategy, and its epoxidation performance to 2-methylpropene in liquid-phase with tert-butyl hydroperoxide (TBHP) as an oxidant is evaluated. A set of advanced characterizations including field emission scanning electron microscopy, X-ray photoelectron spectroscopy, in-situ Fourier transform infrared spectroscopy (FT-IR), electron spin-resonance spectroscopy, and high-resolution mass spectrometer are implemented to confirm the physicochemical properties and the catalytic behaviors of Mo(O2)2@RT. This catalyst has a fast kinetic response and exhibits excellent catalytic activity in 2-methylpropene epoxidation to produce 2-methylpropylene oxide (MPO; select.: 99.7%; yield: 92%), along with good reusability and scalability. Moreover, the main epoxidation mechanism is deduced that TBHP is activated by Mo(O2)2@RT to generate the highly active tert-butyl peroxide radical, which realizes the epoxidation of 2-methylpropene to yield MPO.
Monai, M.; Gambino, M.; Wannakao, S.; Weckhuysen, B. M. Propane to olefins tandem catalysis: A selective route towards light olefins production. Chem. Soc. Rev. 2021, 50, 11503–11529.
He, Y.; Shi, H. Z.; Johnson, O.; Joseph, B.; Kuhn, J. N. Selective and stable in-promoted Fe catalyst for syngas conversion to light olefins. ACS Catal. 2021, 11, 15177–15186.
Wang, S.; Zhang, L.; Wang, P. F.; Liu, X. C.; Chen, Y. Y.; Qin, Z. F.; Dong, M.; Wang, J. G.; He, L.; Olsbye, U. et al. Highly effective conversion of CO2 into light olefins abundant in ethene. Chem 2022, 8, 1376–1394.
Jorgensen, K. A. Transition-metal-catalyzed epoxidations. Chem. Rev. 1989, 89, 431–458.
Amini, M.; Haghdoost, M. M.; Bagherzadeh, M. Monomeric and dimeric oxido-peroxido tungsten(VI) complexes in catalytic and stoichiometric epoxidation. Coord. Chem. Rev. 2014, 268, 83–100.
Li, L. X.; Huang, S. S.; Song, J. J.; Yang, N. T.; Liu, J. W.; Chen, Y. Y.; Sun, Y. H.; Jin, R. C.; Zhu, Y. Ultrasmall Au10 clusters anchored on pyramid-capped rectangular TiO2 for olefin oxidation. Nano Res. 2016, 9, 1182–1192.
Yan, W. J.; Zhang, G. Y.; Yan, H.; Liu, Y. B.; Chen, X. B.; Feng, X.; Jin, X.; Yang, C. H. Liquid-phase epoxidation of light olefins over W and Nb nanocatalysts. ACS Sustainable Chem. Eng. 2018, 6, 4423–4452.
Khatib, S. J.; Oyama, S. T. Direct oxidation of propylene to propylene oxide with molecular oxygen: A review. Catal. Rev. 2015, 57, 306–344.
Li, T. H.; Zuo, Y.; Guo, Y. Z.; Yang, H.; Liu, M.; Guo, X. W. Highly stable TS-1 extrudates for 1-butene epoxidation through improving the heat conductivity. Catal. Sci. Technol. 2020, 10, 6152–6160.
Xiong, C.; He, Y. R.; Xu, D. J.; Liu, X. H.; Xue, C.; Zhou, X. T.; Ji, H. B. Enhanced oxygen transfer over bifunctional Mo-based oxametallacycle catalyst for epoxidation of propylene. J. Colloid Interface Sci. 2022, 611, 564–577.
Zhan, C.; Wang, Q. X.; Zhou, L. Y.; Han, X.; Wanyan, Y.; Chen, J. Y.; Zheng, Y. P.; Wang, Y.; Fu, G.; Xie, Z. X. et al. Critical roles of doping Cl on Cu2O nanocrystals for direct epoxidation of propylene by molecular oxygen. J. Am. Chem. Soc. 2020, 142, 14134–14141.
Leow, W. R.; Lum, Y.; Ozden, A.; Wang, Y. H.; Nam, D. H.; Chen, B.; Wicks, J.; Zhuang, T. T.; Li, F. W.; Sinton, D. et al. Chloride-mediated selective electrosynthesis of ethylene and propylene oxides at high current density. Science 2020, 368, 1228–1233.
Gordon, C. P.; Engler, H.; Tragl, A. S.; Plodinec, M.; Lunkenbein, T.; Berkessel, A.; Teles, J. H.; Parvulescu, A. N.; Copéret, C. Efficient epoxidation over dinuclear sites in titanium silicalite-1. Nature 2020, 586, 708–713.
Ko, M.; Kim, Y.; Woo, J.; Lee, B.; Mehrotra, R.; Sharma, P.; Kim, J.; Hwang, S. W.; Jeong, H. Y.; Lim, H. et al. Direct propylene epoxidation with oxygen using a photo-electro-heterogeneous catalytic system. Nat. Catal. 2022, 5, 37–44.
Xiong, W.; Gu, X. K.; Zhang, Z. H.; Chai, P.; Zang, Y. J.; Yu, Z. Y.; Li, D.; Zhang, H.; Liu, Z.; Huang, W. X. Fine cubic Cu2O nanocrystals as highly selective catalyst for propylene epoxidation with molecular oxygen. Nat. Commun. 2021, 12, 5921.
Lei, Y.; Mehmood, F.; Lee, S.; Greeley, J.; Lee, B.; Seifert, S.; Winans, R. E.; Elam, J. W.; Meyer, R. J.; Redfern, P. C. et al. Increased silver activity for direct propylene epoxidation via subnanometer size effects. Science 2010, 328, 224–228.
Barton, J. L. Electrification of the chemical industry. Science 2020, 368, 1181–1182.
Bregante, D. T.; Tan, J. Z.; Schultz, R. L.; Ayla, E. Z.; Potts, D. S.; Torres, C.; Flaherty, D. W. Catalytic consequences of oxidant, alkene, and pore structures on alkene epoxidations within titanium silicates. ACS Catal. 2020, 10, 10169–10184.
Xi, Z. W.; Zhou, N.; Sun, Y.; Li, K. L. Reaction-controlled phase-transfer catalysis for propylene epoxidation to propylene oxide. Science 2001, 292, 1139–1141.
Xia, Q. H.; Ge, H. Q.; Ye, C. P.; Liu, Z. M.; Su, K. X. Advances in homogeneous and heterogeneous catalytic asymmetric epoxidation. Chem. Rev. 2005, 105, 1603–1662.
McGarrigle, E. M.; Gilheany, D. G. Chromium- and manganese-salen promoted epoxidation of alkenes. Chem. Rev. 2005, 105, 1563–1602.
Lane, B. S.; Burgess, K. Metal-catalyzed epoxidations of alkenes with hydrogen peroxide. Chem. Rev. 2003, 103, 2457–2474.
Monnier, J. R. The direct epoxidation of higher olefins using molecular oxygen. Appl. Catal. A 2001, 221, 73–91.
Dai, Y. M.; Chen, Z. J.; Guo, Y. L.; Lu, G. Z.; Zhao, Y. F.; Wang, H. F.; Hu, P. Significant enhancement of the selectivity of propylene epoxidation for propylene oxide: A molecular oxygen mechanism. Phys. Chem. Chem. Phys. 2017, 19, 25129–25139.
Deubel, D. V.; Frenking, G.; Gisdakis, P.; Herrmann, W. A.; Rösch, N.; Sundermeyer, J. Olefin epoxidation with inorganic peroxides. Solutions to four long-standing controversies on the mechanism of oxygen transfer. Acc. Chem. Res. 2004, 37, 645–652.
Ray, K.; Pfaff, F. F.; Wang, B.; Nam, W. Status of reactive non-heme metal-oxygen intermediates in chemical and enzymatic reactions. J. Am. Chem. Soc. 2014, 136, 13942–13958.
Zhang, J. N.; Lei, Y. F.; Cao, S.; Hu, W. P.; Piao, L.; Chen, X. B. Photocatalytic hydrogen production from seawater under full solar spectrum without sacrificial reagents using TiO2 nanoparticles. Nano Res. 2022, 15, 2013–2022.
Chen, D.; Yue, X. Y.; Li, X. L.; Bao, J.; Qiu, Q. Q.; Wu, X. J.; Zhang, X.; Zhou, Y. Freestanding double-layer MoO3/CNT@S membrane: A promising flexible cathode for lithium-sulfur batteries. ACS Appl. Mater. Interfaces 2020, 12, 2354–2361.
Wang, C. X.; Mao, H. Y.; Wang, C. X.; Fu, S. H. Dispersibility and hydrophobicity analysis of titanium dioxide nanoparticles grafted with silane coupling agent. Ind. Eng. Chem. Res. 2011, 50, 11930–11934.
Boruah, J. J.; Kalita, D.; Das, S. P.; Paul, S.; Islam, N. S. Polymer-anchored peroxo compounds of vanadium(V) and molybdenum(VI): Synthesis, stability, and their activities with alkaline phosphatase and catalase. Inorg. Chem. 2011, 50, 8046–8062.
Maiti, S. K.; Malik, K. M. A.; Gupta, S.; Chakraborty, S.; Ganguli, A. K.; Mukherjee, A. K.; Bhattacharyya, R. Oxo- and oxoperoxo- molybdenum(VI) complexes with aryl hydroxamates: Synthesis, structure, and catalytic uses in highly efficient, selective, and ecologically benign peroxidic epoxidation of olefins. Inorg. Chem. 2006, 45, 9843–9857.
Lv, Y.; Yue, L.; Khan, I. M.; Zhou, Y.; Cao, W. B.; Niazi, S.; Wang, Z. P. Fabrication of magnetically recyclable yolk−shell Fe3O4@TiO2 nanosheet/Ag/g-C3N4 microspheres for enhanced photocatalytic degradation of organic pollutants. Nano Res. 2021, 14, 2363–2371.
Chenakin, S.; Kruse, N. Combining XPS and ToF-SIMS for assessing the CO oxidation activity of Au/TiO2 catalysts. J. Catal. 2018, 358, 224–236.
Wu, Y. X.; Liang, H. L.; Chen, X.; Chen, C.; Wang, X. Z.; Dai, C. Y.; Hu, L. M.; Chen, Y. F. Effect of preparation methods on denitration performance of V-Mo/TiO2 catalyst. J. Fuel Chem. Technol. 2020, 48, 189–196.
Veiros, L. F.; Prazeres, Â.; Costa, P. J.; Romão, C. C.; Kühnd, F. E.; Calhorda, M. J. Olefin epoxidation with tert-butyl hydroperoxide catalyzed by MoO2X2L complexes: A DFT mechanistic study. Dalton Trans. 2006, 1383–1389.
Al-Ajlouni, A.; Valente, A. A.; Nunes, C. D.; Pillinger, M.; Santos, A. M.; Zhao, J.; Romão, C. C.; Gonçalves, I. S.; Kühn, F. E. Kinetics of cyclooctene epoxidation with tert-butyl hydroperoxide in the presence of [MoO2X2L]-type catalysts (L = bidentate Lewis base). Eur. J. Inorg. Chem. 2005, 2005, 1716–1723.
Ma, H. B.; Zhang, Y. F.; Zhu, L. H.; Majima, T.; Wang, N. Efficient activation of peroxymonosulfate on cobalt hydroxychloride nanoplates through hydrogen bond for degradation of tetrabromobisphenol A. Chem. Eng. J. 2021, 413, 127480.
Xue, X. F.; Hanna, K.; Abdelmoula, M.; Deng, N. S. Adsorption and oxidation of PCP on the surface of magnetite: Kinetic experiments and spectroscopic investigations. Appl. Catal. B:Environ. 2009, 89, 432–440.
Sharpless, K. B.; Townsend, J. M.; Williams, D. R. Mechanism of epoxidation of olefins by covalent peroxides of molybdenum(VI). J. Am. Chem. Soc. 1972, 94, 295–296.